01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von...

38
Insulation for Energy Systems Professor Sergey Lopatkin Office 00B18 e-mail: Lopatkin@tpu. ru

Transcript of 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von...

Page 1: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

Insulation for Energy Systems

ProfessorSergey Lopatkin

Office 00B18

e-mail:

[email protected]

Page 2: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

2

Significance of electrical insulationOverview of high voltage applicationsHigh voltage in electric power engineeringCourse syllabus

Content

Page 3: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

Significance of electrical insulation

Reliability of energy systems Safety Efficiency

Applications of high voltage insulation– transmission lines, – cables, – transformers, – capacitors, – electrical machines

3

Page 4: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

4

High Voltage Applications

Light Engineering

Voltage up to 6 kV

Page 5: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

5

High Voltage Applications

Cathode-Ray Tubes:

TV sets, computer monitors, oscilloscope, etc.

(up to 25 kV)

Page 6: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

6

High Voltage Applications

Rail Transport:

subway, railway

(up to 27 kV)

Page 7: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

7

High Voltage Applications

Technology: electrostatic precipitation, separation, painting, electrohydraulic stamping, water cleaning, electroerosion electropulse

machining

(10-100 kV)

Page 8: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

8

High Voltage Applications

X-ray equipment

for medicine and industry

(up to 200 kV)

Page 9: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

9

High Voltage Applications

Scientific research

(millions Volts)

Page 10: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

10

High Voltage Applications

Electric power engineering

3, 6 – 1150 kV

Page 11: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

11

History of electric power engineering

1870 – invention of the DC generator 1882 – first large-scale use of electricity –

Edison's Pearl Street System; provided electric lighting for Lower Manhattan

Page 12: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

12

First DC power system

1) Current in transmission line: IL ≈ PLoad / V2

2) Voltage decay: V = V1 – V2 = IL Rline

3) Power loss: P = IL V = IL2

Rline = (PLoad / V2)2Zline

G

Transmission line

Rline V2V1

PLoad

Generator Load

Page 13: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

13

Ways to increase perfomance

P = (PLoad / V2)2Rline

1. increasing the operating voltage of a system

2. decreasing the impedance of a line

Impedance (DC): Rline = r L / S, where

r – specific resistance of the wire,

L – length of the line, and

S – cross-sectional area of the wire

already optimal

not effective

not effective

G

Rline V2V1

Page 14: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

14

Modern AC power system

1884 – invention of a transformer 1890 – 28 miles 10 kV line Deptford – London

Power transfer capability (PLoad ≈ V22 / Zline)

V(kV) 400 700 1000 1200 1500

P(MW) 640 2000 4000 5800 9000

G

Transmission line

ZlineV2V1

PLoad

Generator

LoadTransformerTransformer

V3

Page 15: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

15

Major AC power systems

10 50110

220287

380

525

735

1150

0

200

400

600

800

1000

1200

1400

1880 1900 1920 1940 1960 1980 2000

Year of installation

AC

vo

lag

e, k

V

Page 16: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

16

Application of the HVDC systems

Connection of Asynchronous AC Systems Long and Submarine Cables

Transmission lineDC

ACInverterRectifier

AC

Page 17: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

17

Major DC power systems

0

100

200

300

400

500

600

700

1950 1960 1970 1980 1990 2000

Year of installation

DC

vo

lta

ge

, kV

Page 18: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

Demands to electrical insulation

Reliability Safety Efficiency

Ways to achieve: Design Manufacturing Maintenance

18

Page 19: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

Three questions to be answered

What is the electrical stress distribution that the materials will experience within the device?

What are the processes in insulation under these stresses that influence breakdown strengths of the materials?

How does the reliability change through the life of the device as a result of a reduction in the material breakdown strength (aging) and a change in the electrical stress distribution?

19

Page 20: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

20

Course structure

THEORY Electrical discharge in gas, liquid and solid dielectrics

(physics, theory, factors affecting discharge voltage, breakdown, corona discharge, flashover, partial discharge, treeing).

Design of high voltage insulation (transmission lines, cables, transformers, capacitors, electrical machines).

Testing techniques for insulation maintenance.

EXAM

Page 21: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

21

Textbooks

High Voltage Engineering Fundamentalsby E. Kuffel, W. S. Zaengl, and J. Kuffel

High Voltage Engineering by M.S. Naidu

Hochspannungstechnik. Theoretische und Praktische Grundlagen by M. Beyer, W. Boeck, K. Möller, and W. Zaengl

Page 22: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

22

ELECTRIC FIELD IN INSULATORS

Page 23: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

23

Contents

Electric field concept Electrical discharge and breakdown definitions Electric fields classifications

Page 24: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

24

Electric field related equations

Potential induced by charge in the medium

= q / (40 R)

q – charge

– permittivity of the medium

0 – electric permittivity of vacuum (8.85 10-12 farad/m)

R – distance

Voltage between the points 1 and 2

V = 1 – 2

Page 25: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

25

Electric field related equations

Electric field strength

E = –grad = –V / x

= – ∫l E dl

The force of electric field

F = q E

Page 26: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

27

Electrical discharge and breakdown

Electrical breakdown – loss of insulating ability

Electrical discharge – process (the stage) of breakdown

Dielectric strength of insulator: the maximum electric field strength, which the

material can withstand without breakdown the voltage at which the current starts increasing

to very high values and breakdown occurs

Breakdown voltage – applied voltage at the moment of breakdown

Page 27: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

28

Lightning

Page 28: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

29

Multiple Lightning

Page 29: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

30

Examples: spark discharge

Page 30: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

31

Examples: arc discharge

Page 31: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

32

Examples: long arc discharge

Page 32: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

33

Parameters affecting breakdown voltage

electric field distribution, pressure, temperature, humidity, nature of applied voltage, imperfections in dielectric materials, material and surface conditions of electrodes, time of voltage application,and others

Page 33: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

34

Electric field classification

Dependence on time of application: constant alternating pulsed

oscillating impulse aperiodic or unipolar impulse

t

E

t

E

t

E

t

E

Page 34: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

35

Electric field classification (space)

Е

0 D

Е

uniform

Е

0 D

Е

Е

0 D

Е

strongly non-uniformslightly non-uniform

Non-uniformity factor КN = ЕMAX / EAV

EAV = V / D; ЕMAX = f(voltage, shape, size, distance)

КN = 1 КN ≤ 3КN > 3

E = V / D E ≈ V / D E = f(x,y,z) E = f(x,y,z)

Page 35: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

36

Methods for estimating the potential and electric field distribution

the direct measurement of potential distribution

analytic calculations the numerical methods of calculations using

digital computers

Page 36: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

37

Calculation of maximum electric field

Planes

Concentricspheres

Sphere vs. plane

Twospheres

Coaxial cylinders

Cylinder vs. plane

Parallelcylinders

Page 37: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

38

Electrodes symmetry

Symmetric and asymmetric electrodes Symmetric electrodes are two electrodes of the

same shape and size and there is no electrode grounding

Asymmetric electrodes are two electrodes of the different shape or size, or one of them is grounded

Page 38: 01 Electric Fields (Elham Hejrani's Conflicted Copy 2011-11-01) (in Konflikt Stehende Kopie Von Fatih YILMAZ 2012-05-27)

39

Solve the next problem

Sphere vs. plane

Given: r = 1 cm; a = 10 cm; U = 100 kVCalculate1. non-uniformity factor;2. at a given r the value a that provides slightly non-uniform field;3. at a given a the value r that provides slightly non-uniform field