009 jgc2016 energy transmission & storage_Schmitz

81
1 1 2016 International Joint Graduate Course on Energy Transmission & Storage July 18th – July 28th, 2016 Shanghai Jiao Tong University, China (Host) Norwegian University of Science and Technology (Co-host) University of Maryland, College Park, U.S.A. Korea University, South Korea Tsinghua University Hamburg University of Technology, Germany

Transcript of 009 jgc2016 energy transmission & storage_Schmitz

Page 1: 009 jgc2016   energy transmission & storage_Schmitz

12016 JGCSE Shanghai 1

2016 International Joint Graduate Course on

Energy Transmission amp StorageJuly 18th ndash July 28th 2016

Shanghai Jiao Tong University China (Host)Norwegian University of Science and Technology (Co-host) University of Maryland College Park USAKorea University South KoreaTsinghua UniversityHamburg University of Technology Germany

22016 JGCSE Shanghai

Energy systems

32016 JGCSE Shanghai

Kind of Energy Definition Example

Non‐renewable primary energy

Energies set free by irreversible change of limited matter on earth

coal oil gas uranium

Renewableenergies

Time integrated energy flows from the inner earth and from celestial bodies

Direct renewable energies Solar Tidal energy (kinetic energy of the moon) Geothermal energyIndirect renewable energies Wind Biomass

Sekunary energy Energy or energy carrier turned from primary energy to secondary energy to transport energy over long distances or to store energy

Electricity Hydrogen Synthetic Methan

End Energy Energy or energy carrier for local energy use to be turned into useful energy

District heat gas Oil Coal Electricity

Useful Energy Energy used to cover anthropoid demands Heat Work

42016 JGCSE Shanghai 4

Energy Conversion Ways

UraniumCoalOilGas

Non RenewableEnergies

Renewable Energies like Wind Solar Geothermal etc

LH

CO

LHHH

LH

HH

CO

LH

CO

LH

LH

CO

KIPO

KIPO

KI KineticEnergy

PO PotentialEnergy

LH LowTemp Heat

CO Cooling

HH High Temp Heat

ThermalStorage

CHP

ElectrStorage Electr

Motor

ResistantHeating

Heattransfo

Power

HeatpumpRefriger

AbsorbChill

Power

Heatpump

Refrigera

Boiler

Heatpump

AbsorbChill

Motor

Combust

PowerPlant

Primary Energy Useful EnergyTransport Conversion

Conversion

Gas Oil

Heat

Electricity

Endenergy

52016 JGCSE Shanghai 5

DC Electricity Lines (planned)

VDE

Wilster

Lehrte

Fulda

Grafenrheinfeld

Kassel

Hannover

Hamburg

62016 JGCSE Shanghai 6

European Gas Grid

72016 JGCSE Shanghai 7

P Q

250 423

P Q

321 814

P Q

2 350

P Q

20 100

299 943

KW Moorburg

P Q

1654 ‐

Hamburg Far District Heating Grid (Vattenfall)

82016 JGCSE Shanghai

Energy supply should be

economical

ecological

Reliable

92016 JGCSE Shanghai

Energiewende

102016 JGCSE Shanghai

Estimated and real wind power high voltage grid Vattenfall Germany 2008

Fluctuating Power

Source Speicher fuumlr Stromnetze mit hohem Anteil erneuerbarer Energie etz (2)2ndash3 2009

Power demand Real wind power

Estimated wind power

Hydro power storages in Germany 7000 MW 40000 MWh

Pow

er

date

112016 JGCSE Shanghai 11

Elec

trici

ty P

rodu

ctio

nsin

rega

rdto

m

axim

al p

ower

per

day

in G

erm

any

Wind EnergySolar Energy

month month

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

Fluctuation of Solar and Wind Energy in Germany

Diplomarbeit Joumlrg Luumltge

122016 JGCSE Shanghai

0

20

40

60

80

100

120

930 940 950 1000 1010 1020 1030 1040 1050 1100 1110 1120 1130

Pri

maumlrl

eis

tung in

MW

Gesa

mte

nerg

ieve

rbra

uch

in M

Wh

Primaumlrleistung amp Energiebedarf Schmelzbetrieb 1-Korb amp 3-Korb Charge

Ofenleistung Energie EnergyZeit

Power

0

50

100 PPmax

Power Demand of an Electric Steel Melting FurnaceSource ArcelorMittal Hamburg GmbH

132016 JGCSE Shanghai

supply resources

demand

Time in h

Loadin GW

Energy Management Today

142016 JGCSE Shanghai

Time in h

Loadin GW

demand

supply resources

Energy Management Tomorrow

152016 JGCSE Shanghai

Correspond to an optimized demand supply sufficientenergy with the needed energy quality at the right time tothe right place ndash with as low as possible quantitative andqualitative energy losses

supply AND demand side management (integration)

Requirements Energiewende

162016 JGCSE Shanghai

More fluctuating energies means

less predictability of energy sourcesless reliability of electricity systems

and needs

more intelligent energy managementmore back up systemsmore short term and long term storages

172016 JGCSE Shanghai 17

Energy storages

182016 JGCSE Shanghai 18

dtdE

dtdE

dtdUWQ potkin

t 1212

Energy storages

Energy could be storage only as

192016 JGCSE Shanghai 19

Energy storages

Energy could be storage only as

Potential Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

202016 JGCSE Shanghai 20

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

212016 JGCSE Shanghai 21

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy or asInner Energy

There are no ldquoHeat Storagesrdquo or ldquoElectrical Storagesrdquo

dtdE

dtdE

dtdUWQ potkin

t 1212

222016 JGCSE Shanghai

Inner Energy Storages Potential Energy Storages

Warm Water

Gas

Fly WheelsSource BeaconPower

Energy storages

District heating

hydropowerSourceVattenfall

Compressed airSource RWE

Hydro-gen

H H

Source httpdeacademicru

Electricity line

Batteries

Kinetic Energy Storages

Heat Pump Thermal Storage

232016 JGCSE Shanghai

Storages for electrical work

242016 JGCSE Shanghai

Principle of an Electrical Energy Storage System

252016 JGCSE Shanghai

Quelle RWE

Quelle Beacon Power

Energy storages for Electrical Work

QuelleVattenfall

H H

Quelle httpdeacademicru

VRFB Vanadium‐Red‐Ox‐Flow‐BatteryNaS Natrium‐Sulfur‐BatteryLA Lead‐Acid‐Battery (Blei‐Saumlure‐Batterie)FESS Fly Wheel Energy System

HP High PerformanceHTS Magnetic bearings Vacuum

HSS‐SOFC Hydrogen Storage System ndash Solid Oxid Fuel CellHSS‐PEMFC H2 ‐ PEM ndash Fuel CellHSS‐GT H2 ‐ GasturbineHSS‐CCGT H2 ndash Combined Cycle Gas Turbine

ACES Adiabatic Compressed Air Energy StorageDCAS Diabatic Compressed Air Energy StoragePHES Pumped Hydro ‐ Storages Energy Systems

262016 JGCSE Shanghai 26

Criteria for assessment of storages

Discharging timeScalingExergy densityDynamicsSelf discharge durabilityLifetimeEnvironment

272016 JGCSE Shanghai

Efficiency of Energy Storages

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 2: 009 jgc2016   energy transmission & storage_Schmitz

22016 JGCSE Shanghai

Energy systems

32016 JGCSE Shanghai

Kind of Energy Definition Example

Non‐renewable primary energy

Energies set free by irreversible change of limited matter on earth

coal oil gas uranium

Renewableenergies

Time integrated energy flows from the inner earth and from celestial bodies

Direct renewable energies Solar Tidal energy (kinetic energy of the moon) Geothermal energyIndirect renewable energies Wind Biomass

Sekunary energy Energy or energy carrier turned from primary energy to secondary energy to transport energy over long distances or to store energy

Electricity Hydrogen Synthetic Methan

End Energy Energy or energy carrier for local energy use to be turned into useful energy

District heat gas Oil Coal Electricity

Useful Energy Energy used to cover anthropoid demands Heat Work

42016 JGCSE Shanghai 4

Energy Conversion Ways

UraniumCoalOilGas

Non RenewableEnergies

Renewable Energies like Wind Solar Geothermal etc

LH

CO

LHHH

LH

HH

CO

LH

CO

LH

LH

CO

KIPO

KIPO

KI KineticEnergy

PO PotentialEnergy

LH LowTemp Heat

CO Cooling

HH High Temp Heat

ThermalStorage

CHP

ElectrStorage Electr

Motor

ResistantHeating

Heattransfo

Power

HeatpumpRefriger

AbsorbChill

Power

Heatpump

Refrigera

Boiler

Heatpump

AbsorbChill

Motor

Combust

PowerPlant

Primary Energy Useful EnergyTransport Conversion

Conversion

Gas Oil

Heat

Electricity

Endenergy

52016 JGCSE Shanghai 5

DC Electricity Lines (planned)

VDE

Wilster

Lehrte

Fulda

Grafenrheinfeld

Kassel

Hannover

Hamburg

62016 JGCSE Shanghai 6

European Gas Grid

72016 JGCSE Shanghai 7

P Q

250 423

P Q

321 814

P Q

2 350

P Q

20 100

299 943

KW Moorburg

P Q

1654 ‐

Hamburg Far District Heating Grid (Vattenfall)

82016 JGCSE Shanghai

Energy supply should be

economical

ecological

Reliable

92016 JGCSE Shanghai

Energiewende

102016 JGCSE Shanghai

Estimated and real wind power high voltage grid Vattenfall Germany 2008

Fluctuating Power

Source Speicher fuumlr Stromnetze mit hohem Anteil erneuerbarer Energie etz (2)2ndash3 2009

Power demand Real wind power

Estimated wind power

Hydro power storages in Germany 7000 MW 40000 MWh

Pow

er

date

112016 JGCSE Shanghai 11

Elec

trici

ty P

rodu

ctio

nsin

rega

rdto

m

axim

al p

ower

per

day

in G

erm

any

Wind EnergySolar Energy

month month

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

Fluctuation of Solar and Wind Energy in Germany

Diplomarbeit Joumlrg Luumltge

122016 JGCSE Shanghai

0

20

40

60

80

100

120

930 940 950 1000 1010 1020 1030 1040 1050 1100 1110 1120 1130

Pri

maumlrl

eis

tung in

MW

Gesa

mte

nerg

ieve

rbra

uch

in M

Wh

Primaumlrleistung amp Energiebedarf Schmelzbetrieb 1-Korb amp 3-Korb Charge

Ofenleistung Energie EnergyZeit

Power

0

50

100 PPmax

Power Demand of an Electric Steel Melting FurnaceSource ArcelorMittal Hamburg GmbH

132016 JGCSE Shanghai

supply resources

demand

Time in h

Loadin GW

Energy Management Today

142016 JGCSE Shanghai

Time in h

Loadin GW

demand

supply resources

Energy Management Tomorrow

152016 JGCSE Shanghai

Correspond to an optimized demand supply sufficientenergy with the needed energy quality at the right time tothe right place ndash with as low as possible quantitative andqualitative energy losses

supply AND demand side management (integration)

Requirements Energiewende

162016 JGCSE Shanghai

More fluctuating energies means

less predictability of energy sourcesless reliability of electricity systems

and needs

more intelligent energy managementmore back up systemsmore short term and long term storages

172016 JGCSE Shanghai 17

Energy storages

182016 JGCSE Shanghai 18

dtdE

dtdE

dtdUWQ potkin

t 1212

Energy storages

Energy could be storage only as

192016 JGCSE Shanghai 19

Energy storages

Energy could be storage only as

Potential Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

202016 JGCSE Shanghai 20

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

212016 JGCSE Shanghai 21

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy or asInner Energy

There are no ldquoHeat Storagesrdquo or ldquoElectrical Storagesrdquo

dtdE

dtdE

dtdUWQ potkin

t 1212

222016 JGCSE Shanghai

Inner Energy Storages Potential Energy Storages

Warm Water

Gas

Fly WheelsSource BeaconPower

Energy storages

District heating

hydropowerSourceVattenfall

Compressed airSource RWE

Hydro-gen

H H

Source httpdeacademicru

Electricity line

Batteries

Kinetic Energy Storages

Heat Pump Thermal Storage

232016 JGCSE Shanghai

Storages for electrical work

242016 JGCSE Shanghai

Principle of an Electrical Energy Storage System

252016 JGCSE Shanghai

Quelle RWE

Quelle Beacon Power

Energy storages for Electrical Work

QuelleVattenfall

H H

Quelle httpdeacademicru

VRFB Vanadium‐Red‐Ox‐Flow‐BatteryNaS Natrium‐Sulfur‐BatteryLA Lead‐Acid‐Battery (Blei‐Saumlure‐Batterie)FESS Fly Wheel Energy System

HP High PerformanceHTS Magnetic bearings Vacuum

HSS‐SOFC Hydrogen Storage System ndash Solid Oxid Fuel CellHSS‐PEMFC H2 ‐ PEM ndash Fuel CellHSS‐GT H2 ‐ GasturbineHSS‐CCGT H2 ndash Combined Cycle Gas Turbine

ACES Adiabatic Compressed Air Energy StorageDCAS Diabatic Compressed Air Energy StoragePHES Pumped Hydro ‐ Storages Energy Systems

262016 JGCSE Shanghai 26

Criteria for assessment of storages

Discharging timeScalingExergy densityDynamicsSelf discharge durabilityLifetimeEnvironment

272016 JGCSE Shanghai

Efficiency of Energy Storages

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 3: 009 jgc2016   energy transmission & storage_Schmitz

32016 JGCSE Shanghai

Kind of Energy Definition Example

Non‐renewable primary energy

Energies set free by irreversible change of limited matter on earth

coal oil gas uranium

Renewableenergies

Time integrated energy flows from the inner earth and from celestial bodies

Direct renewable energies Solar Tidal energy (kinetic energy of the moon) Geothermal energyIndirect renewable energies Wind Biomass

Sekunary energy Energy or energy carrier turned from primary energy to secondary energy to transport energy over long distances or to store energy

Electricity Hydrogen Synthetic Methan

End Energy Energy or energy carrier for local energy use to be turned into useful energy

District heat gas Oil Coal Electricity

Useful Energy Energy used to cover anthropoid demands Heat Work

42016 JGCSE Shanghai 4

Energy Conversion Ways

UraniumCoalOilGas

Non RenewableEnergies

Renewable Energies like Wind Solar Geothermal etc

LH

CO

LHHH

LH

HH

CO

LH

CO

LH

LH

CO

KIPO

KIPO

KI KineticEnergy

PO PotentialEnergy

LH LowTemp Heat

CO Cooling

HH High Temp Heat

ThermalStorage

CHP

ElectrStorage Electr

Motor

ResistantHeating

Heattransfo

Power

HeatpumpRefriger

AbsorbChill

Power

Heatpump

Refrigera

Boiler

Heatpump

AbsorbChill

Motor

Combust

PowerPlant

Primary Energy Useful EnergyTransport Conversion

Conversion

Gas Oil

Heat

Electricity

Endenergy

52016 JGCSE Shanghai 5

DC Electricity Lines (planned)

VDE

Wilster

Lehrte

Fulda

Grafenrheinfeld

Kassel

Hannover

Hamburg

62016 JGCSE Shanghai 6

European Gas Grid

72016 JGCSE Shanghai 7

P Q

250 423

P Q

321 814

P Q

2 350

P Q

20 100

299 943

KW Moorburg

P Q

1654 ‐

Hamburg Far District Heating Grid (Vattenfall)

82016 JGCSE Shanghai

Energy supply should be

economical

ecological

Reliable

92016 JGCSE Shanghai

Energiewende

102016 JGCSE Shanghai

Estimated and real wind power high voltage grid Vattenfall Germany 2008

Fluctuating Power

Source Speicher fuumlr Stromnetze mit hohem Anteil erneuerbarer Energie etz (2)2ndash3 2009

Power demand Real wind power

Estimated wind power

Hydro power storages in Germany 7000 MW 40000 MWh

Pow

er

date

112016 JGCSE Shanghai 11

Elec

trici

ty P

rodu

ctio

nsin

rega

rdto

m

axim

al p

ower

per

day

in G

erm

any

Wind EnergySolar Energy

month month

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

Fluctuation of Solar and Wind Energy in Germany

Diplomarbeit Joumlrg Luumltge

122016 JGCSE Shanghai

0

20

40

60

80

100

120

930 940 950 1000 1010 1020 1030 1040 1050 1100 1110 1120 1130

Pri

maumlrl

eis

tung in

MW

Gesa

mte

nerg

ieve

rbra

uch

in M

Wh

Primaumlrleistung amp Energiebedarf Schmelzbetrieb 1-Korb amp 3-Korb Charge

Ofenleistung Energie EnergyZeit

Power

0

50

100 PPmax

Power Demand of an Electric Steel Melting FurnaceSource ArcelorMittal Hamburg GmbH

132016 JGCSE Shanghai

supply resources

demand

Time in h

Loadin GW

Energy Management Today

142016 JGCSE Shanghai

Time in h

Loadin GW

demand

supply resources

Energy Management Tomorrow

152016 JGCSE Shanghai

Correspond to an optimized demand supply sufficientenergy with the needed energy quality at the right time tothe right place ndash with as low as possible quantitative andqualitative energy losses

supply AND demand side management (integration)

Requirements Energiewende

162016 JGCSE Shanghai

More fluctuating energies means

less predictability of energy sourcesless reliability of electricity systems

and needs

more intelligent energy managementmore back up systemsmore short term and long term storages

172016 JGCSE Shanghai 17

Energy storages

182016 JGCSE Shanghai 18

dtdE

dtdE

dtdUWQ potkin

t 1212

Energy storages

Energy could be storage only as

192016 JGCSE Shanghai 19

Energy storages

Energy could be storage only as

Potential Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

202016 JGCSE Shanghai 20

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

212016 JGCSE Shanghai 21

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy or asInner Energy

There are no ldquoHeat Storagesrdquo or ldquoElectrical Storagesrdquo

dtdE

dtdE

dtdUWQ potkin

t 1212

222016 JGCSE Shanghai

Inner Energy Storages Potential Energy Storages

Warm Water

Gas

Fly WheelsSource BeaconPower

Energy storages

District heating

hydropowerSourceVattenfall

Compressed airSource RWE

Hydro-gen

H H

Source httpdeacademicru

Electricity line

Batteries

Kinetic Energy Storages

Heat Pump Thermal Storage

232016 JGCSE Shanghai

Storages for electrical work

242016 JGCSE Shanghai

Principle of an Electrical Energy Storage System

252016 JGCSE Shanghai

Quelle RWE

Quelle Beacon Power

Energy storages for Electrical Work

QuelleVattenfall

H H

Quelle httpdeacademicru

VRFB Vanadium‐Red‐Ox‐Flow‐BatteryNaS Natrium‐Sulfur‐BatteryLA Lead‐Acid‐Battery (Blei‐Saumlure‐Batterie)FESS Fly Wheel Energy System

HP High PerformanceHTS Magnetic bearings Vacuum

HSS‐SOFC Hydrogen Storage System ndash Solid Oxid Fuel CellHSS‐PEMFC H2 ‐ PEM ndash Fuel CellHSS‐GT H2 ‐ GasturbineHSS‐CCGT H2 ndash Combined Cycle Gas Turbine

ACES Adiabatic Compressed Air Energy StorageDCAS Diabatic Compressed Air Energy StoragePHES Pumped Hydro ‐ Storages Energy Systems

262016 JGCSE Shanghai 26

Criteria for assessment of storages

Discharging timeScalingExergy densityDynamicsSelf discharge durabilityLifetimeEnvironment

272016 JGCSE Shanghai

Efficiency of Energy Storages

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 4: 009 jgc2016   energy transmission & storage_Schmitz

42016 JGCSE Shanghai 4

Energy Conversion Ways

UraniumCoalOilGas

Non RenewableEnergies

Renewable Energies like Wind Solar Geothermal etc

LH

CO

LHHH

LH

HH

CO

LH

CO

LH

LH

CO

KIPO

KIPO

KI KineticEnergy

PO PotentialEnergy

LH LowTemp Heat

CO Cooling

HH High Temp Heat

ThermalStorage

CHP

ElectrStorage Electr

Motor

ResistantHeating

Heattransfo

Power

HeatpumpRefriger

AbsorbChill

Power

Heatpump

Refrigera

Boiler

Heatpump

AbsorbChill

Motor

Combust

PowerPlant

Primary Energy Useful EnergyTransport Conversion

Conversion

Gas Oil

Heat

Electricity

Endenergy

52016 JGCSE Shanghai 5

DC Electricity Lines (planned)

VDE

Wilster

Lehrte

Fulda

Grafenrheinfeld

Kassel

Hannover

Hamburg

62016 JGCSE Shanghai 6

European Gas Grid

72016 JGCSE Shanghai 7

P Q

250 423

P Q

321 814

P Q

2 350

P Q

20 100

299 943

KW Moorburg

P Q

1654 ‐

Hamburg Far District Heating Grid (Vattenfall)

82016 JGCSE Shanghai

Energy supply should be

economical

ecological

Reliable

92016 JGCSE Shanghai

Energiewende

102016 JGCSE Shanghai

Estimated and real wind power high voltage grid Vattenfall Germany 2008

Fluctuating Power

Source Speicher fuumlr Stromnetze mit hohem Anteil erneuerbarer Energie etz (2)2ndash3 2009

Power demand Real wind power

Estimated wind power

Hydro power storages in Germany 7000 MW 40000 MWh

Pow

er

date

112016 JGCSE Shanghai 11

Elec

trici

ty P

rodu

ctio

nsin

rega

rdto

m

axim

al p

ower

per

day

in G

erm

any

Wind EnergySolar Energy

month month

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

Fluctuation of Solar and Wind Energy in Germany

Diplomarbeit Joumlrg Luumltge

122016 JGCSE Shanghai

0

20

40

60

80

100

120

930 940 950 1000 1010 1020 1030 1040 1050 1100 1110 1120 1130

Pri

maumlrl

eis

tung in

MW

Gesa

mte

nerg

ieve

rbra

uch

in M

Wh

Primaumlrleistung amp Energiebedarf Schmelzbetrieb 1-Korb amp 3-Korb Charge

Ofenleistung Energie EnergyZeit

Power

0

50

100 PPmax

Power Demand of an Electric Steel Melting FurnaceSource ArcelorMittal Hamburg GmbH

132016 JGCSE Shanghai

supply resources

demand

Time in h

Loadin GW

Energy Management Today

142016 JGCSE Shanghai

Time in h

Loadin GW

demand

supply resources

Energy Management Tomorrow

152016 JGCSE Shanghai

Correspond to an optimized demand supply sufficientenergy with the needed energy quality at the right time tothe right place ndash with as low as possible quantitative andqualitative energy losses

supply AND demand side management (integration)

Requirements Energiewende

162016 JGCSE Shanghai

More fluctuating energies means

less predictability of energy sourcesless reliability of electricity systems

and needs

more intelligent energy managementmore back up systemsmore short term and long term storages

172016 JGCSE Shanghai 17

Energy storages

182016 JGCSE Shanghai 18

dtdE

dtdE

dtdUWQ potkin

t 1212

Energy storages

Energy could be storage only as

192016 JGCSE Shanghai 19

Energy storages

Energy could be storage only as

Potential Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

202016 JGCSE Shanghai 20

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

212016 JGCSE Shanghai 21

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy or asInner Energy

There are no ldquoHeat Storagesrdquo or ldquoElectrical Storagesrdquo

dtdE

dtdE

dtdUWQ potkin

t 1212

222016 JGCSE Shanghai

Inner Energy Storages Potential Energy Storages

Warm Water

Gas

Fly WheelsSource BeaconPower

Energy storages

District heating

hydropowerSourceVattenfall

Compressed airSource RWE

Hydro-gen

H H

Source httpdeacademicru

Electricity line

Batteries

Kinetic Energy Storages

Heat Pump Thermal Storage

232016 JGCSE Shanghai

Storages for electrical work

242016 JGCSE Shanghai

Principle of an Electrical Energy Storage System

252016 JGCSE Shanghai

Quelle RWE

Quelle Beacon Power

Energy storages for Electrical Work

QuelleVattenfall

H H

Quelle httpdeacademicru

VRFB Vanadium‐Red‐Ox‐Flow‐BatteryNaS Natrium‐Sulfur‐BatteryLA Lead‐Acid‐Battery (Blei‐Saumlure‐Batterie)FESS Fly Wheel Energy System

HP High PerformanceHTS Magnetic bearings Vacuum

HSS‐SOFC Hydrogen Storage System ndash Solid Oxid Fuel CellHSS‐PEMFC H2 ‐ PEM ndash Fuel CellHSS‐GT H2 ‐ GasturbineHSS‐CCGT H2 ndash Combined Cycle Gas Turbine

ACES Adiabatic Compressed Air Energy StorageDCAS Diabatic Compressed Air Energy StoragePHES Pumped Hydro ‐ Storages Energy Systems

262016 JGCSE Shanghai 26

Criteria for assessment of storages

Discharging timeScalingExergy densityDynamicsSelf discharge durabilityLifetimeEnvironment

272016 JGCSE Shanghai

Efficiency of Energy Storages

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 5: 009 jgc2016   energy transmission & storage_Schmitz

52016 JGCSE Shanghai 5

DC Electricity Lines (planned)

VDE

Wilster

Lehrte

Fulda

Grafenrheinfeld

Kassel

Hannover

Hamburg

62016 JGCSE Shanghai 6

European Gas Grid

72016 JGCSE Shanghai 7

P Q

250 423

P Q

321 814

P Q

2 350

P Q

20 100

299 943

KW Moorburg

P Q

1654 ‐

Hamburg Far District Heating Grid (Vattenfall)

82016 JGCSE Shanghai

Energy supply should be

economical

ecological

Reliable

92016 JGCSE Shanghai

Energiewende

102016 JGCSE Shanghai

Estimated and real wind power high voltage grid Vattenfall Germany 2008

Fluctuating Power

Source Speicher fuumlr Stromnetze mit hohem Anteil erneuerbarer Energie etz (2)2ndash3 2009

Power demand Real wind power

Estimated wind power

Hydro power storages in Germany 7000 MW 40000 MWh

Pow

er

date

112016 JGCSE Shanghai 11

Elec

trici

ty P

rodu

ctio

nsin

rega

rdto

m

axim

al p

ower

per

day

in G

erm

any

Wind EnergySolar Energy

month month

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

Fluctuation of Solar and Wind Energy in Germany

Diplomarbeit Joumlrg Luumltge

122016 JGCSE Shanghai

0

20

40

60

80

100

120

930 940 950 1000 1010 1020 1030 1040 1050 1100 1110 1120 1130

Pri

maumlrl

eis

tung in

MW

Gesa

mte

nerg

ieve

rbra

uch

in M

Wh

Primaumlrleistung amp Energiebedarf Schmelzbetrieb 1-Korb amp 3-Korb Charge

Ofenleistung Energie EnergyZeit

Power

0

50

100 PPmax

Power Demand of an Electric Steel Melting FurnaceSource ArcelorMittal Hamburg GmbH

132016 JGCSE Shanghai

supply resources

demand

Time in h

Loadin GW

Energy Management Today

142016 JGCSE Shanghai

Time in h

Loadin GW

demand

supply resources

Energy Management Tomorrow

152016 JGCSE Shanghai

Correspond to an optimized demand supply sufficientenergy with the needed energy quality at the right time tothe right place ndash with as low as possible quantitative andqualitative energy losses

supply AND demand side management (integration)

Requirements Energiewende

162016 JGCSE Shanghai

More fluctuating energies means

less predictability of energy sourcesless reliability of electricity systems

and needs

more intelligent energy managementmore back up systemsmore short term and long term storages

172016 JGCSE Shanghai 17

Energy storages

182016 JGCSE Shanghai 18

dtdE

dtdE

dtdUWQ potkin

t 1212

Energy storages

Energy could be storage only as

192016 JGCSE Shanghai 19

Energy storages

Energy could be storage only as

Potential Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

202016 JGCSE Shanghai 20

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

212016 JGCSE Shanghai 21

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy or asInner Energy

There are no ldquoHeat Storagesrdquo or ldquoElectrical Storagesrdquo

dtdE

dtdE

dtdUWQ potkin

t 1212

222016 JGCSE Shanghai

Inner Energy Storages Potential Energy Storages

Warm Water

Gas

Fly WheelsSource BeaconPower

Energy storages

District heating

hydropowerSourceVattenfall

Compressed airSource RWE

Hydro-gen

H H

Source httpdeacademicru

Electricity line

Batteries

Kinetic Energy Storages

Heat Pump Thermal Storage

232016 JGCSE Shanghai

Storages for electrical work

242016 JGCSE Shanghai

Principle of an Electrical Energy Storage System

252016 JGCSE Shanghai

Quelle RWE

Quelle Beacon Power

Energy storages for Electrical Work

QuelleVattenfall

H H

Quelle httpdeacademicru

VRFB Vanadium‐Red‐Ox‐Flow‐BatteryNaS Natrium‐Sulfur‐BatteryLA Lead‐Acid‐Battery (Blei‐Saumlure‐Batterie)FESS Fly Wheel Energy System

HP High PerformanceHTS Magnetic bearings Vacuum

HSS‐SOFC Hydrogen Storage System ndash Solid Oxid Fuel CellHSS‐PEMFC H2 ‐ PEM ndash Fuel CellHSS‐GT H2 ‐ GasturbineHSS‐CCGT H2 ndash Combined Cycle Gas Turbine

ACES Adiabatic Compressed Air Energy StorageDCAS Diabatic Compressed Air Energy StoragePHES Pumped Hydro ‐ Storages Energy Systems

262016 JGCSE Shanghai 26

Criteria for assessment of storages

Discharging timeScalingExergy densityDynamicsSelf discharge durabilityLifetimeEnvironment

272016 JGCSE Shanghai

Efficiency of Energy Storages

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 6: 009 jgc2016   energy transmission & storage_Schmitz

62016 JGCSE Shanghai 6

European Gas Grid

72016 JGCSE Shanghai 7

P Q

250 423

P Q

321 814

P Q

2 350

P Q

20 100

299 943

KW Moorburg

P Q

1654 ‐

Hamburg Far District Heating Grid (Vattenfall)

82016 JGCSE Shanghai

Energy supply should be

economical

ecological

Reliable

92016 JGCSE Shanghai

Energiewende

102016 JGCSE Shanghai

Estimated and real wind power high voltage grid Vattenfall Germany 2008

Fluctuating Power

Source Speicher fuumlr Stromnetze mit hohem Anteil erneuerbarer Energie etz (2)2ndash3 2009

Power demand Real wind power

Estimated wind power

Hydro power storages in Germany 7000 MW 40000 MWh

Pow

er

date

112016 JGCSE Shanghai 11

Elec

trici

ty P

rodu

ctio

nsin

rega

rdto

m

axim

al p

ower

per

day

in G

erm

any

Wind EnergySolar Energy

month month

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

Fluctuation of Solar and Wind Energy in Germany

Diplomarbeit Joumlrg Luumltge

122016 JGCSE Shanghai

0

20

40

60

80

100

120

930 940 950 1000 1010 1020 1030 1040 1050 1100 1110 1120 1130

Pri

maumlrl

eis

tung in

MW

Gesa

mte

nerg

ieve

rbra

uch

in M

Wh

Primaumlrleistung amp Energiebedarf Schmelzbetrieb 1-Korb amp 3-Korb Charge

Ofenleistung Energie EnergyZeit

Power

0

50

100 PPmax

Power Demand of an Electric Steel Melting FurnaceSource ArcelorMittal Hamburg GmbH

132016 JGCSE Shanghai

supply resources

demand

Time in h

Loadin GW

Energy Management Today

142016 JGCSE Shanghai

Time in h

Loadin GW

demand

supply resources

Energy Management Tomorrow

152016 JGCSE Shanghai

Correspond to an optimized demand supply sufficientenergy with the needed energy quality at the right time tothe right place ndash with as low as possible quantitative andqualitative energy losses

supply AND demand side management (integration)

Requirements Energiewende

162016 JGCSE Shanghai

More fluctuating energies means

less predictability of energy sourcesless reliability of electricity systems

and needs

more intelligent energy managementmore back up systemsmore short term and long term storages

172016 JGCSE Shanghai 17

Energy storages

182016 JGCSE Shanghai 18

dtdE

dtdE

dtdUWQ potkin

t 1212

Energy storages

Energy could be storage only as

192016 JGCSE Shanghai 19

Energy storages

Energy could be storage only as

Potential Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

202016 JGCSE Shanghai 20

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

212016 JGCSE Shanghai 21

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy or asInner Energy

There are no ldquoHeat Storagesrdquo or ldquoElectrical Storagesrdquo

dtdE

dtdE

dtdUWQ potkin

t 1212

222016 JGCSE Shanghai

Inner Energy Storages Potential Energy Storages

Warm Water

Gas

Fly WheelsSource BeaconPower

Energy storages

District heating

hydropowerSourceVattenfall

Compressed airSource RWE

Hydro-gen

H H

Source httpdeacademicru

Electricity line

Batteries

Kinetic Energy Storages

Heat Pump Thermal Storage

232016 JGCSE Shanghai

Storages for electrical work

242016 JGCSE Shanghai

Principle of an Electrical Energy Storage System

252016 JGCSE Shanghai

Quelle RWE

Quelle Beacon Power

Energy storages for Electrical Work

QuelleVattenfall

H H

Quelle httpdeacademicru

VRFB Vanadium‐Red‐Ox‐Flow‐BatteryNaS Natrium‐Sulfur‐BatteryLA Lead‐Acid‐Battery (Blei‐Saumlure‐Batterie)FESS Fly Wheel Energy System

HP High PerformanceHTS Magnetic bearings Vacuum

HSS‐SOFC Hydrogen Storage System ndash Solid Oxid Fuel CellHSS‐PEMFC H2 ‐ PEM ndash Fuel CellHSS‐GT H2 ‐ GasturbineHSS‐CCGT H2 ndash Combined Cycle Gas Turbine

ACES Adiabatic Compressed Air Energy StorageDCAS Diabatic Compressed Air Energy StoragePHES Pumped Hydro ‐ Storages Energy Systems

262016 JGCSE Shanghai 26

Criteria for assessment of storages

Discharging timeScalingExergy densityDynamicsSelf discharge durabilityLifetimeEnvironment

272016 JGCSE Shanghai

Efficiency of Energy Storages

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 7: 009 jgc2016   energy transmission & storage_Schmitz

72016 JGCSE Shanghai 7

P Q

250 423

P Q

321 814

P Q

2 350

P Q

20 100

299 943

KW Moorburg

P Q

1654 ‐

Hamburg Far District Heating Grid (Vattenfall)

82016 JGCSE Shanghai

Energy supply should be

economical

ecological

Reliable

92016 JGCSE Shanghai

Energiewende

102016 JGCSE Shanghai

Estimated and real wind power high voltage grid Vattenfall Germany 2008

Fluctuating Power

Source Speicher fuumlr Stromnetze mit hohem Anteil erneuerbarer Energie etz (2)2ndash3 2009

Power demand Real wind power

Estimated wind power

Hydro power storages in Germany 7000 MW 40000 MWh

Pow

er

date

112016 JGCSE Shanghai 11

Elec

trici

ty P

rodu

ctio

nsin

rega

rdto

m

axim

al p

ower

per

day

in G

erm

any

Wind EnergySolar Energy

month month

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

Fluctuation of Solar and Wind Energy in Germany

Diplomarbeit Joumlrg Luumltge

122016 JGCSE Shanghai

0

20

40

60

80

100

120

930 940 950 1000 1010 1020 1030 1040 1050 1100 1110 1120 1130

Pri

maumlrl

eis

tung in

MW

Gesa

mte

nerg

ieve

rbra

uch

in M

Wh

Primaumlrleistung amp Energiebedarf Schmelzbetrieb 1-Korb amp 3-Korb Charge

Ofenleistung Energie EnergyZeit

Power

0

50

100 PPmax

Power Demand of an Electric Steel Melting FurnaceSource ArcelorMittal Hamburg GmbH

132016 JGCSE Shanghai

supply resources

demand

Time in h

Loadin GW

Energy Management Today

142016 JGCSE Shanghai

Time in h

Loadin GW

demand

supply resources

Energy Management Tomorrow

152016 JGCSE Shanghai

Correspond to an optimized demand supply sufficientenergy with the needed energy quality at the right time tothe right place ndash with as low as possible quantitative andqualitative energy losses

supply AND demand side management (integration)

Requirements Energiewende

162016 JGCSE Shanghai

More fluctuating energies means

less predictability of energy sourcesless reliability of electricity systems

and needs

more intelligent energy managementmore back up systemsmore short term and long term storages

172016 JGCSE Shanghai 17

Energy storages

182016 JGCSE Shanghai 18

dtdE

dtdE

dtdUWQ potkin

t 1212

Energy storages

Energy could be storage only as

192016 JGCSE Shanghai 19

Energy storages

Energy could be storage only as

Potential Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

202016 JGCSE Shanghai 20

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

212016 JGCSE Shanghai 21

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy or asInner Energy

There are no ldquoHeat Storagesrdquo or ldquoElectrical Storagesrdquo

dtdE

dtdE

dtdUWQ potkin

t 1212

222016 JGCSE Shanghai

Inner Energy Storages Potential Energy Storages

Warm Water

Gas

Fly WheelsSource BeaconPower

Energy storages

District heating

hydropowerSourceVattenfall

Compressed airSource RWE

Hydro-gen

H H

Source httpdeacademicru

Electricity line

Batteries

Kinetic Energy Storages

Heat Pump Thermal Storage

232016 JGCSE Shanghai

Storages for electrical work

242016 JGCSE Shanghai

Principle of an Electrical Energy Storage System

252016 JGCSE Shanghai

Quelle RWE

Quelle Beacon Power

Energy storages for Electrical Work

QuelleVattenfall

H H

Quelle httpdeacademicru

VRFB Vanadium‐Red‐Ox‐Flow‐BatteryNaS Natrium‐Sulfur‐BatteryLA Lead‐Acid‐Battery (Blei‐Saumlure‐Batterie)FESS Fly Wheel Energy System

HP High PerformanceHTS Magnetic bearings Vacuum

HSS‐SOFC Hydrogen Storage System ndash Solid Oxid Fuel CellHSS‐PEMFC H2 ‐ PEM ndash Fuel CellHSS‐GT H2 ‐ GasturbineHSS‐CCGT H2 ndash Combined Cycle Gas Turbine

ACES Adiabatic Compressed Air Energy StorageDCAS Diabatic Compressed Air Energy StoragePHES Pumped Hydro ‐ Storages Energy Systems

262016 JGCSE Shanghai 26

Criteria for assessment of storages

Discharging timeScalingExergy densityDynamicsSelf discharge durabilityLifetimeEnvironment

272016 JGCSE Shanghai

Efficiency of Energy Storages

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 8: 009 jgc2016   energy transmission & storage_Schmitz

82016 JGCSE Shanghai

Energy supply should be

economical

ecological

Reliable

92016 JGCSE Shanghai

Energiewende

102016 JGCSE Shanghai

Estimated and real wind power high voltage grid Vattenfall Germany 2008

Fluctuating Power

Source Speicher fuumlr Stromnetze mit hohem Anteil erneuerbarer Energie etz (2)2ndash3 2009

Power demand Real wind power

Estimated wind power

Hydro power storages in Germany 7000 MW 40000 MWh

Pow

er

date

112016 JGCSE Shanghai 11

Elec

trici

ty P

rodu

ctio

nsin

rega

rdto

m

axim

al p

ower

per

day

in G

erm

any

Wind EnergySolar Energy

month month

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

Fluctuation of Solar and Wind Energy in Germany

Diplomarbeit Joumlrg Luumltge

122016 JGCSE Shanghai

0

20

40

60

80

100

120

930 940 950 1000 1010 1020 1030 1040 1050 1100 1110 1120 1130

Pri

maumlrl

eis

tung in

MW

Gesa

mte

nerg

ieve

rbra

uch

in M

Wh

Primaumlrleistung amp Energiebedarf Schmelzbetrieb 1-Korb amp 3-Korb Charge

Ofenleistung Energie EnergyZeit

Power

0

50

100 PPmax

Power Demand of an Electric Steel Melting FurnaceSource ArcelorMittal Hamburg GmbH

132016 JGCSE Shanghai

supply resources

demand

Time in h

Loadin GW

Energy Management Today

142016 JGCSE Shanghai

Time in h

Loadin GW

demand

supply resources

Energy Management Tomorrow

152016 JGCSE Shanghai

Correspond to an optimized demand supply sufficientenergy with the needed energy quality at the right time tothe right place ndash with as low as possible quantitative andqualitative energy losses

supply AND demand side management (integration)

Requirements Energiewende

162016 JGCSE Shanghai

More fluctuating energies means

less predictability of energy sourcesless reliability of electricity systems

and needs

more intelligent energy managementmore back up systemsmore short term and long term storages

172016 JGCSE Shanghai 17

Energy storages

182016 JGCSE Shanghai 18

dtdE

dtdE

dtdUWQ potkin

t 1212

Energy storages

Energy could be storage only as

192016 JGCSE Shanghai 19

Energy storages

Energy could be storage only as

Potential Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

202016 JGCSE Shanghai 20

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

212016 JGCSE Shanghai 21

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy or asInner Energy

There are no ldquoHeat Storagesrdquo or ldquoElectrical Storagesrdquo

dtdE

dtdE

dtdUWQ potkin

t 1212

222016 JGCSE Shanghai

Inner Energy Storages Potential Energy Storages

Warm Water

Gas

Fly WheelsSource BeaconPower

Energy storages

District heating

hydropowerSourceVattenfall

Compressed airSource RWE

Hydro-gen

H H

Source httpdeacademicru

Electricity line

Batteries

Kinetic Energy Storages

Heat Pump Thermal Storage

232016 JGCSE Shanghai

Storages for electrical work

242016 JGCSE Shanghai

Principle of an Electrical Energy Storage System

252016 JGCSE Shanghai

Quelle RWE

Quelle Beacon Power

Energy storages for Electrical Work

QuelleVattenfall

H H

Quelle httpdeacademicru

VRFB Vanadium‐Red‐Ox‐Flow‐BatteryNaS Natrium‐Sulfur‐BatteryLA Lead‐Acid‐Battery (Blei‐Saumlure‐Batterie)FESS Fly Wheel Energy System

HP High PerformanceHTS Magnetic bearings Vacuum

HSS‐SOFC Hydrogen Storage System ndash Solid Oxid Fuel CellHSS‐PEMFC H2 ‐ PEM ndash Fuel CellHSS‐GT H2 ‐ GasturbineHSS‐CCGT H2 ndash Combined Cycle Gas Turbine

ACES Adiabatic Compressed Air Energy StorageDCAS Diabatic Compressed Air Energy StoragePHES Pumped Hydro ‐ Storages Energy Systems

262016 JGCSE Shanghai 26

Criteria for assessment of storages

Discharging timeScalingExergy densityDynamicsSelf discharge durabilityLifetimeEnvironment

272016 JGCSE Shanghai

Efficiency of Energy Storages

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 9: 009 jgc2016   energy transmission & storage_Schmitz

92016 JGCSE Shanghai

Energiewende

102016 JGCSE Shanghai

Estimated and real wind power high voltage grid Vattenfall Germany 2008

Fluctuating Power

Source Speicher fuumlr Stromnetze mit hohem Anteil erneuerbarer Energie etz (2)2ndash3 2009

Power demand Real wind power

Estimated wind power

Hydro power storages in Germany 7000 MW 40000 MWh

Pow

er

date

112016 JGCSE Shanghai 11

Elec

trici

ty P

rodu

ctio

nsin

rega

rdto

m

axim

al p

ower

per

day

in G

erm

any

Wind EnergySolar Energy

month month

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

Fluctuation of Solar and Wind Energy in Germany

Diplomarbeit Joumlrg Luumltge

122016 JGCSE Shanghai

0

20

40

60

80

100

120

930 940 950 1000 1010 1020 1030 1040 1050 1100 1110 1120 1130

Pri

maumlrl

eis

tung in

MW

Gesa

mte

nerg

ieve

rbra

uch

in M

Wh

Primaumlrleistung amp Energiebedarf Schmelzbetrieb 1-Korb amp 3-Korb Charge

Ofenleistung Energie EnergyZeit

Power

0

50

100 PPmax

Power Demand of an Electric Steel Melting FurnaceSource ArcelorMittal Hamburg GmbH

132016 JGCSE Shanghai

supply resources

demand

Time in h

Loadin GW

Energy Management Today

142016 JGCSE Shanghai

Time in h

Loadin GW

demand

supply resources

Energy Management Tomorrow

152016 JGCSE Shanghai

Correspond to an optimized demand supply sufficientenergy with the needed energy quality at the right time tothe right place ndash with as low as possible quantitative andqualitative energy losses

supply AND demand side management (integration)

Requirements Energiewende

162016 JGCSE Shanghai

More fluctuating energies means

less predictability of energy sourcesless reliability of electricity systems

and needs

more intelligent energy managementmore back up systemsmore short term and long term storages

172016 JGCSE Shanghai 17

Energy storages

182016 JGCSE Shanghai 18

dtdE

dtdE

dtdUWQ potkin

t 1212

Energy storages

Energy could be storage only as

192016 JGCSE Shanghai 19

Energy storages

Energy could be storage only as

Potential Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

202016 JGCSE Shanghai 20

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

212016 JGCSE Shanghai 21

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy or asInner Energy

There are no ldquoHeat Storagesrdquo or ldquoElectrical Storagesrdquo

dtdE

dtdE

dtdUWQ potkin

t 1212

222016 JGCSE Shanghai

Inner Energy Storages Potential Energy Storages

Warm Water

Gas

Fly WheelsSource BeaconPower

Energy storages

District heating

hydropowerSourceVattenfall

Compressed airSource RWE

Hydro-gen

H H

Source httpdeacademicru

Electricity line

Batteries

Kinetic Energy Storages

Heat Pump Thermal Storage

232016 JGCSE Shanghai

Storages for electrical work

242016 JGCSE Shanghai

Principle of an Electrical Energy Storage System

252016 JGCSE Shanghai

Quelle RWE

Quelle Beacon Power

Energy storages for Electrical Work

QuelleVattenfall

H H

Quelle httpdeacademicru

VRFB Vanadium‐Red‐Ox‐Flow‐BatteryNaS Natrium‐Sulfur‐BatteryLA Lead‐Acid‐Battery (Blei‐Saumlure‐Batterie)FESS Fly Wheel Energy System

HP High PerformanceHTS Magnetic bearings Vacuum

HSS‐SOFC Hydrogen Storage System ndash Solid Oxid Fuel CellHSS‐PEMFC H2 ‐ PEM ndash Fuel CellHSS‐GT H2 ‐ GasturbineHSS‐CCGT H2 ndash Combined Cycle Gas Turbine

ACES Adiabatic Compressed Air Energy StorageDCAS Diabatic Compressed Air Energy StoragePHES Pumped Hydro ‐ Storages Energy Systems

262016 JGCSE Shanghai 26

Criteria for assessment of storages

Discharging timeScalingExergy densityDynamicsSelf discharge durabilityLifetimeEnvironment

272016 JGCSE Shanghai

Efficiency of Energy Storages

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 10: 009 jgc2016   energy transmission & storage_Schmitz

102016 JGCSE Shanghai

Estimated and real wind power high voltage grid Vattenfall Germany 2008

Fluctuating Power

Source Speicher fuumlr Stromnetze mit hohem Anteil erneuerbarer Energie etz (2)2ndash3 2009

Power demand Real wind power

Estimated wind power

Hydro power storages in Germany 7000 MW 40000 MWh

Pow

er

date

112016 JGCSE Shanghai 11

Elec

trici

ty P

rodu

ctio

nsin

rega

rdto

m

axim

al p

ower

per

day

in G

erm

any

Wind EnergySolar Energy

month month

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

Fluctuation of Solar and Wind Energy in Germany

Diplomarbeit Joumlrg Luumltge

122016 JGCSE Shanghai

0

20

40

60

80

100

120

930 940 950 1000 1010 1020 1030 1040 1050 1100 1110 1120 1130

Pri

maumlrl

eis

tung in

MW

Gesa

mte

nerg

ieve

rbra

uch

in M

Wh

Primaumlrleistung amp Energiebedarf Schmelzbetrieb 1-Korb amp 3-Korb Charge

Ofenleistung Energie EnergyZeit

Power

0

50

100 PPmax

Power Demand of an Electric Steel Melting FurnaceSource ArcelorMittal Hamburg GmbH

132016 JGCSE Shanghai

supply resources

demand

Time in h

Loadin GW

Energy Management Today

142016 JGCSE Shanghai

Time in h

Loadin GW

demand

supply resources

Energy Management Tomorrow

152016 JGCSE Shanghai

Correspond to an optimized demand supply sufficientenergy with the needed energy quality at the right time tothe right place ndash with as low as possible quantitative andqualitative energy losses

supply AND demand side management (integration)

Requirements Energiewende

162016 JGCSE Shanghai

More fluctuating energies means

less predictability of energy sourcesless reliability of electricity systems

and needs

more intelligent energy managementmore back up systemsmore short term and long term storages

172016 JGCSE Shanghai 17

Energy storages

182016 JGCSE Shanghai 18

dtdE

dtdE

dtdUWQ potkin

t 1212

Energy storages

Energy could be storage only as

192016 JGCSE Shanghai 19

Energy storages

Energy could be storage only as

Potential Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

202016 JGCSE Shanghai 20

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

212016 JGCSE Shanghai 21

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy or asInner Energy

There are no ldquoHeat Storagesrdquo or ldquoElectrical Storagesrdquo

dtdE

dtdE

dtdUWQ potkin

t 1212

222016 JGCSE Shanghai

Inner Energy Storages Potential Energy Storages

Warm Water

Gas

Fly WheelsSource BeaconPower

Energy storages

District heating

hydropowerSourceVattenfall

Compressed airSource RWE

Hydro-gen

H H

Source httpdeacademicru

Electricity line

Batteries

Kinetic Energy Storages

Heat Pump Thermal Storage

232016 JGCSE Shanghai

Storages for electrical work

242016 JGCSE Shanghai

Principle of an Electrical Energy Storage System

252016 JGCSE Shanghai

Quelle RWE

Quelle Beacon Power

Energy storages for Electrical Work

QuelleVattenfall

H H

Quelle httpdeacademicru

VRFB Vanadium‐Red‐Ox‐Flow‐BatteryNaS Natrium‐Sulfur‐BatteryLA Lead‐Acid‐Battery (Blei‐Saumlure‐Batterie)FESS Fly Wheel Energy System

HP High PerformanceHTS Magnetic bearings Vacuum

HSS‐SOFC Hydrogen Storage System ndash Solid Oxid Fuel CellHSS‐PEMFC H2 ‐ PEM ndash Fuel CellHSS‐GT H2 ‐ GasturbineHSS‐CCGT H2 ndash Combined Cycle Gas Turbine

ACES Adiabatic Compressed Air Energy StorageDCAS Diabatic Compressed Air Energy StoragePHES Pumped Hydro ‐ Storages Energy Systems

262016 JGCSE Shanghai 26

Criteria for assessment of storages

Discharging timeScalingExergy densityDynamicsSelf discharge durabilityLifetimeEnvironment

272016 JGCSE Shanghai

Efficiency of Energy Storages

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 11: 009 jgc2016   energy transmission & storage_Schmitz

112016 JGCSE Shanghai 11

Elec

trici

ty P

rodu

ctio

nsin

rega

rdto

m

axim

al p

ower

per

day

in G

erm

any

Wind EnergySolar Energy

month month

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

Fluctuation of Solar and Wind Energy in Germany

Diplomarbeit Joumlrg Luumltge

122016 JGCSE Shanghai

0

20

40

60

80

100

120

930 940 950 1000 1010 1020 1030 1040 1050 1100 1110 1120 1130

Pri

maumlrl

eis

tung in

MW

Gesa

mte

nerg

ieve

rbra

uch

in M

Wh

Primaumlrleistung amp Energiebedarf Schmelzbetrieb 1-Korb amp 3-Korb Charge

Ofenleistung Energie EnergyZeit

Power

0

50

100 PPmax

Power Demand of an Electric Steel Melting FurnaceSource ArcelorMittal Hamburg GmbH

132016 JGCSE Shanghai

supply resources

demand

Time in h

Loadin GW

Energy Management Today

142016 JGCSE Shanghai

Time in h

Loadin GW

demand

supply resources

Energy Management Tomorrow

152016 JGCSE Shanghai

Correspond to an optimized demand supply sufficientenergy with the needed energy quality at the right time tothe right place ndash with as low as possible quantitative andqualitative energy losses

supply AND demand side management (integration)

Requirements Energiewende

162016 JGCSE Shanghai

More fluctuating energies means

less predictability of energy sourcesless reliability of electricity systems

and needs

more intelligent energy managementmore back up systemsmore short term and long term storages

172016 JGCSE Shanghai 17

Energy storages

182016 JGCSE Shanghai 18

dtdE

dtdE

dtdUWQ potkin

t 1212

Energy storages

Energy could be storage only as

192016 JGCSE Shanghai 19

Energy storages

Energy could be storage only as

Potential Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

202016 JGCSE Shanghai 20

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

212016 JGCSE Shanghai 21

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy or asInner Energy

There are no ldquoHeat Storagesrdquo or ldquoElectrical Storagesrdquo

dtdE

dtdE

dtdUWQ potkin

t 1212

222016 JGCSE Shanghai

Inner Energy Storages Potential Energy Storages

Warm Water

Gas

Fly WheelsSource BeaconPower

Energy storages

District heating

hydropowerSourceVattenfall

Compressed airSource RWE

Hydro-gen

H H

Source httpdeacademicru

Electricity line

Batteries

Kinetic Energy Storages

Heat Pump Thermal Storage

232016 JGCSE Shanghai

Storages for electrical work

242016 JGCSE Shanghai

Principle of an Electrical Energy Storage System

252016 JGCSE Shanghai

Quelle RWE

Quelle Beacon Power

Energy storages for Electrical Work

QuelleVattenfall

H H

Quelle httpdeacademicru

VRFB Vanadium‐Red‐Ox‐Flow‐BatteryNaS Natrium‐Sulfur‐BatteryLA Lead‐Acid‐Battery (Blei‐Saumlure‐Batterie)FESS Fly Wheel Energy System

HP High PerformanceHTS Magnetic bearings Vacuum

HSS‐SOFC Hydrogen Storage System ndash Solid Oxid Fuel CellHSS‐PEMFC H2 ‐ PEM ndash Fuel CellHSS‐GT H2 ‐ GasturbineHSS‐CCGT H2 ndash Combined Cycle Gas Turbine

ACES Adiabatic Compressed Air Energy StorageDCAS Diabatic Compressed Air Energy StoragePHES Pumped Hydro ‐ Storages Energy Systems

262016 JGCSE Shanghai 26

Criteria for assessment of storages

Discharging timeScalingExergy densityDynamicsSelf discharge durabilityLifetimeEnvironment

272016 JGCSE Shanghai

Efficiency of Energy Storages

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 12: 009 jgc2016   energy transmission & storage_Schmitz

122016 JGCSE Shanghai

0

20

40

60

80

100

120

930 940 950 1000 1010 1020 1030 1040 1050 1100 1110 1120 1130

Pri

maumlrl

eis

tung in

MW

Gesa

mte

nerg

ieve

rbra

uch

in M

Wh

Primaumlrleistung amp Energiebedarf Schmelzbetrieb 1-Korb amp 3-Korb Charge

Ofenleistung Energie EnergyZeit

Power

0

50

100 PPmax

Power Demand of an Electric Steel Melting FurnaceSource ArcelorMittal Hamburg GmbH

132016 JGCSE Shanghai

supply resources

demand

Time in h

Loadin GW

Energy Management Today

142016 JGCSE Shanghai

Time in h

Loadin GW

demand

supply resources

Energy Management Tomorrow

152016 JGCSE Shanghai

Correspond to an optimized demand supply sufficientenergy with the needed energy quality at the right time tothe right place ndash with as low as possible quantitative andqualitative energy losses

supply AND demand side management (integration)

Requirements Energiewende

162016 JGCSE Shanghai

More fluctuating energies means

less predictability of energy sourcesless reliability of electricity systems

and needs

more intelligent energy managementmore back up systemsmore short term and long term storages

172016 JGCSE Shanghai 17

Energy storages

182016 JGCSE Shanghai 18

dtdE

dtdE

dtdUWQ potkin

t 1212

Energy storages

Energy could be storage only as

192016 JGCSE Shanghai 19

Energy storages

Energy could be storage only as

Potential Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

202016 JGCSE Shanghai 20

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

212016 JGCSE Shanghai 21

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy or asInner Energy

There are no ldquoHeat Storagesrdquo or ldquoElectrical Storagesrdquo

dtdE

dtdE

dtdUWQ potkin

t 1212

222016 JGCSE Shanghai

Inner Energy Storages Potential Energy Storages

Warm Water

Gas

Fly WheelsSource BeaconPower

Energy storages

District heating

hydropowerSourceVattenfall

Compressed airSource RWE

Hydro-gen

H H

Source httpdeacademicru

Electricity line

Batteries

Kinetic Energy Storages

Heat Pump Thermal Storage

232016 JGCSE Shanghai

Storages for electrical work

242016 JGCSE Shanghai

Principle of an Electrical Energy Storage System

252016 JGCSE Shanghai

Quelle RWE

Quelle Beacon Power

Energy storages for Electrical Work

QuelleVattenfall

H H

Quelle httpdeacademicru

VRFB Vanadium‐Red‐Ox‐Flow‐BatteryNaS Natrium‐Sulfur‐BatteryLA Lead‐Acid‐Battery (Blei‐Saumlure‐Batterie)FESS Fly Wheel Energy System

HP High PerformanceHTS Magnetic bearings Vacuum

HSS‐SOFC Hydrogen Storage System ndash Solid Oxid Fuel CellHSS‐PEMFC H2 ‐ PEM ndash Fuel CellHSS‐GT H2 ‐ GasturbineHSS‐CCGT H2 ndash Combined Cycle Gas Turbine

ACES Adiabatic Compressed Air Energy StorageDCAS Diabatic Compressed Air Energy StoragePHES Pumped Hydro ‐ Storages Energy Systems

262016 JGCSE Shanghai 26

Criteria for assessment of storages

Discharging timeScalingExergy densityDynamicsSelf discharge durabilityLifetimeEnvironment

272016 JGCSE Shanghai

Efficiency of Energy Storages

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 13: 009 jgc2016   energy transmission & storage_Schmitz

132016 JGCSE Shanghai

supply resources

demand

Time in h

Loadin GW

Energy Management Today

142016 JGCSE Shanghai

Time in h

Loadin GW

demand

supply resources

Energy Management Tomorrow

152016 JGCSE Shanghai

Correspond to an optimized demand supply sufficientenergy with the needed energy quality at the right time tothe right place ndash with as low as possible quantitative andqualitative energy losses

supply AND demand side management (integration)

Requirements Energiewende

162016 JGCSE Shanghai

More fluctuating energies means

less predictability of energy sourcesless reliability of electricity systems

and needs

more intelligent energy managementmore back up systemsmore short term and long term storages

172016 JGCSE Shanghai 17

Energy storages

182016 JGCSE Shanghai 18

dtdE

dtdE

dtdUWQ potkin

t 1212

Energy storages

Energy could be storage only as

192016 JGCSE Shanghai 19

Energy storages

Energy could be storage only as

Potential Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

202016 JGCSE Shanghai 20

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

212016 JGCSE Shanghai 21

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy or asInner Energy

There are no ldquoHeat Storagesrdquo or ldquoElectrical Storagesrdquo

dtdE

dtdE

dtdUWQ potkin

t 1212

222016 JGCSE Shanghai

Inner Energy Storages Potential Energy Storages

Warm Water

Gas

Fly WheelsSource BeaconPower

Energy storages

District heating

hydropowerSourceVattenfall

Compressed airSource RWE

Hydro-gen

H H

Source httpdeacademicru

Electricity line

Batteries

Kinetic Energy Storages

Heat Pump Thermal Storage

232016 JGCSE Shanghai

Storages for electrical work

242016 JGCSE Shanghai

Principle of an Electrical Energy Storage System

252016 JGCSE Shanghai

Quelle RWE

Quelle Beacon Power

Energy storages for Electrical Work

QuelleVattenfall

H H

Quelle httpdeacademicru

VRFB Vanadium‐Red‐Ox‐Flow‐BatteryNaS Natrium‐Sulfur‐BatteryLA Lead‐Acid‐Battery (Blei‐Saumlure‐Batterie)FESS Fly Wheel Energy System

HP High PerformanceHTS Magnetic bearings Vacuum

HSS‐SOFC Hydrogen Storage System ndash Solid Oxid Fuel CellHSS‐PEMFC H2 ‐ PEM ndash Fuel CellHSS‐GT H2 ‐ GasturbineHSS‐CCGT H2 ndash Combined Cycle Gas Turbine

ACES Adiabatic Compressed Air Energy StorageDCAS Diabatic Compressed Air Energy StoragePHES Pumped Hydro ‐ Storages Energy Systems

262016 JGCSE Shanghai 26

Criteria for assessment of storages

Discharging timeScalingExergy densityDynamicsSelf discharge durabilityLifetimeEnvironment

272016 JGCSE Shanghai

Efficiency of Energy Storages

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 14: 009 jgc2016   energy transmission & storage_Schmitz

142016 JGCSE Shanghai

Time in h

Loadin GW

demand

supply resources

Energy Management Tomorrow

152016 JGCSE Shanghai

Correspond to an optimized demand supply sufficientenergy with the needed energy quality at the right time tothe right place ndash with as low as possible quantitative andqualitative energy losses

supply AND demand side management (integration)

Requirements Energiewende

162016 JGCSE Shanghai

More fluctuating energies means

less predictability of energy sourcesless reliability of electricity systems

and needs

more intelligent energy managementmore back up systemsmore short term and long term storages

172016 JGCSE Shanghai 17

Energy storages

182016 JGCSE Shanghai 18

dtdE

dtdE

dtdUWQ potkin

t 1212

Energy storages

Energy could be storage only as

192016 JGCSE Shanghai 19

Energy storages

Energy could be storage only as

Potential Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

202016 JGCSE Shanghai 20

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

212016 JGCSE Shanghai 21

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy or asInner Energy

There are no ldquoHeat Storagesrdquo or ldquoElectrical Storagesrdquo

dtdE

dtdE

dtdUWQ potkin

t 1212

222016 JGCSE Shanghai

Inner Energy Storages Potential Energy Storages

Warm Water

Gas

Fly WheelsSource BeaconPower

Energy storages

District heating

hydropowerSourceVattenfall

Compressed airSource RWE

Hydro-gen

H H

Source httpdeacademicru

Electricity line

Batteries

Kinetic Energy Storages

Heat Pump Thermal Storage

232016 JGCSE Shanghai

Storages for electrical work

242016 JGCSE Shanghai

Principle of an Electrical Energy Storage System

252016 JGCSE Shanghai

Quelle RWE

Quelle Beacon Power

Energy storages for Electrical Work

QuelleVattenfall

H H

Quelle httpdeacademicru

VRFB Vanadium‐Red‐Ox‐Flow‐BatteryNaS Natrium‐Sulfur‐BatteryLA Lead‐Acid‐Battery (Blei‐Saumlure‐Batterie)FESS Fly Wheel Energy System

HP High PerformanceHTS Magnetic bearings Vacuum

HSS‐SOFC Hydrogen Storage System ndash Solid Oxid Fuel CellHSS‐PEMFC H2 ‐ PEM ndash Fuel CellHSS‐GT H2 ‐ GasturbineHSS‐CCGT H2 ndash Combined Cycle Gas Turbine

ACES Adiabatic Compressed Air Energy StorageDCAS Diabatic Compressed Air Energy StoragePHES Pumped Hydro ‐ Storages Energy Systems

262016 JGCSE Shanghai 26

Criteria for assessment of storages

Discharging timeScalingExergy densityDynamicsSelf discharge durabilityLifetimeEnvironment

272016 JGCSE Shanghai

Efficiency of Energy Storages

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 15: 009 jgc2016   energy transmission & storage_Schmitz

152016 JGCSE Shanghai

Correspond to an optimized demand supply sufficientenergy with the needed energy quality at the right time tothe right place ndash with as low as possible quantitative andqualitative energy losses

supply AND demand side management (integration)

Requirements Energiewende

162016 JGCSE Shanghai

More fluctuating energies means

less predictability of energy sourcesless reliability of electricity systems

and needs

more intelligent energy managementmore back up systemsmore short term and long term storages

172016 JGCSE Shanghai 17

Energy storages

182016 JGCSE Shanghai 18

dtdE

dtdE

dtdUWQ potkin

t 1212

Energy storages

Energy could be storage only as

192016 JGCSE Shanghai 19

Energy storages

Energy could be storage only as

Potential Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

202016 JGCSE Shanghai 20

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

212016 JGCSE Shanghai 21

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy or asInner Energy

There are no ldquoHeat Storagesrdquo or ldquoElectrical Storagesrdquo

dtdE

dtdE

dtdUWQ potkin

t 1212

222016 JGCSE Shanghai

Inner Energy Storages Potential Energy Storages

Warm Water

Gas

Fly WheelsSource BeaconPower

Energy storages

District heating

hydropowerSourceVattenfall

Compressed airSource RWE

Hydro-gen

H H

Source httpdeacademicru

Electricity line

Batteries

Kinetic Energy Storages

Heat Pump Thermal Storage

232016 JGCSE Shanghai

Storages for electrical work

242016 JGCSE Shanghai

Principle of an Electrical Energy Storage System

252016 JGCSE Shanghai

Quelle RWE

Quelle Beacon Power

Energy storages for Electrical Work

QuelleVattenfall

H H

Quelle httpdeacademicru

VRFB Vanadium‐Red‐Ox‐Flow‐BatteryNaS Natrium‐Sulfur‐BatteryLA Lead‐Acid‐Battery (Blei‐Saumlure‐Batterie)FESS Fly Wheel Energy System

HP High PerformanceHTS Magnetic bearings Vacuum

HSS‐SOFC Hydrogen Storage System ndash Solid Oxid Fuel CellHSS‐PEMFC H2 ‐ PEM ndash Fuel CellHSS‐GT H2 ‐ GasturbineHSS‐CCGT H2 ndash Combined Cycle Gas Turbine

ACES Adiabatic Compressed Air Energy StorageDCAS Diabatic Compressed Air Energy StoragePHES Pumped Hydro ‐ Storages Energy Systems

262016 JGCSE Shanghai 26

Criteria for assessment of storages

Discharging timeScalingExergy densityDynamicsSelf discharge durabilityLifetimeEnvironment

272016 JGCSE Shanghai

Efficiency of Energy Storages

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 16: 009 jgc2016   energy transmission & storage_Schmitz

162016 JGCSE Shanghai

More fluctuating energies means

less predictability of energy sourcesless reliability of electricity systems

and needs

more intelligent energy managementmore back up systemsmore short term and long term storages

172016 JGCSE Shanghai 17

Energy storages

182016 JGCSE Shanghai 18

dtdE

dtdE

dtdUWQ potkin

t 1212

Energy storages

Energy could be storage only as

192016 JGCSE Shanghai 19

Energy storages

Energy could be storage only as

Potential Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

202016 JGCSE Shanghai 20

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

212016 JGCSE Shanghai 21

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy or asInner Energy

There are no ldquoHeat Storagesrdquo or ldquoElectrical Storagesrdquo

dtdE

dtdE

dtdUWQ potkin

t 1212

222016 JGCSE Shanghai

Inner Energy Storages Potential Energy Storages

Warm Water

Gas

Fly WheelsSource BeaconPower

Energy storages

District heating

hydropowerSourceVattenfall

Compressed airSource RWE

Hydro-gen

H H

Source httpdeacademicru

Electricity line

Batteries

Kinetic Energy Storages

Heat Pump Thermal Storage

232016 JGCSE Shanghai

Storages for electrical work

242016 JGCSE Shanghai

Principle of an Electrical Energy Storage System

252016 JGCSE Shanghai

Quelle RWE

Quelle Beacon Power

Energy storages for Electrical Work

QuelleVattenfall

H H

Quelle httpdeacademicru

VRFB Vanadium‐Red‐Ox‐Flow‐BatteryNaS Natrium‐Sulfur‐BatteryLA Lead‐Acid‐Battery (Blei‐Saumlure‐Batterie)FESS Fly Wheel Energy System

HP High PerformanceHTS Magnetic bearings Vacuum

HSS‐SOFC Hydrogen Storage System ndash Solid Oxid Fuel CellHSS‐PEMFC H2 ‐ PEM ndash Fuel CellHSS‐GT H2 ‐ GasturbineHSS‐CCGT H2 ndash Combined Cycle Gas Turbine

ACES Adiabatic Compressed Air Energy StorageDCAS Diabatic Compressed Air Energy StoragePHES Pumped Hydro ‐ Storages Energy Systems

262016 JGCSE Shanghai 26

Criteria for assessment of storages

Discharging timeScalingExergy densityDynamicsSelf discharge durabilityLifetimeEnvironment

272016 JGCSE Shanghai

Efficiency of Energy Storages

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 17: 009 jgc2016   energy transmission & storage_Schmitz

172016 JGCSE Shanghai 17

Energy storages

182016 JGCSE Shanghai 18

dtdE

dtdE

dtdUWQ potkin

t 1212

Energy storages

Energy could be storage only as

192016 JGCSE Shanghai 19

Energy storages

Energy could be storage only as

Potential Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

202016 JGCSE Shanghai 20

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

212016 JGCSE Shanghai 21

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy or asInner Energy

There are no ldquoHeat Storagesrdquo or ldquoElectrical Storagesrdquo

dtdE

dtdE

dtdUWQ potkin

t 1212

222016 JGCSE Shanghai

Inner Energy Storages Potential Energy Storages

Warm Water

Gas

Fly WheelsSource BeaconPower

Energy storages

District heating

hydropowerSourceVattenfall

Compressed airSource RWE

Hydro-gen

H H

Source httpdeacademicru

Electricity line

Batteries

Kinetic Energy Storages

Heat Pump Thermal Storage

232016 JGCSE Shanghai

Storages for electrical work

242016 JGCSE Shanghai

Principle of an Electrical Energy Storage System

252016 JGCSE Shanghai

Quelle RWE

Quelle Beacon Power

Energy storages for Electrical Work

QuelleVattenfall

H H

Quelle httpdeacademicru

VRFB Vanadium‐Red‐Ox‐Flow‐BatteryNaS Natrium‐Sulfur‐BatteryLA Lead‐Acid‐Battery (Blei‐Saumlure‐Batterie)FESS Fly Wheel Energy System

HP High PerformanceHTS Magnetic bearings Vacuum

HSS‐SOFC Hydrogen Storage System ndash Solid Oxid Fuel CellHSS‐PEMFC H2 ‐ PEM ndash Fuel CellHSS‐GT H2 ‐ GasturbineHSS‐CCGT H2 ndash Combined Cycle Gas Turbine

ACES Adiabatic Compressed Air Energy StorageDCAS Diabatic Compressed Air Energy StoragePHES Pumped Hydro ‐ Storages Energy Systems

262016 JGCSE Shanghai 26

Criteria for assessment of storages

Discharging timeScalingExergy densityDynamicsSelf discharge durabilityLifetimeEnvironment

272016 JGCSE Shanghai

Efficiency of Energy Storages

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 18: 009 jgc2016   energy transmission & storage_Schmitz

182016 JGCSE Shanghai 18

dtdE

dtdE

dtdUWQ potkin

t 1212

Energy storages

Energy could be storage only as

192016 JGCSE Shanghai 19

Energy storages

Energy could be storage only as

Potential Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

202016 JGCSE Shanghai 20

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

212016 JGCSE Shanghai 21

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy or asInner Energy

There are no ldquoHeat Storagesrdquo or ldquoElectrical Storagesrdquo

dtdE

dtdE

dtdUWQ potkin

t 1212

222016 JGCSE Shanghai

Inner Energy Storages Potential Energy Storages

Warm Water

Gas

Fly WheelsSource BeaconPower

Energy storages

District heating

hydropowerSourceVattenfall

Compressed airSource RWE

Hydro-gen

H H

Source httpdeacademicru

Electricity line

Batteries

Kinetic Energy Storages

Heat Pump Thermal Storage

232016 JGCSE Shanghai

Storages for electrical work

242016 JGCSE Shanghai

Principle of an Electrical Energy Storage System

252016 JGCSE Shanghai

Quelle RWE

Quelle Beacon Power

Energy storages for Electrical Work

QuelleVattenfall

H H

Quelle httpdeacademicru

VRFB Vanadium‐Red‐Ox‐Flow‐BatteryNaS Natrium‐Sulfur‐BatteryLA Lead‐Acid‐Battery (Blei‐Saumlure‐Batterie)FESS Fly Wheel Energy System

HP High PerformanceHTS Magnetic bearings Vacuum

HSS‐SOFC Hydrogen Storage System ndash Solid Oxid Fuel CellHSS‐PEMFC H2 ‐ PEM ndash Fuel CellHSS‐GT H2 ‐ GasturbineHSS‐CCGT H2 ndash Combined Cycle Gas Turbine

ACES Adiabatic Compressed Air Energy StorageDCAS Diabatic Compressed Air Energy StoragePHES Pumped Hydro ‐ Storages Energy Systems

262016 JGCSE Shanghai 26

Criteria for assessment of storages

Discharging timeScalingExergy densityDynamicsSelf discharge durabilityLifetimeEnvironment

272016 JGCSE Shanghai

Efficiency of Energy Storages

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 19: 009 jgc2016   energy transmission & storage_Schmitz

192016 JGCSE Shanghai 19

Energy storages

Energy could be storage only as

Potential Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

202016 JGCSE Shanghai 20

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

212016 JGCSE Shanghai 21

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy or asInner Energy

There are no ldquoHeat Storagesrdquo or ldquoElectrical Storagesrdquo

dtdE

dtdE

dtdUWQ potkin

t 1212

222016 JGCSE Shanghai

Inner Energy Storages Potential Energy Storages

Warm Water

Gas

Fly WheelsSource BeaconPower

Energy storages

District heating

hydropowerSourceVattenfall

Compressed airSource RWE

Hydro-gen

H H

Source httpdeacademicru

Electricity line

Batteries

Kinetic Energy Storages

Heat Pump Thermal Storage

232016 JGCSE Shanghai

Storages for electrical work

242016 JGCSE Shanghai

Principle of an Electrical Energy Storage System

252016 JGCSE Shanghai

Quelle RWE

Quelle Beacon Power

Energy storages for Electrical Work

QuelleVattenfall

H H

Quelle httpdeacademicru

VRFB Vanadium‐Red‐Ox‐Flow‐BatteryNaS Natrium‐Sulfur‐BatteryLA Lead‐Acid‐Battery (Blei‐Saumlure‐Batterie)FESS Fly Wheel Energy System

HP High PerformanceHTS Magnetic bearings Vacuum

HSS‐SOFC Hydrogen Storage System ndash Solid Oxid Fuel CellHSS‐PEMFC H2 ‐ PEM ndash Fuel CellHSS‐GT H2 ‐ GasturbineHSS‐CCGT H2 ndash Combined Cycle Gas Turbine

ACES Adiabatic Compressed Air Energy StorageDCAS Diabatic Compressed Air Energy StoragePHES Pumped Hydro ‐ Storages Energy Systems

262016 JGCSE Shanghai 26

Criteria for assessment of storages

Discharging timeScalingExergy densityDynamicsSelf discharge durabilityLifetimeEnvironment

272016 JGCSE Shanghai

Efficiency of Energy Storages

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 20: 009 jgc2016   energy transmission & storage_Schmitz

202016 JGCSE Shanghai 20

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy

dtdE

dtdE

dtdUWQ potkin

t 1212

212016 JGCSE Shanghai 21

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy or asInner Energy

There are no ldquoHeat Storagesrdquo or ldquoElectrical Storagesrdquo

dtdE

dtdE

dtdUWQ potkin

t 1212

222016 JGCSE Shanghai

Inner Energy Storages Potential Energy Storages

Warm Water

Gas

Fly WheelsSource BeaconPower

Energy storages

District heating

hydropowerSourceVattenfall

Compressed airSource RWE

Hydro-gen

H H

Source httpdeacademicru

Electricity line

Batteries

Kinetic Energy Storages

Heat Pump Thermal Storage

232016 JGCSE Shanghai

Storages for electrical work

242016 JGCSE Shanghai

Principle of an Electrical Energy Storage System

252016 JGCSE Shanghai

Quelle RWE

Quelle Beacon Power

Energy storages for Electrical Work

QuelleVattenfall

H H

Quelle httpdeacademicru

VRFB Vanadium‐Red‐Ox‐Flow‐BatteryNaS Natrium‐Sulfur‐BatteryLA Lead‐Acid‐Battery (Blei‐Saumlure‐Batterie)FESS Fly Wheel Energy System

HP High PerformanceHTS Magnetic bearings Vacuum

HSS‐SOFC Hydrogen Storage System ndash Solid Oxid Fuel CellHSS‐PEMFC H2 ‐ PEM ndash Fuel CellHSS‐GT H2 ‐ GasturbineHSS‐CCGT H2 ndash Combined Cycle Gas Turbine

ACES Adiabatic Compressed Air Energy StorageDCAS Diabatic Compressed Air Energy StoragePHES Pumped Hydro ‐ Storages Energy Systems

262016 JGCSE Shanghai 26

Criteria for assessment of storages

Discharging timeScalingExergy densityDynamicsSelf discharge durabilityLifetimeEnvironment

272016 JGCSE Shanghai

Efficiency of Energy Storages

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 21: 009 jgc2016   energy transmission & storage_Schmitz

212016 JGCSE Shanghai 21

Energy storages

Energy could be storage only as

Potential EnergyKinetic Energy or asInner Energy

There are no ldquoHeat Storagesrdquo or ldquoElectrical Storagesrdquo

dtdE

dtdE

dtdUWQ potkin

t 1212

222016 JGCSE Shanghai

Inner Energy Storages Potential Energy Storages

Warm Water

Gas

Fly WheelsSource BeaconPower

Energy storages

District heating

hydropowerSourceVattenfall

Compressed airSource RWE

Hydro-gen

H H

Source httpdeacademicru

Electricity line

Batteries

Kinetic Energy Storages

Heat Pump Thermal Storage

232016 JGCSE Shanghai

Storages for electrical work

242016 JGCSE Shanghai

Principle of an Electrical Energy Storage System

252016 JGCSE Shanghai

Quelle RWE

Quelle Beacon Power

Energy storages for Electrical Work

QuelleVattenfall

H H

Quelle httpdeacademicru

VRFB Vanadium‐Red‐Ox‐Flow‐BatteryNaS Natrium‐Sulfur‐BatteryLA Lead‐Acid‐Battery (Blei‐Saumlure‐Batterie)FESS Fly Wheel Energy System

HP High PerformanceHTS Magnetic bearings Vacuum

HSS‐SOFC Hydrogen Storage System ndash Solid Oxid Fuel CellHSS‐PEMFC H2 ‐ PEM ndash Fuel CellHSS‐GT H2 ‐ GasturbineHSS‐CCGT H2 ndash Combined Cycle Gas Turbine

ACES Adiabatic Compressed Air Energy StorageDCAS Diabatic Compressed Air Energy StoragePHES Pumped Hydro ‐ Storages Energy Systems

262016 JGCSE Shanghai 26

Criteria for assessment of storages

Discharging timeScalingExergy densityDynamicsSelf discharge durabilityLifetimeEnvironment

272016 JGCSE Shanghai

Efficiency of Energy Storages

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 22: 009 jgc2016   energy transmission & storage_Schmitz

222016 JGCSE Shanghai

Inner Energy Storages Potential Energy Storages

Warm Water

Gas

Fly WheelsSource BeaconPower

Energy storages

District heating

hydropowerSourceVattenfall

Compressed airSource RWE

Hydro-gen

H H

Source httpdeacademicru

Electricity line

Batteries

Kinetic Energy Storages

Heat Pump Thermal Storage

232016 JGCSE Shanghai

Storages for electrical work

242016 JGCSE Shanghai

Principle of an Electrical Energy Storage System

252016 JGCSE Shanghai

Quelle RWE

Quelle Beacon Power

Energy storages for Electrical Work

QuelleVattenfall

H H

Quelle httpdeacademicru

VRFB Vanadium‐Red‐Ox‐Flow‐BatteryNaS Natrium‐Sulfur‐BatteryLA Lead‐Acid‐Battery (Blei‐Saumlure‐Batterie)FESS Fly Wheel Energy System

HP High PerformanceHTS Magnetic bearings Vacuum

HSS‐SOFC Hydrogen Storage System ndash Solid Oxid Fuel CellHSS‐PEMFC H2 ‐ PEM ndash Fuel CellHSS‐GT H2 ‐ GasturbineHSS‐CCGT H2 ndash Combined Cycle Gas Turbine

ACES Adiabatic Compressed Air Energy StorageDCAS Diabatic Compressed Air Energy StoragePHES Pumped Hydro ‐ Storages Energy Systems

262016 JGCSE Shanghai 26

Criteria for assessment of storages

Discharging timeScalingExergy densityDynamicsSelf discharge durabilityLifetimeEnvironment

272016 JGCSE Shanghai

Efficiency of Energy Storages

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 23: 009 jgc2016   energy transmission & storage_Schmitz

232016 JGCSE Shanghai

Storages for electrical work

242016 JGCSE Shanghai

Principle of an Electrical Energy Storage System

252016 JGCSE Shanghai

Quelle RWE

Quelle Beacon Power

Energy storages for Electrical Work

QuelleVattenfall

H H

Quelle httpdeacademicru

VRFB Vanadium‐Red‐Ox‐Flow‐BatteryNaS Natrium‐Sulfur‐BatteryLA Lead‐Acid‐Battery (Blei‐Saumlure‐Batterie)FESS Fly Wheel Energy System

HP High PerformanceHTS Magnetic bearings Vacuum

HSS‐SOFC Hydrogen Storage System ndash Solid Oxid Fuel CellHSS‐PEMFC H2 ‐ PEM ndash Fuel CellHSS‐GT H2 ‐ GasturbineHSS‐CCGT H2 ndash Combined Cycle Gas Turbine

ACES Adiabatic Compressed Air Energy StorageDCAS Diabatic Compressed Air Energy StoragePHES Pumped Hydro ‐ Storages Energy Systems

262016 JGCSE Shanghai 26

Criteria for assessment of storages

Discharging timeScalingExergy densityDynamicsSelf discharge durabilityLifetimeEnvironment

272016 JGCSE Shanghai

Efficiency of Energy Storages

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 24: 009 jgc2016   energy transmission & storage_Schmitz

242016 JGCSE Shanghai

Principle of an Electrical Energy Storage System

252016 JGCSE Shanghai

Quelle RWE

Quelle Beacon Power

Energy storages for Electrical Work

QuelleVattenfall

H H

Quelle httpdeacademicru

VRFB Vanadium‐Red‐Ox‐Flow‐BatteryNaS Natrium‐Sulfur‐BatteryLA Lead‐Acid‐Battery (Blei‐Saumlure‐Batterie)FESS Fly Wheel Energy System

HP High PerformanceHTS Magnetic bearings Vacuum

HSS‐SOFC Hydrogen Storage System ndash Solid Oxid Fuel CellHSS‐PEMFC H2 ‐ PEM ndash Fuel CellHSS‐GT H2 ‐ GasturbineHSS‐CCGT H2 ndash Combined Cycle Gas Turbine

ACES Adiabatic Compressed Air Energy StorageDCAS Diabatic Compressed Air Energy StoragePHES Pumped Hydro ‐ Storages Energy Systems

262016 JGCSE Shanghai 26

Criteria for assessment of storages

Discharging timeScalingExergy densityDynamicsSelf discharge durabilityLifetimeEnvironment

272016 JGCSE Shanghai

Efficiency of Energy Storages

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 25: 009 jgc2016   energy transmission & storage_Schmitz

252016 JGCSE Shanghai

Quelle RWE

Quelle Beacon Power

Energy storages for Electrical Work

QuelleVattenfall

H H

Quelle httpdeacademicru

VRFB Vanadium‐Red‐Ox‐Flow‐BatteryNaS Natrium‐Sulfur‐BatteryLA Lead‐Acid‐Battery (Blei‐Saumlure‐Batterie)FESS Fly Wheel Energy System

HP High PerformanceHTS Magnetic bearings Vacuum

HSS‐SOFC Hydrogen Storage System ndash Solid Oxid Fuel CellHSS‐PEMFC H2 ‐ PEM ndash Fuel CellHSS‐GT H2 ‐ GasturbineHSS‐CCGT H2 ndash Combined Cycle Gas Turbine

ACES Adiabatic Compressed Air Energy StorageDCAS Diabatic Compressed Air Energy StoragePHES Pumped Hydro ‐ Storages Energy Systems

262016 JGCSE Shanghai 26

Criteria for assessment of storages

Discharging timeScalingExergy densityDynamicsSelf discharge durabilityLifetimeEnvironment

272016 JGCSE Shanghai

Efficiency of Energy Storages

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 26: 009 jgc2016   energy transmission & storage_Schmitz

262016 JGCSE Shanghai 26

Criteria for assessment of storages

Discharging timeScalingExergy densityDynamicsSelf discharge durabilityLifetimeEnvironment

272016 JGCSE Shanghai

Efficiency of Energy Storages

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 27: 009 jgc2016   energy transmission & storage_Schmitz

272016 JGCSE Shanghai

Efficiency of Energy Storages

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 28: 009 jgc2016   energy transmission & storage_Schmitz

282016 JGCSE Shanghai

bdquoDurabilityldquo of Energy in Storages

h

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 29: 009 jgc2016   energy transmission & storage_Schmitz

292016 JGCSE Shanghai

Exergy density of Storages

h

kWhmsup3

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 30: 009 jgc2016   energy transmission & storage_Schmitz

302016 JGCSE Shanghai

Efficiency Scaling Dynamics Self‐discharge

Lifetime Environ‐ment

PHES + ‐ 0 + + + + ‐

DCAES 0 0 ‐ + + + + ‐

ACAES 0 0 ‐ 0 + + +

HSS ndash CCGT ‐ + 0 + + + 0

HSS ndash PEMFC ‐ ‐ + + + + 0 0

VRFB + 0 + + + + 0 ‐

NaS 0 0 + + ‐ ‐ ‐

LA + 0 + + + ‐ ‐ ‐

FESS ndash HP ++ ‐ ‐ + ‐ ‐ + + +

FESS ndash HTS ++ 0 ++ ‐ + ++

ThermExStor 0 0 ‐ 0 ++ + +

Strengths and Weaknesses of ESS

Assessment of Energy Storages

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 31: 009 jgc2016   energy transmission & storage_Schmitz

312016 JGCSE Shanghai 31

Batteries

Batteries

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 32: 009 jgc2016   energy transmission & storage_Schmitz

322016 JGCSE Shanghai

Fly wheels

bull CFKbull 100 kW25 kWh (41) 16000 1min 85 4 hbull Frequency control 4 projectsbull 1150 eurokW 4615 eurokWh

bull Beacon Power

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 33: 009 jgc2016   energy transmission & storage_Schmitz

332016 JGCSE Shanghai

0001020304050607080910

0 2 4 6 8 10 12 14 16

η cycle d

ay

average capacity utilisation for 24 h in MWh

FES

NaS

Efficiency of FES amp NaS

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 34: 009 jgc2016   energy transmission & storage_Schmitz

342016 JGCSE Shanghai

bull High perfomance steelbull 10hellip500 kW50 kWh (101) 6000 1min 85 1 hbull Frequency control integration of renewable energy 2 projectsbull 770 eurokW 3077 eurokWh

bull Temporal Power

Alternative suppliers (1)

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 35: 009 jgc2016   energy transmission & storage_Schmitz

352016 JGCSE Shanghai

bull Composite steel CFKbull 2 MW1 MWh (21) 6000 1min 90 25 hbull Frequency control integration of renewable energy

2 projectsbull 450 eurokW 900 eurokWh

bull Rotokinetik

Alternative suppliers (2)

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 36: 009 jgc2016   energy transmission & storage_Schmitz

362016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 37: 009 jgc2016   energy transmission & storage_Schmitz

372016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Peek demand supply

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 38: 009 jgc2016   energy transmission & storage_Schmitz

382016 JGCSE Shanghai

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Energy in kW

h

power kW

daytime (h)

power‐orig power ‐ comb useful energy FES ‐ comb

Gradient smoothing amp peek demand supply

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 39: 009 jgc2016   energy transmission & storage_Schmitz

392016 JGCSE Shanghai

Future Energy System

Windpower Flywheelstorage

Biogas-CHP

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 40: 009 jgc2016   energy transmission & storage_Schmitz

402016 JGCSE Shanghai 40

ADELE ndash High Pressure Air Storage

Source RWE

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 41: 009 jgc2016   energy transmission & storage_Schmitz

412016 JGCSE Shanghai 41

lower basin pumpturbine

higherbasin

water

Hydro Power Storage

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 42: 009 jgc2016   energy transmission & storage_Schmitz

422016 JGCSE Shanghai 42

Coal mine

Water storage

Daylight mine Refuse dump

Turbine PumpReservoirSource bdquoDie Zeitldquo

Reuse of Old Coal Mines

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 43: 009 jgc2016   energy transmission & storage_Schmitz

432016 JGCSE Shanghai 43

Thermal Potential Storages

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 44: 009 jgc2016   energy transmission & storage_Schmitz

442016 JGCSE Shanghai

Gas storages

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 45: 009 jgc2016   energy transmission & storage_Schmitz

452016 JGCSE Shanghai

Gas is a storage

Gas infrastructure with high storage capacity availableGas means not only natural gas but also hydrogen biogas synthetic methanSynergies between sectors through coupling of electricity and gas grids more RE in heat as well as industry and mobility sectors can be achieved

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 46: 009 jgc2016   energy transmission & storage_Schmitz

462016 JGCSE Shanghai

M E exI

E exII

H2

H2O

EexVI

EexS

EexV

Eexchem= H2O

EexVII

O2

e -e -

H2

OxygenWater

Hydrogen Hydrogen

Hydrogenstorage

OxygenAirWater

Salt cavern

Hydrogen Elextrolysis

W elI W el

II

Gasturbine orFuel Cell

Hydrogen

O2

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 47: 009 jgc2016   energy transmission & storage_Schmitz

472016 JGCSE Shanghai 47

Use of Hydrogen

Conversion (back) into electricity by gas turbinesConversion into electricity by fuel cellsAdditive to natural gas Synthetic Natural Gas (SNG)Use for mobile applications like cars and airplanesUse as a chemical raw product

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 48: 009 jgc2016   energy transmission & storage_Schmitz

482016 JGCSE Shanghai 48

Efficiency of Fuel Cells and Gas Turbines

H2O2-fuel celltheoretical efficiency

Carnot efficiency

Source ASUETemperature [K]

Effic

ienc

y

Gas turbinetheoretical efficiency

but pure hydrogen combustion not yetpossible

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 49: 009 jgc2016   energy transmission & storage_Schmitz

492016 JGCSE Shanghai 49

Network of Hydrogen Fueling Stations in GermanyCompany Town Place pressure

OMV Stuttgart Flughafenstr 70 700bar350bar

EnBW Stuttgart Talstr117 700bar

AGIP Frankfurt Industriepark Houmlchst 700bar350bar

Total Berlin Heerstr324 700bar350bar

Total Berlin Holzmarktr36-42 700bar350bar

Shell Berlin Sachsendamm 90-92 700bar350bar

Total Berlin Heidestr19 700barHamburger Hochbahn Hamburg-Hummelsbuumlttel Lademannbogen 2 350bar

Total Hamburg Cuxhavenerstr 380 700barVattenfall Hamburg Hafencity 700bar

350barShell Hamburg Bramfelder Chausee 370 700barEnBW Karlsruhe Durlacher Allee 87 700barLinde Unterschleiszligheim Carl-von-Linde Str 350bar

Fraunhofer Institut Freiburg Heidenhofstr2 350bar

700barAir Liquide Duumlsseldorf Houmlherweg 350bar

700bar

B-Klasse F-CELL Daimler

Source wwwdaimlercom

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 50: 009 jgc2016   energy transmission & storage_Schmitz

502016 JGCSE Shanghai 50

Hydrogen injection into a natural gas grid

Questions

How much hydrogen can be fed into the gridHow much excess renewable energy can be usedHow big is the influence on CO2‐emissions

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 51: 009 jgc2016   energy transmission & storage_Schmitz

512016 JGCSE Shanghai 51

Properties of HydrogenH2 CH4 C3H8

Ignition temperature degC 585 540 487Min ignition energy mJ 002 029 026Stoichiometric air requirement msup3msup3 061 96 012Density Kgmsup3 009 072 201Ignition limits in air Vol‐ 4‐75 53‐15 21‐95Rate of combustion cms 265 40 47Flame temperature degC 2045 1875 2112Wobbe Index kWhmsup3 1343 1485 2255

Adjustment of air ratio necessary CO - emissions criticalProblems with modern flame control methods (SCOT)Gas motors change of Methan number engine knocking Higher ignition ratio safety issuesHigher flame temperatures without -adaption higher NOx-emissionsLower thermal output Wobbe-Index control locallyHigher water content in flue gases

For gas appliances this means in the case of Hydrogen feeding in a gas grid

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 52: 009 jgc2016   energy transmission & storage_Schmitz

522016 JGCSE Shanghai

12

c1p1A1

c2p2A2

Gas nozzle

OBB HVQ

Gas

tenvironmennozzlebefore ppc

)(2

2

Gas

tenvironmennozzlebeforeB

ppAcAV

)(2222

OGas

tenvironmennozzlebeforeB H

ppAQ

)(22

Luft

Gasd

dHpp

AQ O

Luft

tenvironmennozzlebeforeB

)(22

dHW O

O

Heat flux

Wobbe Index

Relative density

Gas velocity

Volume flow

Wobbe Index

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 53: 009 jgc2016   energy transmission & storage_Schmitz

532016 JGCSE Shanghai

Upp

erhe

atin

gva

lue

Ho

kWh

msup3

Upp

erhe

atin

gva

lue

Ho

MJ

msup3

Relative density dn

DVGW G260

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 54: 009 jgc2016   energy transmission & storage_Schmitz

542016 JGCSE Shanghai

Hydrogen Injection

H2

consumer

0001

0002

00030005

0006

0007

0008

0004

0005

0006 0007

0008

00090010

0011

0012

0013

00140015

00160017

0018

0017

up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260up to 10 Vol- Hydrogen feeding into a local gas gridseems to be possible according DVGW G260

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 55: 009 jgc2016   energy transmission & storage_Schmitz

552016 JGCSE Shanghai 55

3 H2 + CO CH4 + H2O HR0 = -2064 KJmol

4 H2 + CO2 CH4 + 2 H2O HR0 = -2649 KJmol

Shift-Reaktion

H2O + CO H2 + CO2 HR0 = - 415 KJmol

Synthetic (or Substitute) Natural Gas (CH4) with CO2 fromBiogas plants or Carbon Capture Power Plants

But G (Gibbs Energy) = H ndash T S

Synthetic Methan

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 56: 009 jgc2016   energy transmission & storage_Schmitz

562016 JGCSE Shanghai 56

Elektrolysis Cavern Fuel cell

Exergy Analysis of Hydrogen Conversion Pathes

Elektrolysis Cavern

Electricity output

Low temperatureheat

Chemical product

Chemical plant

AnergyExergy

Path electricity ndash Hydrogen - electricity

Path electricity - Hydrogen - chemical product

examplesbull Ammonia synthesisbull Plastic productionbull Dissolverbull Hydrocrackingbull Steel production

Ex 70 90 Ex 60

Electricityinput

Electricityinput

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 57: 009 jgc2016   energy transmission & storage_Schmitz

572016 JGCSE Shanghai

Hydrogen as a chemical product in Hamburg

(catalytic gas reformer)

35000 ta

385 ta

25000 ta

153 ta

External from Dow

90 ta297 ta

Demand 2013 60925 ta

Potential wind - H2 2023 16205 ta

(catalytic gas reformer)

External from DowExternal from Dow

External from Dow

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 58: 009 jgc2016   energy transmission & storage_Schmitz

582016 JGCSE Shanghai 58

Biogas

1 Biogas usage for electricityand heat production directlyat the biogas production

2Biogas conditioning and feed into the natural gas grid

3Biogas transport by specialbiogas pipelines to centerwith high heat demand

CHP CHPConditioning

- drying- desulfurization- compression- cleaning- CO2-removal

Feed into natural gas grid

CHP

Electr HeatElectr Heat

Heat Fuel

Electr Heat

Biogas optionsFermenter

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 59: 009 jgc2016   energy transmission & storage_Schmitz

592016 JGCSE Shanghai 59

Liquid Organic Hydrogen Carrier (LOHC)

9 H2

HydrationChemical connection of H2 to a liquid carriercatalytic reaction 50 barExotherm 10 kWhthkg H2 150degCcontinuisly process

DehydrationRelease of H2 by catalytic reactionEndotherm 10 kWhthkg H2 300degCGas cleaning necessarycontinuisly process

Data630 Nmsup3 H2 per msup3 LOHCDibenzyltoluolWorking space -39degC ndash 390degCNon toxid non explosiveNo evaporation of H2Easy transport

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 60: 009 jgc2016   energy transmission & storage_Schmitz

602016 JGCSE Shanghai

Heat storages

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 61: 009 jgc2016   energy transmission & storage_Schmitz

612016 JGCSE Shanghai 61

Thermal storage

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 62: 009 jgc2016   energy transmission & storage_Schmitz

622016 JGCSE Shanghai

Thermal Storage

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 63: 009 jgc2016   energy transmission & storage_Schmitz

632016 JGCSE Shanghai 63

Combined heat and power

Quelle Lichtblick

CFCL high temperature fuel cell15 kWel 05 kWtherm

Volkswagen co-gen motor190 kWel 360 kWtherm

Vaillant-Ecopower47 kWel 125 kWtherm

But Demand for electricity and heat has to be at the same time Difficult (summer)Buffer water storage necessary

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 64: 009 jgc2016   energy transmission & storage_Schmitz

642016 JGCSE Shanghai 64

gt32 kW Heat~19 kW Electr

Virtual power plant

on off load

Run

ning

time

sche

dul

e

Time schedule 3 4 5 6 7 8 9 10

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 65: 009 jgc2016   energy transmission & storage_Schmitz

652016 JGCSE Shanghai

CHP Plant operation optimisationEl Production Min required power price

pow

erpo

wer

prof

itpr

ofit

sche

duel

sche

duel

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 66: 009 jgc2016   energy transmission & storage_Schmitz

662016 JGCSE Shanghai 66

bull Limestone (chalk CaOCa(OH)2)bull Paraffinebull Salts

Chemical heat storages

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 67: 009 jgc2016   energy transmission & storage_Schmitz

672016 JGCSE Shanghai 67

Without heat conducting structure

Phase Change Materials (PCM-) storage

Source PhD TUHH Ekkehard Lohse

With heat conducting structure

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 68: 009 jgc2016   energy transmission & storage_Schmitz

682016 JGCSE Shanghai 68

Phase Change Materials (PCM-) storage

Prototype

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 69: 009 jgc2016   energy transmission & storage_Schmitz

692016 JGCSE Shanghai

Modelling of energy systems

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 70: 009 jgc2016   energy transmission & storage_Schmitz

702016 JGCSE Shanghai

Comparisonheat flow demandheat flow supplyfor different modellingapproaches

Steady state- - - demand

supply- - - demand

supply

- - - demandsupply

- - - demandsupply

time timetime

timetime

Steady state ndash quasi steady state ndash non steady state

Quasi steady state

Non ndash steady state (dynamic)

- - - demandsupply

- - - demandsupply

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 71: 009 jgc2016   energy transmission & storage_Schmitz

712016 JGCSE Shanghai

Future energy system

Hamburg

Each System locally balanced

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 72: 009 jgc2016   energy transmission & storage_Schmitz

722016 JGCSE Shanghai 72

Research Project TransiEntEE

Transientes Verhalten gekoppelter Energienetze mit hohem Anteil Erneuerbarer EnergienTransient Assessment of Coupled Energy Grids with High Amount of Renewable Energies

wwwmodelicaorghttpsopenmodelicaorgdownloaddownload-windows

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 73: 009 jgc2016   energy transmission & storage_Schmitz

732016 JGCSE Shanghai

Dynamic modelling

Air

Wall

CO2Pipeclass DynamicWallCF

bdquoCylindriccapacitive wall cross-flow parameter Integer n(min=1) = 1parameter SIunitsTemperature T_wall0=273 ThermoFluidInterfacesHeatTransferHeatFlowD qa(n=n)ThermoFluidInterfacesHeatTransferHeatFlowD qb(n=n)

equation for i in 1n loop

qaq[i] = (qaT[i] - T_wall[i])(geoRwn2)qbq[n + 1 - i] = (qbT[n + 1 - i] - T_wall[i])(geoRwn2)end for

end DynamicWallCF

geoCpgeomnder(T_wall[i]) = qaq[i] + qbq[n + 1 - i]

2

2

xT

0 =

tTcp

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 74: 009 jgc2016   energy transmission & storage_Schmitz

742016 JGCSE Shanghai

High Volt Power Line Middle Volt Power Line Low Volt Power Line

Gas pipelines high middle low pressure

District Heating HH 13660degC

+ -

+ -

+ -

+ -

Coal PowerPlant with CO2 ndashCapture

BiomassPowerPlant

Windenergy(Nothsea)

Hydropowerstorage

FlywheelStorage

(Big)Batterystorage

PipeGasStorage

Gas storage

Gas-turbine

H2

H2 CH4

CO2 CO2

CH4

H2

Heattrans-former

Photo-voltaicplant

Solarthermalplant

Boiler

ElHeatPump

Thermal storage

CHP

Battery

(Big) Battery

FlyWheelStorage

Compressor Turbine

High pressureAir storage

PCM-Storager

TransiEntEE

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 75: 009 jgc2016   energy transmission & storage_Schmitz

752016 JGCSE Shanghai

TransiEntEE ndash Library

Electricity heat

Power plants CHP boilers

Grid

Batteries thermal storages

For developer

For users

Economical data

Weather data

Mediahellip

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 76: 009 jgc2016   energy transmission & storage_Schmitz

762016 JGCSE Shanghai

High pressure gas grid of Hamburg

Data of gridbull Operator Hamburg Netz

bull Market area GASPOOL

bull Feeder grid operator GASUNIE

GASCADE

bull H-Gas with 113kWhm

076kgm

bull Pressure 15MPa

bull Length 528 km

bull Output points 350

bull Annual output (2014)

194 9kWh 172 9m

bull Simultaneous peak load (2014)

5807MW 143m hfraslSource wwwnetz-hhcom 2013

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 77: 009 jgc2016   energy transmission & storage_Schmitz

772016 JGCSE Shanghai

Power-to-Gas-plant

77El grid

Compressor

Elektrolysis

P_el_PtG

m_flow_H2_max

max m_flow_H2

Mixing

Sensor m_flow_H2

m_flow_H2

m_flow_NGXi_NG

Determination ofElektrolysis- andAuxiliary power demand

P_el_VP_el_E

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 78: 009 jgc2016   energy transmission & storage_Schmitz

782016 JGCSE Shanghai

Scenario overviewYear 2050Overload ability 300 for maximal 8 hours3 electrolyzers at the gas transfer stations (GTS) to HamburgControlled by electrical residual load hydrogen is only produced when there is excess renewable powerRestrictions feed‐in limit maximum power of ELY overload abilityScenario variationsFeed‐in limits 2 5 10 vol‐Hydrogen storage without (wo) and with (w)

4MPa 15MPa3 150000 rarr ∆ 3 3467356m

System modeled and simulated with ModelicaDymola

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 79: 009 jgc2016   energy transmission & storage_Schmitz

792016 JGCSE Shanghai

Residual load and maximal allowed H2 mass flow rates

Much excess power and little gas demand

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 80: 009 jgc2016   energy transmission & storage_Schmitz

802016 JGCSE Shanghai

Summary (2)

Non renewable energies will be necessary the next 50 yearsTo evaluate define an energy system well it is crucial to define the right system boundary and the right time periodicThe storability of energies has to be taken into considerationEnergy should be as much as possible converted locallyEach energy systems has to be adopted to the local conditionsSmart energy management tools are neededTo model big systems is the challenge of the futureChanging of energy systems will produce setbacks nevertheless not way back

812016 JGCSE Shanghai

schmitztuhhde

Page 81: 009 jgc2016   energy transmission & storage_Schmitz

812016 JGCSE Shanghai

schmitztuhhde