01 introd

83
Scienza e Tecnologia dei Materiali 2011 - M.Ferraris 1 The aim of this course: • The aim of this course is to provide Mechanical and Automotive Engineering students basic knowledge on different classes of materials • Relationship between structure of materials and their properties (Materials Science) Structure of materials = chemical-physical structure, (chemical bonds, composition, …) To design/choose materials (Materials Engineering) Choice of materials, production process, structure-properties, performances, cost, life cycle

description

 

Transcript of 01 introd

Page 1: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

1

The aim of this course:

• The aim of this course is to provide Mechanical and Automotive Engineering students basic knowledge on different classes of materials

• Relationship between structure of materials and their properties (Materials Science)

• Structure of materials = chemical-physical structure, (chemical bonds, composition, …)

• To design/choose materials (Materials Engineering)• Choice of materials, production process,

structure-properties, performances, cost, life cycle

Page 2: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

2

MATERIALS OF INTEREST IN ENGINEERING

• Metals and alloys

• polymers

• composites

• glasses

• ceramics

(fuels, lubricants, paints, …....)

Page 3: 01 introd

3

http://helios.augustana.edu/physics/301/periodic-table-fix.jpg

Page 4: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

4

OVERVIEW ON METALS AND ALLOYS

• ELEMENTS (Fe, Ti, Al, Mg, Cu,…)• Heath and electricity• Prepared by melting• Can be machined• All solids at room temperature• Can form alloys• Corrosion and oxidation issues• Density ranging between 2,7 and 8 g/cm3

Page 5: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

5

OVERVIEW ON CERAMICS

• Compounds (oxydes, carbides, nitrides, ..)(Al2O3, SiC, Si3N4,…)(density ranging between 3 and 5 g/cm3)

• hard and brittle, difficult to be machined

• Insulators (heat and electricity)

• High melting point

• Prepared by sintering or other processes, never melting

• examples: bricks, concrete, tiles, porcellains, ….

Page 6: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

6

OVERVIEW ON POLYMERS• Organic macro-molecules,

natural or synthetic • Prepared by organic synthesis• Low density, less than 1g/cm3

• Easy to machine• Insulators (sound, heat and electricity)• Low thermal and mechanical properties• examples: tyres, adhesives, paints, bitumen,..

Page 7: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

7

OVERVIEW ON GLASSES

• Prepared by melting of oxides

(SiO2, Na2O, CaO, Al2O3, K2O,...)

• Hard, brittle, can be deformed only at suitable temperature, cannot be machined

• insulators (heat and electricity)• Density of about 2,5 g/cm3

• examples: window and car glasses, optical fibers

Page 8: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

8

OVERVIEW ON COMPOSITES• TWO PHASES:

MATRIX and SECOND PHASE• Classified according to the matrix:• Metal matrix composites• Polymer matrix composites• Ceramic matrix composites• Glass and glass-ceramic matrix composites• examples: wood, reinforced concrete, bones,

bamboo,….

Page 9: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

9

OVERVIEW ON COMPOSITES

• Can be classified according to the second phase morphology:

• Fiber reinforced composites (long fibers, short fibers)

• Particle reinforced composites

• The second phase can be: metal, polymer, ceramic, glass

Page 10: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

10

STRUCTURE OF MATERIALS

• CRYSTALLINE ORDERED– metals, ceramics

• AMORPHOUS DISORDERED

• glass, polymers

Page 11: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

11

EXCEPTIONS….

• Glass-ceramics, polymers, composites::

• Amorphous in some zones, crystalline in others

Page 12: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

12

CORRELATION STRUCTURE-PROPERTIES….

• …the aim of Materials Science

• CRYSTALLINE STRUCTURE– Melting Temperature

• AMORPHOUS STRUCTURE– They don’t have melting temperature,

but progressive softening

Page 13: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

13

CRYSTALLINE STRUCTURE: MELTING TEMPERATURE

• Melting temperature = Solid to liquid (Tm)

• directly proportional to the material bond strength

Page 15: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

15

CRYSTALLINE STRUCTURE

• Chemical bond and crystalline structure: atoms, ions or molecules in crystalline structures are in ordered positions in crystalline cells

• atoms, ions or molecules are at the equilibrium distance between attraction and repulsion forces : bond length or bond distance

ibchem.com

Page 16: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

16

CRYSTALLINE STRUCTURE

• “CRYSTALLINE materials: ordered positioning of atoms (ex: metals), or ions (ex: ceramics) or molecules (ex: polymers)”

• CRYSTALLINE

CELL

• a,b,c

0,1-0,26 nm

Video

Page 17: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

17

CRYSTALLINE CELLS

a,b,c cell parameters cell angles

• identify the structure of crystalline materials by cell parameters

• a,b,c about 0,1-0,26 nm at room T and without external applied forces

Page 18: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

18

CRYSTALLINE CELLS

• a,b,c changes with T and applied forces

• At zero K they are at the equilibrium distance

• When T increases, vibration around the equilibrium distance cause thermal expansion, then melting.

Page 19: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

19

SEVERAL CRYSTALLINE CELLS

a = b = c = = = 90° CUBICa = b c = = = 90° TETRAGONALa b c = = = 90°

ORTOROMBIC

a = b = c = = 90° ROMBOEDRICa = b c = = 90° , = 120° HESAGONALa b c = = 90° MONOCLINE

a b c 90° TRICLINE

Page 20: 01 introd

20

Crystalline cells

Page 21: 01 introd

21

Es: Cu, Al, Ag, Au

Es: Fe, W, CrEs: Mg, Ti, Zn

Hexagonal compact

Page 22: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

22

• Lattice plane: 3 atoms (or ions or molecules) in a cell, define one lattice plane

• COORDINATION NUMBER:

Page 23: 01 introd

Materiali per l’IngegneriaM.Ferraris

23

http://amscampus.cib.unibo.it/archive/00001824/01/5-Silicio_web.doc

http://www.diee.unica.it/~vanzi/Origami.PDF

http://www.lnf.infn.it/esperimenti/rap/docs/silicio.pdf

Page 25: 01 introd

Materiali per l’IngegneriaM.Ferraris

25

http://ceramics.org/video/individual-carbon-atoms-in-motion/

Page 26: 01 introd

26

X-ray diffraction (XRD)

XRD of a crystalline material (Au)

XRD of amorphous silica and silica crystalline (SiO2)

Page 27: 01 introd

27

Electromagnetic radiation spectrum

E=h

energy = frequencywavelength

Energy, frequency

wavelength

High Energy, high frequency, short wavelength

Low Energy, low frequency, long wavelength

Page 28: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

28

X ray diffraction

n = 2 d sin (Bragg law)

n= number, 1, 2, 3…

Page 29: 01 introd

29

X-ray diffraction (XRD): to detect an amorphous or crystalline material

XRD of a crystalline material (Au)

XRD of amorphous silica and silica crystalline (SiO2)

Page 30: 01 introd

Materiali per l’IngegneriaM.Ferraris

30

Examples of XRD

Page 31: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

31

CRYSTALLINE STRUCTURE: POLYMORPHISM

• A crystalline solid melts when heated

• Polymorphism: change of crystalline structure during heating (solid state reaction)

• examples: Ti, Fe, SiO2

• Polymorfism and variation of materials properties : (V, , k, E, d,….)

Page 32: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

32

POLYMORFISM

Page 33: 01 introd

Materiali per l’IngegneriaM.Ferraris

33

Page 34: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

34

CRYSTALLINE STRUCTURE: DEFECTS

• Crystalline structure is not completely ordered….LATTICE DEFECTS:

• MONODIMENSIONAL DEFECTS

• BIDIMENSIONAL DEFECTS

• TRIDIMENSIONAL DEFECTS

Page 35: 01 introd

35

MONODIMENSIONAL DEFECT: INTERSTITIAL

Page 36: 01 introd

36

MONODIMENSIONAL DEFECTS:SUBSTITUTIONAL

Page 37: 01 introd

37

MONODIMENSIONAL DEFECTS:SUBSTITUTIONAL

Page 38: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

38

MONODIMENSIONAL DEFECTS(or POINT DEFECTS)

• Vacancies (lack of one atom or ion or molecule in the lattice)

• interstials• substitutionals

vacancy

substitutionalinterstitial

Page 39: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

39

ARE POINT DEFECTS «DEFECTS»…?

• ALLOYS and in general solid solutions are possible because of interstitials and substitutionals defects

• presence of substitutional impurities are necessary for in semiconductor science

….

Page 40: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

40

Solid solutions: substitutional alloys• Metal alloys are solid solutions :

– up to 15% atoms as substitutional defects different from those of the main lattice

– Es: Cu/Ni– RNi = 1.25Å, RCu = 1.28Å– both CFC– Same electronegativity– valence Ni +2, Cu +1, +2

– Atoms with similar radius, crystalline cell, electronegativity and valence

Page 41: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

41

Solid solutions: interstitial alloys

– Atoms as interstitial defects different from those of the main lattice

– Only small atoms can enter a metallic cell as interstitial defects (max 10%)

– Ex.: carbon is an interstitial defects in the iron lattice in steels, up to about 2%

– RFe = 1.24Å, RC = 0.71Å

Page 42: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

42

BIDIMENSIONAL DEFECTS: DISLOCATONS

• Edge and screw dislocations: responsible of plastic deformation of materials

• (video)

• Commercial metal or alloy (ex. Cu) about 108 dislocations per cm3

Page 43: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

43

Dislocations in nature….!• Dislocation: one lattice plane more….

Solfuro di rame (CuS)

cactus!

Page 44: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

44

Edge dislocations

http://www.uet.edu.pk/dmems/EdgeDislocation.gif

Page 45: 01 introd

45

350Å

Nitruro di gallio(GaN)

Screw dislocations

Page 46: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

Materiali per l’IngegneriaM.Ferraris

46

Dislocation motion

Vedi moto dislocazioni.ppt

1

2

3

4

5

6

Page 47: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

47

DISLOCATION AND PLASTIC DEFORMATION

• Dislocation motion means fracture of a bond and formation of another one in a different nearby lattice position

• dislocations are present in ALL crystalline materials (metals, ceramics,…)

• In ceramics, it is NOT possible to form a new bond in a different nearby lattice position due to the ionic or covalent nature of bonds. No plastic deformation (at room T)

• In metals, it IS possible to form a new bond in a different nearby lattice position due to the metal nature of bonds. Plastic deformation.

Page 48: 01 introd

48

Interaction between dislocations and point defects

Mechanical hardening, cold working

Video

Page 49: 01 introd

49

Dislocations interact with themselves: mechanical hardening of alloys

Page 50: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

50

INTERACTION DISLOCATION AND POINT DEFECTS

• DISLOCATIONS INTERACT with themselves (cold working, hardening).

• Dislocations interact with point defects: dislocation motion is slower (VIDEO) in alloys than in pure metals

• Better mechanical properties of alloys vs pure metals• Without dislocations, the plastic deformation of metals cannot

be explained • Dislocations can be seen with Scanning or Transmission

electron Microscopy (SEM, TEM).

Page 51: 01 introd

51

Dislocation motion

Page 52: 01 introd

Materiali per l’IngegneriaM.Ferraris

52

Interaction dislocation substitutional defect and influence on mechanical properties of alloys vs pure metals

Page 53: 01 introd

53

Interaction dislocation/substitutional defect and influence on mechanical properties of alloys vs pure metals

Page 54: 01 introd

54

Preferential sliding planes for dislocations

Low density plane High density plane

Page 55: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

55

TRIDIMENTIONAL DEFECTS• surface is a defect : reactivity of atoms or

ions or molecules at the surface. Lower coordination number, higher reactivity

• GRAIN BOUNDARIES (gb)

Page 56: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

56http://www.numis.northwestern.edu/Research/Projects/3x1.shtml

Page 57: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

57

• GRAIN BOUNDARIES:

distorted bonds at the boundary between two grains in a polycrystalline material

TRIDIMENTIONAL DEFECTS

Page 58: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

Materiali per l’IngegneriaM.Ferraris

58

SOLIDIFICATION OF A LIQUID AND ITS STRUCTURE

1425 °C

or SiO2

a 1730 °C

SLOW SPEEDSOLIDIFICATIONMONOCRYSTALLINE STRUCTURE

MEDIUM SPEED SOLIDIFICATIONPOLYCRYSTALLINE STRUCTURE

HIGH SPEED SOLIDIFICATIONAMORPHOUS STRUCTURE

LIQUIDGRAIN and GB

Page 59: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

Materiali per l’IngegneriaM.Ferraris

59

Nucleation and growth, formation of GB in polycrystalline materials

Page 60: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

60

CRYSTALLINE STRUCTURE

• MONOCRYSTALS: crystalline cells all oriented in the same (ex. Silicon for microelectronics)

• POLYCRYSTALS: crystalline cells oriented in the same way ONLY inside grains: solidification too quick to allow same orientation in entire lattice (ex .metals, alloys, ceramics)

Page 61: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

61

Monocrystal (a) …. polycrystal(b)

Page 62: 01 introd

62

Monocrystals• Difficult to obtain compared to

polycrystalline materials

• Silicon for electronics– Extra slow molten silicon solidification

(1-10 m per second)– About 1.5m length silicon cylinders

300 mm diameter, sliced as wafers– About 10 defects/ cm 2

http://www.csc.fi/elmer/examples/czmeltflow/growth.gifhttp://www.ami.bolton.ac.uk/courseware/mdesign/ch2/SingleCrystalSiliconIngot.jpg

Page 63: 01 introd

63

http://www.ingegneriadelsole.it/celle_silicio_cristallino.htm

Page 64: 01 introd

64

Polycristalline materials• Natural solidification from a liquid metal gives a

polycrystalline metal• Several grains, same cell orientation inside the

grain, grains separated by grain boundaries(gb)

http://mimp.mems.cmu.edu/~ordofmag/alumina.jpghttp://www.mse.nthu.edu.tw/jimages/Beuty/Steel1.jpg

Grains in Al2O3

Grains in steel

Page 65: 01 introd

Materiali per l’IngegneriaM.Ferraris

65

GRAIN BOUNDARIES

• Irregular bonds, impurities, dislocations, atoms with lower coordination number,…

• High reactivity • Observable by optical

microscopy and chemical etching

• (file micr_acciai_ghise; video crystalline cells, video mech

properties)

Page 66: 01 introd

Materiali per l’IngegneriaM.Ferraris

66

Page 67: 01 introd

Materiali per l’IngegneriaM.Ferraris

67

Optical and electron Microscopy

• Optical microscopy (2000x)• Scanning Electron Microscopy (SEM)

(104x)• Transmission Electron Microscopy

(TEM) (106x)

Page 68: 01 introd

Materiali per l’IngegneriaM.Ferraris

68

20 µm

TiTi2(Co,Ni)

Ti(Co,Ni)

TiCo

SEM and compositional analysis (EDS)

Page 69: 01 introd

69

Atomic Force Microscopy (AFM) (109x)

Page 70: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

Materiali per l’IngegneriaM.Ferraris

70

SOLIDIFICATION OF A LIQUID AND ITS STRUCTURE

1425 °C

or SiO2

a 1730 °C

SLOW SPEEDSOLIDIFICATIONMONOCRYSTALLINE STRUCTURE

MEDIUM SPEED SOLIDIFICATIONPOLYCRYSTALLINE STRUCTURE

HIGH SPEED SOLIDIFICATIONAMORPHOUS STRUCTURE

LIQUIDGRAIN and GB

Page 71: 01 introd

Materiali per l’IngegneriaM.Ferraris

71

Page 72: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

72

AMORPHOUS MATERIALS

• Disordered structure, no melting point

• glasses, polymers

• Short range order (few nm) (ex: Si4+ and O--ions are situated in tetrahedra in silicate glasses

Page 73: 01 introd

73

• Local, short range order; bond angle and length are variable

• No order after few nanometers

• “Undercooled liquids”• Quick solidification of a liquid• “No time to obtain a

crystalline structure” !

http://www.research.ibm.com/amorphous/figure1.gif

Amorphous silica

AMORPHOUS MATERIALS

Page 74: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

74

Amorphous materials: silica glasses

Si4+

O--

tetrahedron amorphous structure of silica: tetrahedra chains

Page 75: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

75

Crystalline and amorphous silica (SiO2)

Page 76: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

76

AMORPHOUS MATERIALS• Amorphous materials are not

thermodynamically stable: • They become crystalline if suitable

heated• All liquids can be solidified quickly

enough to obtain amorphous solids• All liquids can be solidified slowly enough

to obtain poly- or mono-crystalline solids

Page 77: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

77

• Ex: silica glass: bond angles, force and length differ in different tetraedra

• No melting temperature

• Viscosity vs temperature

• The opposite than with crystalline materials !

AMORPHOUS MATERIALS

Page 78: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

78

VISCOSITY

• Viscosity is a measure of a fluid's resistance to flow.

• It describes the internal friction of a moving fluid (i.e. tetrahedra chains in a silica glass).

Page 79: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

79

VISCOSITY

• Viscosity Unit : Poise

10 Poise = 1 Pa∙s = 1 (N/m2)∙s

• Example of viscosity: H2O (room T) = 1 x 10-3 Pa s

SiO2(silica) (1720°) = 1 x 106 Pa s

Page 80: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

80

VISCOSITY : AMORPHOUS and CRYSTALLINE materials

Viscosity decreases continuosly for amorphous materials.

This is not the case for crystalline materials

Al2O3

Glasses, polymers

Page 81: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

81

VISCOSITY

annealing

softening

Working point

Melting point

Page 82: 01 introd

Scienza e Tecnologia dei Materiali 2011 - M.Ferraris

Materiali per l’IngegneriaM.Ferraris

82

Viscosity curve of a glass

Page 83: 01 introd

Viscosity for glass and glass-ceramics

83

glassGlass-ceramic