001 R0 STK Substructure Design AMH to Be Sent

83
3.2.1 Input Data for Design of EJ Pier P3 EJ FRL 9.309 0.065 thick WC Left Span Right Span 1.150 PSC 1.150 superstructure superstructure RL of Pier cap top 0.350 7.744 =9.309-0.065-1.150-0.350 0.750 0.750 1.300 2.300 4.612 HFL 7.350 1.800 3.312 Existing GL dia circular pier  1.632 3.132 1.500 1.632 4.3 Longitudinal Elevation at EJ Pier 9.8 PSC RL of foundation base RL of pile cap base  All dime levels a unless o spec Foundation

Transcript of 001 R0 STK Substructure Design AMH to Be Sent

Page 1: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 1/91

3.2.1 Input Data for Design of EJ Pier P3

EJ

FRL 9.309 0.065 thick WC

Left Span Right Span

1.150 PSC 1.150

superstructure superstructure

RL of Pier cap top 0.350

7.744

=9.309-0.065-1.150-0.350

0.750 0.750

1.300

2.300

4.612

HFL

7.350 1.800 3.312

Existing GL dia circular pier  

1.632

3.132

1.500

1.632

4.3

Longitudinal Elevation at EJ Pier 

9.8

PSC

RL of foundation

base

RL of pile cap

base

 All dime

levels a

unless o

spec

Foundation

Page 2: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 2/91

2.300

0.15

1.800

dia circular pier 

4.3

Sectional Elevation

Existing bridge is on this side

Y

BL1 BR1

BL2 BR2

BL3 BR3

X , Traffic

BL4 BR4

BL5 BR5

BL6 BR6

Crash barrier 

THE SECTION SHOWN IN

ELEVATION AND CROSS

SECTION ARE ONLY INDICATIVE

Deck Slab

Foundation

Pier CG

Pier

Page 3: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 3/91

Plan of deck and piercap

3.2.1.1 Details of Superstructure

Span 22.25 22.25

Type PSC Girder PSC Girde

Overall Depth 1.150 1.150

CG from bottom 0.615 0.615

Radius of Horizontal Curvature

Max height of bearing + pedestal 0.350 0.350

0

-4.5 4.5

-2.5 3.5

-0.5 1.5

The co-ordinate of each girder with respect to the center of pier and deck.

3.2.1.2 Reactions due to DL

Bearing Vertical Trans Longitu Trans Longitu

marked Reaction Eccen Eccen Moment Moment

BL1 180 4.5 -0.750 810.0 -135.0BL2 214 3.5 -0.750 749.0 -160.5

BL3 240 1.5 -0.750 360.0 -180.0

Left BL4 240 -0.5 -0.750 -120.0 -180.0

span BL5 240 -2.5 -0.750 -600.0 -180.0

BL6 237 -4.5 -0.750 -1066.5 -177.8

1.00E+0

Right SpaLeft Span

(refer superstructure design note for CG location, out of various values, maximum v

been considered to have maximum lever arm for horizontal forces. )

1.00E+06

C.L of Pier/ C.L of deck

Origin

Page 4: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 4/91

Total 1351 132.5 -1013.3

BR1 180 4.5 0.750 810 135.0

BR2 214 3.5 0.750 749 160.5

Right BR3 240 1.5 0.750 360 180.0

span BR4 240 -0.5 0.750 -120 180.0BR5 240 -2.5 0.750 -600 180.0

BR6 237 -4.5 0.750 -1066.5 177.8

Total 1351 132.5 1013.3

Total=Left+Righ 2702 265 0

3.2.1.3 Reactions due to SIDL + Diaphragm

Due to Weight of Wearing Coat + Due to Weight of Crash Barrier & other services

Bearing Vertical Trans Longitu Trans Longitu

marked Reaction Eccen Eccen Moment Moment

BL1 13.5 4.5 -0.75 60.8 -10.1

BL2 31.3 3.5 -0.75 109.7 -23.5

BL3 41.5 1.5 -0.75 62.2 -31.1

Left BL4 56.9 -0.5 -0.75 -28.5 -42.7

span BL5 85.4 -2.5 -0.75 -213.5 -64.0

BL6 281.2 -4.5 -0.75 -1265.3 -210.9

Total 509.8 -1274.6 -382.3

BR1 13.5 4.5 0.75 60.8 10.1

BR2 31.3 3.5 0.75 109.7 23.5

BR3 41.5 1.5 0.75 62.2 31.1

Right BR4 56.9 -0.5 0.75 -28.5 42.7

span BR5 85.4 -2.5 0.75 -213.5 64.0

BR6 281.2 -4.5 0.75 -1265.3 210.9

Total 509.8 -1274.6 382.3

Total=Left+Righ 1020 -2549 0

3.2.1.4 Reactions due to LL

 As per Table 2 of IRC: 6 -2010, the superstructure has 2 lanes for movement of live lo

for the given width of carriageway. Following three cased of live loads has been consi

for the design of substructure A Maximum Reaction & Transverse moment case

Both spans loaded fully with live loads with maximum eccentricity (i.e. LL pla

nearest to edge) such that both the vertical reaction and transverse moment

EJ pier is maximum.

B Maximum Longitudinal Moment case

Only one span loaded with live load fully such that the longitudinal moment a

Page 5: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 5/91

EJ pier is maximum

Case 1- Class 70R(Wheeled) - 1 lane placed at edge on the inner side of carriag

5.150

0.965

Inner edge

Transverse Eccentricity 'e' = 5.150-0.965 4.185 m

Case 2- Class 70R(Wheeled) -2L (one at inner edge and the other at outer edge)

5.150

0.965

3.095

Distance of CL of pier from e 5.150 m

Distance of Resultant from e =(1000×0.965+1000×(10.3-3.095))/(1000+100

= 4.085

Transverse Eccentricity 'e' = -1.065 m

Case 3- Class 70R(Tracked) - 1 lane placed at edge on the inner side of carriag

5.150

1.025

Inner edge

For each of the above cases, following live loads locations along the transverse dire

been considered.

eOrigin

1000kN

C.L of Pier/ C.L of deck

Origin

1000kN

C.L of Pier/ C.L of deck

1000kN

eOrigin

700kN

C.L of Pier/ C.L of deck

Page 6: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 6/91

Transverse Eccentricity 'e' = 5.150-1.025 4.125 m

Case 4- Class 70R(tracked) -2L (one at inner edge and the other at outer edge)

5.150

0.965

3.155

Distance of CL of pier from e 5.150 m

Distance of Resultant from e =(700×0.965+700×(10.3-3.155))/(700+700)

= 4.055

Transverse Eccentricity 'e' = -1.095 m

Case 5- Class A - 1 lane placed at edge on the inner side of carriageway

5.150

1.800

Inner edge

Transverse Eccentricity 'e' = 5.150-1.800 3.350 m

Case 6- Class A - 2 lanes placed at edge on the inner side of carriageway

5.150

0.9 3.5

Origin

C.L of Pier/ C.L of deck

Origin

700kN

C.L of Pier/ C.L of deck

700kN

eOrigin

554kN

C.L of Pier/ C.L of deck

554kN 554kN

554kN

Page 7: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 7/91

Distance of CL of pier from edge = 5.150 m

Distance of Resultant from edge = (554×0.900+554×(0.900+3.500))/(554+554)

= 2.650 m

Transverse Eccentricity 'e' = 2.500 m =5.150-2.650

Case 7- Class A - 3 lanes placed at edge on the inner side of carriageway

5.150

0.9 1.8

Distance of CL of pier from edge = 5.150 m

Distance of Resultant from edge = (554×0.9+(554×(0.9+3.5))+(554×(10.3-1.8)))/(

= 4.600 m

Transverse Eccentricity 'e' = 0.550 m =5.150-4.600

Case 8- 70R Tracked + Class A - 1 lane

5.150

1.025 1.8

3.5

e

Origin

e

C.L of Pier/ C.L of deck

554kN 554kN 554kN

Origin

e

C.L of Pier/ C.L of deck

1000kN 554kN

Page 8: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 8/91

Distance of CL of pier from edge = 5.150 mDistance of Resultant from edge = =(700×1.025+554×(10.3-1.8))/(700+554)

= 4.327 m

Transverse Eccentricity 'e' = 0.823 m =5.150-4.327

Case 9- 70R Wheeled + Class A - 1 lane

5.150

0.965 1.8

Distance of CL of pier from edge = 5.150 m

Distance of Resultant from edge = =(1000×0.965+(554×(10.3-1.8)))/(1000+554)

= 3.651 m

Transverse Eccentricity 'e' = 1.499 m =5.150-3.651

3.2.1.4.1 Maximum Reaction & Transverse moment case

ACase 1 Class 70R(Wheeled) - 1 lane placed at edge on the inner side of carriag

Bearing Vertical Trans Longitu Trans Longitumarked Reaction Eccen Eccen Moment Moment

BL1 195.8 4.5 -0.75 881.2 -146.9

BL2 82.5 3.5 -0.75 288.8 -61.9

BL3 46.4 1.5 -0.75 69.6 -34.8

Left BL4 -9.5 -0.5 -0.75 4.8 7.1

For this case, a grillage beam model for both spans with live loads moving along the b

been analyzed using StaadPro software to get the maximum combined reaction on th

Results are tabulated below. Transverse eccentricity of the applied load at each b

taken that has been used to calculate the transverse moment on the pier.

Origin

e

C.L of Pier/ C.L of deck

1000kN 554kN

Page 9: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 9/91

span BL5 2.3 -2.5 -0.75 -5.7 -1.7

BL6 -3.4 -4.5 -0.75 15.4 2.6

Total 314 1254.0 -235.6

BR1 294.4 4.5 0.75 1324.77 220.8

BR2 190.6 3.5 0.75 667.21 143.0BR3 92.7 1.5 0.75 139.10 69.5

Right BR4 -3.1 -0.5 0.75 1.56 -2.3

span BR5 -2.4 -2.5 0.75 6.12 -1.8

BR6 -6.7 -4.5 0.75 30.09 -5.0

Total 566 2168.8 424.13

Total=Left+Righ 880 3423 189

ACase 2 Class 70R(Wheeled) -2L (one at inner edge and the other at outer edge)

Bearing Vertical Trans Longitu Trans Longitu

marked Reaction Eccen Eccen Moment Moment

BL1 -2.9 4.5 -0.75 -13.0 2.2

BL2 3.4 3.5 -0.75 11.9 -2.6

BL3 -11.9 1.5 -0.75 -17.9 8.9

left BL4 84.2 -0.5 -0.75 -42.1 -63.1

span BL5 193.8 -2.5 -0.75 -484.6 -145.4

BL6 54.7 -4.5 -0.75 -246.0 -41.0

Total 321 -792 -241

BR1 -9.3 4.5 0.75 -41.9 -7.0

BR2 3.7 3.5 0.75 12.9 2.8BR3 13.4 1.5 0.75 20.1 10.0

right BR4 151.2 -0.5 0.75 -75.6 113.4

span BR5 299.9 -2.5 0.75 -749.6 224.9

BR6 99.5 -4.5 0.75 -447.9 74.6

Total 558 -1282 419

Total=Left+Righ 880 -2074 178

Total effect of two lanes of 70R.

Total (70R+70R)L 635 462 -477

Total (70R+70R)R 1124 887 843

A Case3 Class A - 1 lane placed at edge on the outer side of carriageway

Bearing Vertical Trans Longitu Trans Longitu

marked Reaction Eccen Eccen Moment Moment

BL1 141.0 4.500 -0.75 634.7 -105.8

Page 10: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 10/91

BL2 173.4 3.500 -0.75 607.0 -130.1

BL3 164.6 1.500 -0.75 246.9 -123.5

left BL4 122.5 -0.500 -0.75 -61.2 -91.8

span BL5 44.9 -2.500 -0.75 -112.3 -33.7

BL6 -6.4 -4.500 -0.75 28.6 4.8

Total 640 1343.6 -480.1

BR1 -17.6 4.500 0.75 -79.1 -13.2

BR2 -91.3 3.500 0.75 -319.6 -68.5

BR3 -38.8 1.500 0.75 -58.2 -29.1

right BR4 -24.9 -0.500 0.75 12.5 -18.7

span BR5 -30.2 -2.500 0.75 75.5 -22.6

BR6 1.8 -4.500 0.75 -7.9 1.3

Total -201.0 -376.9 -150.8

Total=Left+Righ 439 967 -631

A Case4 Class A - 2 lane

Bearing Vertical Trans Longitu Trans Longitu

marked Reaction Eccen Eccen Moment Moment

BL1 282.1 4.500 -0.75 1269.4 -211.6

BL2 346.9 3.500 -0.75 1214.0 -260.2

BL3 329.2 1.500 -0.75 493.8 -246.9

left BL4 244.9 -0.500 -0.75 -122.5 -183.7

span BL5 89.9 -2.500 -0.75 -224.7 -67.4

BL6 -12.7 -4.500 -0.75 57.2 9.5

Total 1280 2687.3 -960.2

BR1 -35.2 4.500 0.75 -158.3 -26.4

BR2 -182.6 3.500 0.75 -639.2 -137.0

BR3 -77.5 1.500 0.75 -116.3 -58.2

right BR4 -49.9 -0.500 0.75 24.9 -37.4

span BR5 -60.4 -2.500 0.75 150.9 -45.3

BR6 3.5 -4.500 0.75 -15.8 2.6

Total -402.1 -753.7 -301.6

Total=Left+Righ 878 1934 -1262

A Case5 Class A - 3 lane

Bearing Vertical Trans Longitu Trans Longitu

marked Reaction Eccen Eccen Moment Moment

BL1 268.7 4.500 -0.75 1209.1 -201.5

BL2 339.2 3.500 -0.75 1187.0 -254.4

Page 11: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 11/91

BL3 355.2 1.500 -0.75 532.9 -266.4

left BL4 361.5 -0.500 -0.75 -180.7 -271.1

span BL5 378.0 -2.500 -0.75 -945.0 -283.5

BL6 167.6 -4.500 -0.75 -754.2 -125.7

Total 1870 1049.1 -1402.6

BR1 -29.1 4.500 0.75 -130.9 -21.8

BR2 -175.1 3.500 0.75 -612.8 -131.3

BR3 -97.0 1.500 0.75 -145.5 -72.7

right BR4 -118.4 -0.500 0.75 59.2 -88.8

span BR5 -113.1 -2.500 0.75 282.7 -84.8

BR6 -20.3 -4.500 0.75 91.3 -15.2

Total -552.9 -456.0 -414.7

Total=Left+Righ 1317 593 -1817

A Case6 Class 70R(Tracked) - 1 lane placed at edge on the inner side of carriag

Bearing Vertical Trans Longitu Trans Longitu

marked Reaction Eccen Eccen Moment Moment

BL1 208.7 4.500 -0.75 939.3 -156.6

BL2 88.8 3.500 -0.75 310.7 -66.6

BL3 72.4 1.500 -0.75 108.7 -54.3

Left BL4 -15.2 -0.500 -0.75 7.6 11.4

span BL5 3.4 -2.500 -0.75 -8.6 -2.6

BL6 -1.2 -4.500 -0.75 5.6 0.9

Total 357 1363.3 -267.7

BR1 194.6 4.500 0.75 875.75 146.0

BR2 79.7 3.500 0.75 278.81 59.7

BR3 67.4 1.500 0.75 101.12 50.6

Right BR4 -14.6 -0.500 0.75 7.31 -11.0

span BR5 3.5 -2.500 0.75 -8.65 2.6

BR6 -1.2 -4.500 0.75 5.18 -0.9

Total 329 1259.5 247.03

Total=Left+Righ 686 2623 -21

A Case7 Class 70R(Tracked) -2L (one at inner edge and the other at outer edge)

Bearing Vertical Trans Longitu Trans Longitu

marked Reaction Eccen Eccen Moment Moment

BL1 -2.3 4.500 -0.75 -10.4 1.7

BL2 4.9 3.500 -0.75 17.0 -3.6

BL3 -13.4 1.500 -0.75 -20.1 10.1

Page 12: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 12/91

left BL4 105.7 -0.500 -0.75 -52.9 -79.3

span BL5 214.5 -2.500 -0.75 -536.2 -160.9

BL6 47.3 -4.500 -0.75 -212.6 -35.4

Total 357 -815 -267

BR1 -2.1 4.500 0.75 -9.5 -1.6BR2 4.8 3.500 0.75 16.7 3.6

BR3 -13.4 1.500 0.75 -20.1 -10.0

right BR4 97.6 -0.500 0.75 -48.8 73.2

span BR5 198.9 -2.500 0.75 -497.2 149.2

BR6 44.1 -4.500 0.75 -198.4 33.1

Total 330 -757 247

Total=Left+Righ 686 -1572 -20

Total effect of two lanes of 70R.

Total (70R+70R) 714 548 -535

Total (70R+70R) 659 502 494

 A Case8-Class 70R(Tracked)+ Class A - 1L

Total effect

(70RT+Cl A) 1L= 997 2707 -748

(70RT+Cl A) 1L= 128 883 96

 A Case9-Class 70R(Wheeled)+ Class A - 1L

Total effect

(70RW+Cl A) 1L 455 2598 -716

(70RW+Cl A) 1L 364 1792 273

3.2.1.4.2 Maximum Longitudinal Moment case

For this case, grillage model of span with live loads moving along a specified

eccentricities has been analyzed using StaadPro software to get the maximum c

reaction on the set of bearings supporting the above span to maximize longitudinal m

the EJ pier. The other span is not loaded at all so that bearing reactions for that sp

zero. Results are tabulated below.

Page 13: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 13/91

BCase 1 Class 70R(Wheeled) - 1 lane placed at edge on the inner side of carriag

Bearing Vertical Trans Longitu Trans Longitu

marked Reaction Eccen Eccen Moment Moment

BL1 0 4.5 -0.75 0 0

BL2 0 3.5 -0.75 0 0BL3 0 1.5 -0.75 0 0

BL4 0 -0.5 -0.75 0 0

BL5 0 -2.5 -0.75 0 0

BL6 0 -4.5 -0.75 0 0

Total 0 0.00 0

BR1 422.6 4.5 0.75 1901.6 316.9

BR2 252.9 3.5 0.75 885.1 189.7

BR3 127.6 1.5 0.75 191.4 95.7

BR4 -1.4 -0.5 0.75 0.7 -1.0

BR5 -2.6 -2.5 0.75 6.5 -2.0

BR6 -14.6 -4.5 0.75 65.9 -11.0

Total 784.4 3051.2 588.3

Total=Left+Righ 784 3051 588

BCase 2 Class 70R(Wheeled) -2L (one at inner edge and the other at outer edge)

Bearing Vertical Trans Longitu Trans Longitu

marked Reaction Eccen Eccen Moment Moment

BL1 0 4.5 -0.75 0 0

BL2 0 3.5 -0.75 0 0

BL3 0 1.5 -0.75 0 0

BL4 0 -0.5 -0.75 0 0

BL5 0 -2.5 -0.75 0 0

BL6 0 -4.5 -0.75 0 0

Total 0 0 0

BR1 -16.6 4.5 0.75 -74.5 -12.4

BR2 7.5 3.5 0.75 26.1 5.6

BR3 21.2 1.5 0.75 31.9 15.9

BR4 209.3 -0.5 0.75 -104.7 157.0BR5 403.0 -2.5 0.75 -1007.5 302.2

BR6 159.9 -4.5 0.75 -719.7 120.0

Total 784.4 -1848.4 588.3

Total = Left + Ri 784 -1848 588

   R   i  g   h   t   S  p  a  n

   R   i  g   h   t

   S  p  a  n

   L  e   f   t   S  p  a  n

   L  e   f   t   S  p  a  n

Page 14: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 14/91

Total effect of two lanes of 70R.

Total (70R+70R)L 0 0 0

Total (70R+70R)R 1569 1203 1177

BCase 3 Class A - 1 lanes placed at edge on the inner side of carriageway

Bearing Vertical Trans Longitu Trans Longitu

marked Reaction Eccen Eccen Moment Moment

BL1 0 4.5 -0.75 0 0

BL2 0 3.5 -0.75 0 0

BL3 0 1.5 -0.75 0 0

BL4 0 -0.5 -0.75 0 0

BL5 0 -2.5 -0.75 0 0

BL6 0 -4.5 -0.75 0 0

Total 0 0 0

BR1 -6.6 4.5 -0.75 -29.7 5.0

BR2 0.2 3.5 -0.75 0.5 -0.1

BR3 7.0 1.5 -0.75 10.5 -5.3

BR4 38.5 -0.5 -0.75 -19.2 -28.9

BR5 205.5 -2.5 -0.75 -513.9 -154.2

BR6 134.6 -4.5 -0.75 -605.7 -100.9

Total 379.2 -1157.4 -284.4

Total = Left + Ri 379 -1157 -284

BCase 4 Class A - 2 lanes placed at edge on the inner side of carriageway

Bearing Vertical Trans Longitu Trans Longitu

marked Reaction Eccen Eccen Moment Moment

BL1 0 4.5 -0.75 0 0

BL2 0 3.5 -0.75 0 0

BL3 0 1.5 -0.75 0 0

BL4 0 -0.5 -0.75 0 0

BL5 0 -2.5 -0.75 0 0

BL6 0 -4.5 -0.75 0 0

Total 0 0 0

BR1 165.4 4.5 0.75 744.3 124.1

BR2 136.1 3.5 0.75 476.4 102.1

BR3 166.7 1.5 0.75 250.0 125.0

BR4 125.9 -0.5 0.75 -63.0 94.4

BR5 36.2 -2.5 0.75 -90.6 27.2

   L  e   f   t   S  p  a  n

   R   i  g   h   t   S  p  a  n

   L  e   f   t   S  p  a  n

   R   i  g   h   t   S  p  a  n

Page 15: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 15/91

BR6 -10.5 -4.5 0.75 47.1 -7.8

Total 619.9 1364.3 464.9

Total = Left + Ri 620 1364 465

BCase 5 Class A - 3 lanes placed at edge on the inner side of carriageway

Bearing Vertical Trans Longitu Trans Longitu

marked Reaction Eccen Eccen Moment Moment

BL1 0.0 4.5 0.75 0 0

BL2 0.0 3.5 0.75 0 0

BL3 0.0 1.5 0.75 0 0

BL4 0.0 -0.5 0.75 0 0

BL5 0.0 -2.5 0.75 0 0

BL6 0.0 -4.5 0.75 0 0

Total 0 0 0

BR1 156.0 4.5 0.75 701.9 117.0

BR2 135.7 3.5 0.75 474.9 101.8

BR3 179.1 1.5 0.75 268.7 134.3

BR4 172.0 -0.5 0.75 -86.0 129.0

BR5 175.1 -2.5 0.75 -437.7 131.3

BR6 111.9 -4.5 0.75 -503.5 83.9

Total 929.8 418.3 697.3

Total = Left + Ri 930 418 697

BCase 6 Class 70R(Tracked) - 1 lane placed at edge on the inner side of carriag

Bearing Vertical Trans Longitu Trans Longitu

marked Reaction Eccen Eccen Moment Moment

BL1 0 4.5 0.75 0 0

BL2 0 3.5 0.75 0 0

BL3 0 1.5 0.75 0 0

BL4 0 -0.5 0.75 0 0

BL5 0 -2.5 0.75 0 0

BL6 0 -4.5 0.75 0 0

Total 0 0.00 0

BR1 359.3 4.5 0.75 1616.8 269.5

BR2 174.4 3.5 0.75 610.4 130.8

BR3 121.3 1.5 0.75 181.9 91.0

BR4 -16.5 -0.5 0.75 8.3 -12.4

BR5 2.5 -2.5 0.75 -6.3 1.9

 

   L  e   f   t   S  p  a  n

   R   i  g   h   t   S  p  a  n

   L  e   f   t   S  p  a  n

   R   i  g   h   t   S  p  a  n

Page 16: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 16/91

BR6 -4.9 -4.5 0.75 22.1 -3.7

Total 636.1 2433.1 477.0

Total=Left+Righ 636 2433 477

BCase 7 Class 70R(Tracked) -2L (one at inner edge and the other at outer edge)

Bearing Vertical Trans Longitu Trans Longitu

marked Reaction Eccen Eccen Moment Moment

BL1 0 4.5 0.75 0 0

BL2 0 3.5 0.75 0 0

BL3 0 1.5 0.75 0 0

BL4 0 -0.5 0.75 0 0

BL5 0 -2.5 0.75 0 0

BL6 0 -4.5 0.75 0 0

Total 0 0 0

BR1 -6.3 4.5 0.75 -28.3 -4.7

BR2 5.8 3.5 0.75 20.1 4.3

BR3 -8.4 1.5 0.75 -12.7 -6.3

BR4 188.0 -0.5 0.75 -94.0 141.0

BR5 357.0 -2.5 0.75 -892.5 267.7

BR6 100.1 -4.5 0.75 -450.3 75.0

Total 636.0 -1457.5 477.0

Total = Left + Ri 636 -1458 477

Total effect of two lanes of 70R.

Total (70R+70R)L 0 0 0

Total (70R+70R)R 1272 975 954

 A Case8-Class 70R(Tracked)+ Class A - 1L

Total effect

(70RT+Cl A) 1L= 0 0 0

(70RT+Cl A) 1L= 1015 1276 193

 A Case9-Class 70R(Wheeled)+ Class A - 1L

Total effect

(70RW+Cl A) 1L 0 0 0(70RW+Cl A) 1L 1164 1894 304

3.2.1.5 Summury of Reaction

Total

   R   i  g   h   t   S  p  a  n

ReactionLeft Span Reaction from Right Span

 

   L  e   f   t   S  p  a  n

Page 17: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 17/91

LL Case DL SIDL LL DL SIDL LL DL SIDL

 ACase 1- 314.099 566

 ACase 2- 403 640

Total (70R+70 640 -201

BCase 1- 0 784

BCase 2- 0 868

BCase 4- 0 620

Bearing Reaction on EJ Pier when LL moves from one span to another 

Criteria 

Total 

Total 

314 566 880 403 640 1044 640 -201

0 784 784 0 868 868 0 620

Maximum Reaction & Transverse moment case

Bearing Reaction (T)

Span Typ 0 

Class 70 314 566

70R+FP 403 640

Class A 640 -201

 Bearing Reaction (T)

- ACase 1- 314 566 4.185 3681

 ACase 2- 403 640 -1.065 -1111

70R+70R 640 -201 2.500 1098

Maximum Longitudinal Moment case

ax eac on

transeverse

moment case

2702 1020

 

1351 510

-

 0

510 1351

-Description of Live L

Due to Class

Max Longmoment case

Reactio

nDue to Class 70R only

Due to Class 70R +FPLL

on footpath side

Page 18: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 18/91

Span Typ 0 

Class 70 0 784

70R+FP 0 868

Class A 0 620

 Bearing Reaction (T)

-BCase 1- 0 784 4.185 3283

BCase 2- 0 868 -1.065 -924

BCase 4- 0 620 2.500 1550

eaction Reaction Pier Base 3.312

510 510 Curtailment 0.000

0 0 Piercap bottom 0.000

1351 1351

Column Dimension

CG of Girder from 0.615 0.615 Traffic Direction Transver  

1.800 1.800

LL Case 

eT (m) Description of Li

 A1 I I #N/A #N/A #N/A #N/A

 A2 I I #N/A #N/A #N/A #N/A

 A3 I I #N/A #N/A #N/A #N/A

B1 I I #N/A #N/A #N/A #N/A

B2 I I #N/A #N/A #N/A #N/A

B3 I I #N/A #N/A #N/A #N/A

SIDL + diphragm

-

Description of Live L

ISPAN TYPE

-

I

22.25m span22.25m span

0

Crash Barrier 

Left Span Right Spans ance rom o

Pier cap to design

m

MAXIMUM

REACTION CASE

: LOAD CASES

TO BE

MAXIMUM

LONGITUDINAL

MOMENT CASE :

LOAD CASES TO

Dead Load

DL & SIDL

Page 19: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 19/91

3.2.1.6 Horizontal Forces

However, for the transverse direction, horizontal loads from both spans have to be resi

by the same pier 

3.2.1.6.1 Bearing Friction (For elestomeric bearing)

m = coefficient of friction = 0 (Cl. 211.5.1 of IRC : 6 - 2010)

acting along transverse direction at hieght of 0.350 m above level of pier cap top

Considering LL reactions from the Right span only

LL Case eactio Calculation Friction

 All cases 565.51 = 565.506×0 = 0

Shear Rating = GA/h N/mm Ref. bearing design

=1×82644/55

1502.6 N/mm

Max. Change in Temperature = 200Celcious

Coefficient of thermal expansion = /0Celcious

Coefficient of Shrinkage =

Total strain due to temperature and shrinkage= 20×1.17E-05+2.00E-04 =

 As per Cl. 916.3.4.(2) of IRC 83(part II), strain due to shrinkage, temp etc ca

Translation along long. Direction =20.75 x 1000 x 5.E-04 =5.188

mmForce due to translation of one girder =5.188×1502.6/1000= 7.8 kN

Force due to translation of six girders 5.188×1502.6/1000x6= 46.8 N

Since the span on both side of the pier having same length and same no.

Force due to translation of six girders on the pier cap from one side =

5.188×1502.6/1000x6=" 46.8 N

Therefore force due to translation of girders on pier (46.769-46.8)/1000=" 0.0 KN

Ecc. = 0.35 m

3.2.1.6.2 Braking Forces

 As per Cl. 211.2 of IRC: 6 -2010, following value so f braking force have been considered.

Considering live loads from the Left Span only

LL Case Description of traffic load Calculation

Case 1 70R Wheeled - 1 lane =0.2×1000

Case 2 70R Wheeled - 2 lane =0.2×1000+0.05×1000

Case 3

Case 4 =0.2×554+2×0.05×554

Thus the EJ pier will have to resist all braking and seismic longitudinal forces due to lo

longer span while only the friction forces due to loads on the shorter span will neresited by the same.

Bearing Placed at top of the pier cap will be resisting horizontal forces. With r  

movement along traffic/longitudinal direction, it is assumed that the EJ pier 

elastomeric bearing.

Class A - 1 Lane =0.2×554+0.05×554

1.17E-05

2.00E-04

4.340E-04

5.00E-04

Class A - 2 Lane

Page 20: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 20/91

Case 5 =0.2×554+3×0.05×554

Case 6 70R Tracked - 1 lane

Case 7 70R Tracked - 2 lane

Case 8 70R Tracked + Class A - 1 Lane

Case 9 70R Wheeled+ Class A - 1 Lane

Braking force act along longitudinal direction at height 1.2 m above level of carriagewa

i.e. 1.2+(9.309-7.744) = 2.765 m above level of pier cap top

3.2.1.6.3 Centrifugal Forces

Centrifugal force, WV2/127R from CL. 212.2 of IRC: 6 -2010

V = design speed = 100 kmph

W = Reaction due to Live Load

R = Radius of Horizontal Curvature = 1000000 m

Centrifugal forces are not considered as the values are very small

3.2.1.6.4 Seismic Forces

(Table 1 of IRC : 6 - 2010)

Load factors for Live load 0.2 Bearing Friction 1

Water Current For 1 Braking Forces 0.5

(From Table 1 of IRC 6 : 2010)

 Allowable increase in stresses of concrete & steel = 50 % for seismic case

Horizontal seismic force due to LL acts at a height of 1.20 m above top of road

The horizontal seismic force is assumed to be equally distributed to 1 pier 

For seismic load combination

Resultant Transverse = 100 % Trans. 30 % Long. 30 % Vert.

Resultant Longitudinal = 30 % Trans. 100 % Long. 30 % Vert.

Resultant Vertical = 30 % Trans. 30 % Long. 100 % Vert.

3.2.1.6.5 Water current forces (HFL case)

The intensity due to water current in direction parallel to the flow is calculated as belo

Water pressure intensity, P = 52KV2

HFL = 7.350

(Ref. GA

Maximum Mean velocity of water, v = 3.000

Max velocity of water, V =3.000×2^0.5 = 4.240

(refer IRC 6:2010 - 210.3)

Max scour depth = 13.660

Bed level = 1.632

=0.2×700

Since the alignment moves along the river and crosses it at various angles the directi

is assumed to act parallel to the alignment, which is the most critical case.

=0.2×700+0.05×554

=0.2×1000+0.05×554

Class A - 3 Lane

=0.2×700+0.05×700

Page 21: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 21/91

Pile cap top level = 3.132

Pile cap bottom level = 1.632

Max scour level =7.350-13.660 = -6.31

Scour depth below bed leve =1.632--6.31 = 7.94

Scour depth below pile cap =1.632--6.31 = 7.94

Estimation of Velocitiy of Water at Various depths

Velocity at HFL = 4.24

Velocity at pile cap top =4.24/(7.350--6.31)×(3.132--6.31) = 2.93

Velocity at pile cap bottom =4.24/(7.350--6.31)×(1.632--6.31) = 2.47

K in case of circular piers (refer IRC:6-2010 Cl. 210.2) = 0.660

Estimation of Water Pressure Intensities at Various depths

 At HFL =52×0.660×4.24^2/100 = 6.170 At pile cap top level =52×0.660×2.93^2/100 = 2.948

 At pile cap bottom level =52×0.660×2.47^2/100 = 2.086

Water Pressure Profile

Load CG Lever ar 

RL above pil

HFL 7.350 6.170

Pier 34.6 5.489 2.357

Pilecap Top 3.132 2.948

Pile cap 16.2 2.425 -0.707

Pilecap Bottom 1.632 2.086

Max scour level -6.310 0

ForcePressure

Structur 

al

Compon

LocationReduced

Level

Page 22: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 22/91

7.677

sions &

re in m

herwise

ified

Page 23: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 23/91

0.5

.

0.800

Page 24: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 24/91

 

alue has

Page 25: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 25/91

ds

ered

ed

at the

the

Page 26: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 26/91

way

)

way

tion has

Page 27: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 27/91

Page 28: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 28/91

×554)

Page 29: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 29/91

way

eam has

EJ pier.

earing is

Page 30: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 30/91

Page 31: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 31/91

Page 32: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 32/91

way

Page 33: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 33/91

ath with

ombined

ment on

n are all

Page 34: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 34/91

way

Page 35: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 35/91

Page 36: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 36/91

way

Page 37: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 37/91

Page 38: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 38/91

LL

880

1044

439

784

868620

Total

439

620

 

ads

only

Page 39: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 39/91

Page 40: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 40/91

isted

Braking

200.00

250.00

138.50

166.20

ads from

ed to be

spect to

ill have

Page 41: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 41/91

193.90

140.00

175.00

167.70

227.70

y

.

m

)

m/sec

m/sec

m from H

m

n of flow

Page 42: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 42/91

m

m

m

m

m

m/sec

m/sec

m/sec

kN/m

2

kN/m2

kN/m2

 

e cap

Page 43: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 43/91

Annexure - C Calculation for Horizontal Seismic Coefficient for EJ Pier:

C.1 Calculation of stiffness for pile foundation

Diameter of pile , dpl = 1 m

Number of pile per pier location, n = 4 Nos.Length of pile = 17 m

Scour depth below bottom of pile cap = 7.94 m

Cross sectional area of piles, Apl =3.14×1^2/4 = 0.7850 m2

Moment of inertia of one pile (Ipl) =3.14×1^4/64 = 0.0491 m4

Length of fixity (refer calculation given below) = 9.282 m

Length of pile to be considered for horizontal action, LplH =9.282+7.9 = 17.22 m

Length of pile to be considered for vertical action, LplV = 17.00 m

Grade of concrete in pile = M35

Modulus of elasticity of concrete, Ec (From Table 9 of IRC: 21 - 2000) = 31.5 kN/mm2

Horizontal Stiffness

Stiffness of one pile KplH = 12EIpl/Lp =(12×32×10^6×0.0491/17.22^3) = 3629 kN/m

Stiffness of pile group = n x KplH =4×3629 = 14518 kN/m

VerticalStiffness

Stiffness of one pile KplV = EApl/LplV =31.5×10^6×0.7850/17.00 = 1454559 kN/m

Stiffness of pile group = n x KplV =4×1454558.8 = 5818235 kN/m

C.2 Calculation of stiffness for Pier 

Pier diameter, dpr  = 1.8 m

Cross sectional area of pier, Apr  =3.14×1.8^2/4 = 2.5434 m2

Moment of inertia of pier (Ipr ) =3.14×1.8^4/64 = 0.5150 m4

Grade of concrete in pier = M45

Modulus of elasticity of concrete, Ec (From Table 9 of IRC: 6 - 2000) = 34 kN/mm2

Height of pier above the pile cap up to pier cap top, Lpr  = 4.612 m

Horizontal Stiffness

Horizontal stiffness KprH = (3EIpr /Lpr =3×34×10^6×0.515/4.612^3 = 527640 kN/m

Page 44: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 44/91

Vertical Stiffness

Stiffness of one pile KprV = EApr /Lpr  =34×10^6×2.5434/4.612 = 18474393 kN/m

Value of Stiffness (KN/m)

Transverse DirectionLongitudinal Direction

Vertical Direction

C.3 Calculation of Equivalent stiffness

Equivalent stiffness K = 1/(1/k1+ 1/k2)

Equivalent stiffness along horizontal direction =1/(1/14518+1/527640) = 14129 kN/m

Equivalent stiffness along vertical direction =1/(1/5818235+1/18474393) = 4424732 kN/m

C.4 Calculation of Seismic Mass

C.4.1 Along Transverse Direction

Total DL (Girder+Deck+Diaph.) = 270.2 T

Total SIDL (WC+CB+Median) = 102.0 T

20% of total LL reaction without impact =20%×439.0755/10 = 8.8 T

(minm live load reaction considered)

Seismic Mass along transverse direction =270.2+102.0+8.8 = 380.9 T

C.4.2 Along Longitudinal Direction

Total DL (Girder+Deck+Diaph.) = 135.1 T

Total SIDL (WC+CB+Median) = 51.0 T

No Live loa of total LL reaction without impact

Seismic Mass along longitudinal direction =135.1+51.0 = 186.1 T

For this case, loads from Left Span only are considered as the pier will have to resist longitudinal forces

from Left Span only.

For, this case, loads from both the spans are considered as the pier will have to resist transverse force

from both spans.

Foundation Pier  

14518 52764014518 527640

5818235 18474393

Page 45: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 45/91

C.4.3 Along Vertical Direction

Total DL (Girder+Deck+Diaph.) = 270.2 TTotal SIDL (WC+CB+Median) = 102.0 T

20% of total LL reaction without impact =20%×0/10 = 8.8 T

(minm live load reaction considered)

Seismic Mass along vertical direction direction =270.2+102.0+8.8 = 380.9 T

C.5 Calculation of Seismic Coefficients

From Cl. 219.5.1 of IRC: 6 - 2010,

Seismic Zone : III Soil Type : RockyZone factor, Z = 0.16

Importance Factor, I = 1.5 Response reduction Factor = 1.5

(refer Table 7 of IRC: 6 -2010) (refer Table 8 of IRC: 6 -2010)(for elestomeric bearing)

C.5.1 Along Transverse Direction

Total mass (DL + SIDL + LL) = 380.9 T

Equivalent stiffness = 14129 KN/m

Natural time period, TT = =2×3.14×(380.9/14129)^0.5 = 1.031 sec

Since 1.031 sec > 0.4 sec

Sa/g = 1 / 1.031 = 0.97

0.16

2

1.5

1.5

= 0.078

C.5.2 Along Longitudinal Direction

Total mass (DL + SIDL + LL) = 186.1 T

Equivalent stiffness = 14129 KN/m

Natural time period, TT = =2×3.14×(186.1/14129)^0.5 = 0.721 sec

Since 0.721 sec > 0.4 sec

Sa/g = 1 / 0.721 = 1.39

For, this case, loads from both the spans are considered as the pier will have to resist transverse force

from both spans.

Transvers Seismic Coefficient

x

 AhT =

0.97

Page 46: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 46/91

0.16

2

1.5

1.5

= 0.112

C.5.3 Along Vertical Direction

Total mass (DL + SIDL + LL) = 380.9 T

Equivalent stiffness = 4424732 KN/m

Natural time period, TT = =2×3.14×(380.9/4424732)^0.5 = 0.058 sec

Since 0.058 sec < 0.4 sec

Sa/g = 2.50

0.16

2

1.5

1.5= 0.200

Annexure - D Calculation of depth of fixity and maximum moment in pile

Pile Dia = Diameter of the pile = 1.000 m

R = (E * I / K2)^0.25

where

E = Youngs Modulus of the concrete in kg/cm2

= 315000 kg/cm2

I = Moment of Inertia of the pile cross section in c = 4908739 cm4

K2 = Modulus of subgrade reaction as per Table 1 = 48.8 kg/cm2

R = (315000 * 4908739 / 48.8) ̂ 0.25 ) = 421.9 cm

L1 = Free length of pile above ground level = 794.2 cm

= 7.942 m

L1 /R = 794.2 / 421.9 = 1.9

Lf / R = (fig 2 - for fixed headed piles in sands ) = 2.2

Lf  = 2.2 * 421.9 = 928.2 cm

= 9.282 m

 

2.50

=

x

Vertical Seismic Coefficient  AhT

x 1.39

Longitudinal Seismic Coefficient  AhT =

Page 47: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 47/91

3.2.2 Load Combination For Pier P3

Total height from founding level to the top of Road level = 7.677 m.

Pier height for design = 3.312 m. ( Existing G.L to proposed Road level )

3.2.2.1 DEAD LOADS

From Superstructure Left span 22.25m span Right span22.25m span

Reaction due to DL 135.1 T 135.1 T

Reaction due to SIDL Height of crash barrier = 1 m.

Thickness of Wearing coat = 65 mm.

51.0 T 51.0 T

Total Dead load due to DL+SIDL = 135.1 + 135.1 + 51.0 + 51.0 = 373 T

Longitudinal moment due to Left span 22.25m span Right span 22.25m span

DL

SIDL

Transverse moment due to

DL

SIDL

3.2.2.2 LIVE LOAD EFFECT

Maximum Reaction & Transverse moment case

I) LL CASE A1

LL Reaction due to LL CASE A1 = 31 + 57 = 88 TL.L eccentricity in transverse direction = 4.185 m.

Trans. B.M. due to LL CASE A1 = = 343 T-m

Long. B.M. due to LL CASE A1 = = 19 T-m

II) LL CASE A2

LL Reaction due to LL CASE A2 = 40 + 64 = 105 T

L.L eccentricity in transverse direction = -1.065 m.

Trans. B.M. due to LL CASE A2 = = 135 t-m

Long. B.M. due to LL CASE A2 = = 37 T-m

III) LL CASE A3

LL Reaction due to LL CASE A3 = 64 + -20 = 44 T

L.L eccentric ity in transverse direction = 4.125 m.Trans. B.M due to LL CASE A3 = = 97 T-m

Long. B.M. due to LL CASE A3 = = -64 T-m

IV) LL CASE A4

LL Reaction due to LL CASE A4 = 128 + -40 = 88 T

L.L eccentricity in transverse direction = -1.095 m.

Trans. B.M. due to LL CASE A4 = = 193 T-m

Long. B.M. due to LL CASE A4 = = -126 T-m

V) LL CASE A5

LL Reaction due to LL CASE A5 = 187 + -55 = 132 T

L.L eccentricity in transverse direction = 3.350 m.

135.1

Reaction

Total

Left span 22.25m span Right span 22.25m span

( T-m ) ( T-m )

-101.3 101.3

( T - m )

-228

Moment

13.3 26.5

TOTAL =

38.2

( T )0.0

51.0

( T-m ) ( T-m )

-38.2 0.0

ML

( T-m )

MLReaction

( T )

51.0

ML

135.1

-127.5 -254.9-127.5

13.3

Page 48: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 48/91

Trans. B.M. due to LL CASE A5 = = 59 t-m

Long. B.M. due to LL CASE A5 = = -182 T-m

VI) LL CASE A6

LL Reaction due to LL CASE A6 = 36 + 33 = 69 T

L.L eccentric ity in transverse direction = 2.500 m.

Trans. B.M due to LL CASE A6 = = 263 T-m

Long. B.M. due to LL CASE A6 = = -3 T-m

VII) LL CASE A7

LL Reaction due to LL CASE A7 = 36 + 33 = 69 T

L.L eccentricity in transverse direction = 0.550 m.

Trans. B.M. due to LL CASE A7 = = 105 T-m

Long. B.M. due to LL CASE A7 = = -4 T-m

VIII) LL CASE A8

LL Reaction due to LL CASE A8 = 100 + 13 = 113 T

L.L eccentricity in transverse direction = 0.823 m.

Trans. B.M. due to LL CASE A8 = = 359 t-m

Long. B.M. due to LL CASE A8 = = -65 T-m

IX) LL CASE A9

LL Reaction due to LL CASE A9 = 46 + 36 = 82 T

L.L eccentric ity in transverse direction = 1.499 m.

Trans. B.M due to LL CASE A9 = = 439 T-m

Long. B.M. due to LL CASE A9 = = -44 T-m

Maximum Longitudinal Moment case

I) LL CASE B1

LL Reaction due to LL CASE B1 = 0 + 78 = 79 T

Trans. B.M. due to LL CASE B1 = = 306 T-m

Long. B.M. due to LL CASE B1 = = 59 T-m

II) LL CASE B2

LL Reaction due to LL CASE B2 = 0 + 87 = 87 T

Trans. B.M. due to LL CASE B2 = = -220 t-m

Long. B.M. due to LL CASE B2 = = 66 T-m

III) LL CASE B3

LL Reaction due to LL CASE B3 = 0 + 38 = 38 T

Trans. B.M due to LL CASE B3 = = -116 T-m

Long. B.M. due to LL CASE B3 = = -28 T-m

IV) LL CASE A4

LL Reaction due to LL CASE A4 = 0 + 62 = 62 T

Trans. B.M. due to LL CASE A4 = = 136 T-m

Long. B.M. due to LL CASE A4 = = 47 T-m

V) LL CASE A5

LL Reaction due to LL CASE A5 = 0 + 93 = 93 T

Trans. B.M. due to LL CASE A5 = = 42 t-m

Long. B.M. due to LL CASE A5 = = 70 T-m

VI) LL CASE A6 `

LL Reaction due to LL CASE A6 = 0 + 64 = 64 T

Trans. B.M due to LL CASE A6 = = 243 T-m

Long. B.M. due to LL CASE A6 = = 48 T-m

Page 49: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 49/91

VII) LL CASE A7

LL Reaction due to LL CASE A7 = 0 + 127 = 128 T

Trans. B.M. due to LL CASE A7 = = 98 T-m

Long. B.M. due to LL CASE A7 = = 95 T-m

VIII) LL CASE A8

LL Reaction due to LL CASE A8 = 0 + 102 = 102 T

Trans. B.M. due to LL CASE A8 = = 128 t-m

Long. B.M. due to LL CASE A8 = = 19 T-m

IX) LL CASE A9

LL Reaction due to LL CASE A9 = 0 + 116 = 117 T

Trans. B.M due to LL CASE A9 = = 189 T-m

Long. B.M. due to LL CASE A9 = = 30 T-m

3.2.2.3 FORCE DUE TO BEARING FRICTION (For elestomeric bearing)

m = coefficient of friction = 0 (Cl. 211.5.1 of IRC : 6 - 2010)

Left span 22.25m span Right span 22.25m span

Bearing+Pedestal Height 0.35 m 0.35 m

Friction Force due to

DL+SIDL

Wearing coat

Crash barrier 

Total

Maximum Reaction & Transverse moment case

I) LL CASE A1 0

Friction mobilised by sliding bearings = 0.00 x ( 31 + 57 ) = 0.0 T

Max. Horizontal force / pier = 0 T

acting at 0.350 m above top of pier cap

B.M at top of pier cap = 0 x 0.350 = 0 T-m (in the Longitudinal Direction)

II) LL CASE A2 0

Friction mobilised by sliding bearings = 0.00 x ( 40 + 64 ) = 0.0 T

Max. Horizontal force / pier = 0 T

acting at 0.350 m above top of pier cap

B.M at top of pier cap = 0 x 0.35 = 0 T-m (in the Longitudinal Direction)

III) LL CASE A3 0

Friction mobilised by sliding bearings = 0.00 x ( 64 + -20 ) = 0.0 T

Max. Horizontal force / pier = 0 T

acting at 0.350 m above top of pier cap

B.M at top of pier cap = 0 x 0.35 = 0.00 t-m. = 0 T-m

(in the Longitudinal Direction)

Maximum Longitudinal Moment case

I) LL CASE B1 0

Friction mobilised by sliding bearings = 0.00 x ( 0 + 78 ) = 0.0 T

Max. Horizontal force / pier = 0 T

acting at 0.350 m above top of pier cap

B.M at top of pier cap = 0 x 0.350 = 0 T-m (in the Longitudinal Direction)

II) LL CASE B2 0

Friction mobilised by sliding bearings = 0.00 x ( 0 + 87 ) = 0.0 T

Max. Horizontal force / pier = 0 T

acting at 0.350 m above top of pier cap

0

0.0

135

0

0.0135

0.0 0.0

( T )

0.0

Friction (T)

0.0

0.0

51.0

0.0 0.00.0

0.000

0.000

0.0

0.0

0.0

Totol Bearing

Friction (T)

0.0

0.0

0.0

0.00.0

0.0

0.0

0.0

0.0 0.0

0.0

Longitudinal

Moment (Tm

0.000

0.0

0.0

BearingBearingever arm

(m) aboveFriction (T)

Reaction

51.0

Reaction

( T )

Page 50: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 50/91

B.M at top of pier cap = 0 x 0.35 = 0 T-m (in the Longitudinal Direction)

III) LL CASE B3 0

Friction mobilised by sliding bearings = 0.00 x ( 0 + 38 ) = 0.0 T

Max. Horizontal force / pier = 0 T

acting at 0.350 m above top of pier cap

B.M at top of pier cap = 0 x 0.35 = 0.00 t-m. = 0 T-m

(in the Longitudinal Direction)

Forces due to elestomeric bearig = 0.0 KN 0.00 t

ecc. From the base of pier cap top = 0.35 m

B.M at top of pier cap = 0.00 KN- 0.00 t-m

3.2.2.4 FORCE DUE TO BRAKING

Maximum Reaction & Transverse moment case

I) LL CASE A1

Total Braking Force = 20.000 t

Max. Horizontal force / pier = 10.00 t.

acting above top of pier cap at a hieght of = 2.765 m

B.M at top of pier cap = 10.00 x 2.765 = 27.65 t-m. = 28 t-m., Say

(in the Longitudinal Direction)

II) LL CASE A2

Total Braking Force = 25.000 t

Max. Horizontal force / pier = 12.50 t.

acting at 2.765 m. above top of pier cap.

B.M at top of pier cap = 12.50 x 2.765 = 34.56 t-m. = 35 t-m., Say

(in the Longitudinal Direction)

III) LL CASE A3

Total braking force = 13.850 t

Max. Horizontal force / pier = 6.93 t.

acting a 2.765 m. above top of pier cap.

B.M at top of pier cap = 6.93 x 2.765 = 19.15 t-m. = 20 t-m., Say

(in the Longitudinal Direction)

IV) LL CASE A4

Total Braking Force = 16.620 t

Max. Horizontal force / pier = 8.31 t.

acting above top of pier cap at a hieght of = 2.765 m

B.M at top of pier cap = 8.31 x 2.765 = 22.98 t-m. = 23 t-m., Say

(in the Longitudinal Direction)

V) LL CASE A5

Total Braking Force = 19.390 t

Max. Horizontal force / pier = 9.70 t.

acting at 2.765 m. above top of pier cap.

B.M at top of pier cap = 9.70 x 2.765 = 26.81 t-m. = 27 t-m., Say

(in the Longitudinal Direction)

VI) LL CASE A6

Total braking force = 14.000 t

Max. Horizontal force / pier = 7.00 t.

acting a 2.765 m. above top of pier cap.

B.M at top of pier cap = 7.00 x 2.765 = 19.36 t-m. = 20 t-m., Say

VII) LL CASE A7

Total Braking Force = 17.500 t

Max. Horizontal force / pier = 8.75 t.

acting above top of pier cap at a hieght of = 2.765 m

B.M at top of pier cap = 8.75 x 2.765 = 24.19 t-m. = 25 t-m., Say

In elastomeric bearing the friction co-efficient is 0 so there is no bearing friction force due to

other horizontal and vertical forces

Page 51: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 51/91

(in the Longitudinal Direction)

VIII) LL CASE A8

Total Braking Force = 16.770 t

Max. Horizontal force / pier = 8.39 t.

acting at 2.765 m. above top of pier cap.

B.M at top of pier cap = 8.39 x 2.765 = 23.18 t-m. = 24 t-m., Say

(in the Longitudinal Direction)

IX) LL CASE A9

Total braking force = 22.770 t

Max. Horizontal force / pier = 11.39 t.

acting a 2.765 m. above top of pier cap.

B.M at top of pier cap = 11.39 x 2.765 = 31.48 t-m. = 32 t-m., Say

Maximum Longitudinal Moment case

I) LL CASE B1

Total Braking Force = 16.620 t

Max. Horizontal force / pier = 8.31 t.

acting above top of pier cap at a hieght = = 2.765 m

B.M at top of pier cap = 8.31 x 2.765 = 22.98 t-m. = 23 t-m., Say

(in the Longitudinal Direction)

II) LL CASE B2

Total Braking Force = 19.390 t

Max. Horizontal force / pier = 9.70 t.

acting a 2.765 m. above top of pier cap.

B.M at top of pier cap = 9.70 x 2.77 = 26.81 t-m. = 27 t-m., Say

(in the Longitudinal Direction)

III) LL CASE B3

Total braking force = 14.000 t

Max. Horizontal force / pier = 7.00 t.

acting at 2.765 m. above top of pier cap.

B.M at top of pier cap = 7.00 x 2.77 = 19.36 t-m. = 20 t-m., Say

(in the Longitudinal Direction)

3.2.2.5 FORCE DUE TO CENTRIFUGAL FORCES

Maximum Reaction & Transverse moment case

I) LL CASE A1 0

Total Centrifugal Force = 0.0 t

Max. Horizontal force / pier = 0.00 t.

acting above top of pier cap at a hieght = = 2.765 m

B.M at top of pier cap = 0.00 x 2.765 = 0.00 t-m. = 0 t-m., Say

(in the Longitudinal Direction)

II) LL CASE A2 0

Total Centrifugal Force = 0.0 t

Max. Horizontal force / pier = 0.00 t.

acting a 2.765 m. above top of pier cap.

B.M at top of pier cap = 0.00 x 2.77 = 0.00 t-m. = 0 t-m., Say

(in the Longitudinal Direction)

III) LL CASE A3 0

Total Centrifugal Force = 0.0 t

Page 52: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 52/91

Max. Horizontal force / pier = 0.00 t.

acting a 2.765 m. above top of pier cap.

B.M at top of pier cap = 0.00 x 2.77 = 0.00 t-m. = 0 t-m., Say

(in the Longitudinal Direction)

Maximum Longitudinal Moment case

I) LL CASE B1 0

Total Centrifugal Force = 0.0 t

Max. Horizontal force / pier = 0.00 t.

acting above top of pier cap at a hieght = = 2.765 m

B.M at top of pier cap = 0.00 x 2.765 = 0.00 t-m. = 0 t-m., Say

(in the Longitudinal Direction)

II) LL CASE B2 0

Total Centrifugal Force = 0.0 t

Max. Horizontal force / pier = 0.00 t.

acting a 2.765 m. above top of pier cap.

B.M at top of pier cap = 0.00 x 2.77 = 0.00 t-m. = 0 t-m., Say

(in the Longitudinal Direction)

III) LL CASE B3 0

Total Centrifugal Force = 0.0 t

Max. Horizontal force / pier = 0.00 t.

acting a 2.765 m. above top of pier cap.

B.M at top of pier cap = 0.00 x 2.77 = 0.00 t-m. = 0 t-m., Say

(in the Longitudinal Direction)

3.2.2.6 WIND CONDITION

Wind load does not govern the design; hence the same has not been presented.

3.2.2.7 SEISMIC CONDITION

Horizontal seismic coeff icient in transverse direction = 0.078

Horizontal seismic coefficient in longitudinal direction = 0.112

Vertical seismic coefficient = 0.200

Seismic force in transverse direction = Weight of the structural components x 0.078

Seismic force in Longitudinal direction = Weight of the structural components x 0.112

Seismic force in Vertical direction = Weight of the structural components x 0.200

3.2.2.7.1 CALCULATION OF LOADS & LEVER ARMS FOR SEISMIC FORCES (in Transverse direction only)

For, this case, loads from both the spans are considered as the pier will have to resist transverse force from both spa

DEAD LOAD

1) Wearing Coat + Crash barrier 

Total Reaction = 50.98 + 50.98 = 102 T

acting at = 0.350 + 1.150 + 0.5 = 2.000 m., above top of pier cap

2) Girder & Deck slab

(Ref. Anexure-A)

Page 53: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 53/91

Combined CG of girder & Deck slab = 0.615 m. ( from bottom of girder )

wt. of girder + deck slab / span = 135.1 + 135.1 = 270.2 T

acting at = 0.350 + 0.615 = 0.965 m., above top of pier cap

LIVE LOAD

Horizontal seismic force acts at a height of 1.20 m above top of road

The horizontal seismic force is assumed to be equally distributed to 1 piers

Reduction coefficient for live load in seismic condition = 0.20 (Table 1 of IRC : 6 - 2010)

Maximum Reaction & Transverse moment case

I) LL CASE A1

Load due to live load = 88 x 20% = 18 T

Seismic force 18 x 0.078

1

acting at = 0.350 + 1.150 + 0.065 + 1.200

= 2.765 m. , above top of pier cap

II) LL CASE A2

Load due to live load = 105 x 20% = 21 T

Seismic force 21 x 0.078

1

acting at = 2.765 m. , above top of pier cap

III) LL CASE A3

Load due to live load = 44 x 20% = 9 T

Seismic force 9 x 0.078

1

acting at = 2.765 m. , above top of pier cap

IV) LL CASE A4

Load due to live load = 88 x 20% = 18 T

Seismic force 18 x 0.078

1

= 2.765 m. , above top of pier cap

V) LL CASE A5

Load due to live load = 132 x 20% = 26 T

Seismic force 26 x 0.078

1

acting at = 2.765 m. , above top of pier cap

VI) LL CASE A6

Load due to live load = 69 x 20% = 14 T

Seismic force 14 x 0.078

1

acting at = 2.765 m. , above top of pier cap

VII) LL CASE A7

Load due to live load = 69 x 20% = 14 T

Seismic force 14 x 0.078

1

= 2.765 m. , above top of pier cap

VIII) LL CASE A8

Load due to live load = 113 x 20% = 23 T

Seismic force 23 x 0.078

1

acting at = 2.765 m. , above top of pier cap

IX) LL CASE A9

Load due to live load = 82 x 20% = 16 T

=

0.7=

1.6 T

T

=

=

T=

=

= =

=

1.4

1.4 T

= 2.1 T

= = 1.1 T

= = 1.1 T

= = 1.8 T

Page 54: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 54/91

Page 55: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 55/91

III) LL CASE A3

Load due to live load = 38 x 20% = 8 T

Seismic force 8 x 0.078

1

acting at = 2.765 m. , above top of pier cap

IV) LL CASE A4

Load due to live load = 62 x 20% = 12 T

Seismic force 12 x 0.078

1

= 0.000 m. , above top of pier cap

V) LL CASE A5

Load due to live load = 93 x 20% = 19 T

Seismic force 19 x 0.078

1

acting at = 0.000 m. , above top of pier cap

VI) LL CASE A6

Load due to live load = 64 x 20% = 13 T

Seismic force 13 x 0.078

1

acting at = 0.000 m. , above top of pier cap

VII) LL CASE A7

Load due to live load = 128 x 20% = 26 T

Seismic force 26 x 0.078

1

= 0.000 m. , above top of pier cap

VIII) LL CASE A8

Load due to live load = 102 x 20% = 20 T

Seismic force 20 x 0.078

1

acting at = 0.000 m. , above top of pier cap

IX) LL CASE A9

Load due to live load = 117 x 20% = 23 T

Seismic force 23 x 0.078

1

acting at = 0.000 m. , above top of pier cap

3.2.2.7.2 CALCULATION OF LOADS & LEVER ARMS FOR SEISMIC FORCES (in Longitudinal direction only)

DEAD LOAD

For this case, loads from Left Span only are considered as the pier will have to resist longitudinal forces from

left span only

1) Wearing Coat & crash barrier 

Total Reaction = 50.98 + 0.00 = 51 T

Seismic Force along longitudinal directi = 50.98 x 0.112 = 5.71 T

acting at = 0.350 + 1.150 + 0.500 = 2.000 m., above top of pier cap

Longitudinal Moment = 5.71 x 2.000 = 11.4 Tm

2) Girder & Deck slab

Combined CG of girder & Deck slab = 0.615 m. ( from bottom of girder )

wt. of girder + deck slab / span = 135.1 = 135 T

Seismic Force along longitudinal directi = 135.10 x 0.112 = 15.1 T

acting at = 0.350 + 0.615 = 0.965 m., above top of pier cap

Longitudinal Moment = 15.13 x 0.965 = 14.6 Tm

=

1.5 T

1.0

= =

= =

= =

1.6 T

1.0 T

0.6 T=

=

T

= = 1.8 T

= = 2.0 T

=

Page 56: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 56/91

LIVE LOAD

No Live loads need to be considered for seismic longitudinal case as given in Cl. 219.5.2 of IRC:6-2010

SEISMIC FORCE AT TOP OF PIER CAP

Total due to DL+SIDL

Due to Live Loads

LL CASE A1

LL CASE A2

LL CASE A3

LL CASE A4

LL CASE A5

LL CASE A6

LL CASE A7

LL CASE A8

LL CASE A9

LL CASE A1

LL CASE A2

LL CASE A3

LL CASE A4LL CASE A5

LL CASE A6

LL CASE A7

LL CASE A8

LL CASE A9

3.2.2.8 SUMMARY OF LOADS & BENDING MOMENTS AT TOP OF PIER CAP (All loads are in tonnes & moments in t-m)

1 Dead load including SIDL

2 Live Load

Maximum Reaction & Transverse moment case

a LL CASE A1

b LL CASE A2

c LL CASE A3

d LL CASE A4

e LL CASE A5

f LL CASE A6

g LL CASE A7

h LL CASE A8

193

59

263

105

359

-126

-182

-3

-4

-65

0

0

0

0

0

69

113

0

0

0

0

0

7527

3.2

3.5

   M  a  x   i  m  u  m    L  o  n  g   i   t  u   d   i  n  a   l   M  o  m  e  n   t  c  a  s  e

4

5

3.5

4.2

1.8

1.50.6

0.7

1.6

11.4

15.1 14.6

15.9 20.4

54.0

( T )( m ) ( T-m )

B.M.for Horz. Force B.M.VerticalForceSeismic force

Longitudinal Seismic Forces

( T )( T ) ( T-m )

5.7

21

HT (T)

SIDL.

18

0.965

21

Load from ( T )

270 21.1

373 00

0

WeightSeismic forceTransverse Seismic ForcesLever arm

P (T) HL (T)

88

0

0

105

44

Vertical Load Longitudinal Forces

88

132

69

2

4

1.42.765

2.7658

AT TOP OF PIER CAP

2.000

37

2.765

2.765

20.3

2.765 1.4

1.1

26

ML (T-m)

2

4

MT (T-m)

3.5

19

0

97

0

-64

37

0

Transverse Forces

-228

135

343

9

0

17

16 1.22.765

30

8.0102DL.

5.3

   M  a  x   i  m  u  m    R  e  a  c   t   i  o  n   &

   T  r  a  n  s  v  e  r  s  e

  m  o  m  e  n   t  c  a  s  e

18 2.765 1.4 4

3

2.765 2.1 6

2.8

14 2.765 1.1 3 2.8

14 2.765

3.3

23 2.765 1.8 5

1.0 3

4.5

16 2.765 1.3 4

2.5

19 2.765 1.5 5 3.7

12 2.765

13 2.765 1.0 3

26 2.765 2.0 6

2.765 1.6 5

2.6

5.1

4.1

23 2.765 1.8 6 4.7

20

Page 57: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 57/91

i LL CASE A9

Maximum Longitudinal Moment case

a LL CASE A1

b LL CASE A2

c LL CASE A3

d LL CASE A4

e LL CASE A5

f LL CASE A6

g LL CASE A7

h LL CASE A8

i LL CASE A9

2 Braking Force

Maximum Reaction & Transverse moment case

a LL CASE A1

b LL CASE A2

c LL CASE A3

d LL CASE A4

e LL CASE A5

f LL CASE A6

g LL CASE A7

h LL CASE A8

i LL CASE A9

Maximum Longitudinal Moment case

a LL CASE A1

b LL CASE A2

c LL CASE A3

d LL CASE A4

e LL CASE A5

f LL CASE A6

g LL CASE A7

h LL CASE A8

i LL CASE A9

3 Seismic in transverse direction

a due to D.L

Maximum Reaction & Transverse moment case

a LL CASE A1

b LL CASE A2

c LL CASE A3

d LL CASE A4

e LL CASE A5

f LL CASE A6

g LL CASE A7

h LL CASE A8

i LL CASE A9

Maximum Longitudinal Moment case

a LL CASE A1

b LL CASE A2

c LL CASE A3

d LL CASE A4

e LL CASE A5

f LL CASE A6

g LL CASE A7

h LL CASE A8

i LL CASE A9

5 Seismic in Vertical direction

a due to D.L

Maximum Reaction & Transverse moment case

0 0 0

0 0 0

0 0

0 0 0

0 0 0 1.0

2.0

1.6

2

3

5

3

6

5

0 0 0

0.6

1.0

1.5

0 0 0

0

0 0 0

0 0 0

0

0 0 0

0 0 0

4

6

3

3

5

4

1.4

2.1

1.1

1.1

1.8

1.3

0

0

0

0

0

0

25

24

0

0

0

0

0

0

0

0

6.9

8.3

9.7

7.0

8.8

8.4

0 0

0

0

0

0

20

23

27

20

0

0 0

0 0

0 0

0

0

0

0

0

0

8.8 25

8.4 24

11.4 32

128

8.3 23

9.7 27

7.0 20

0 0

0

00

0

0

9364

128

102

7048

95

19

00

0

0

117 0 30 0 189

62 0 47 0 136

439-44 082 0

75 0 0 0 0

0 12.5 35 0 0

0 11.4 32 0 0

0 6.9 20 0 0

0 10.0 28 0 0

10.0 28 0 0

0 12.5 35 0 0

0

1.4

4

0.7

6

1.2 4

2

0

0

0

0

6687

79 59

-220

-116

42243

98

0

306

0

-28

4

5

37

0

0

0

0

0

0

38

0

0

0

0

0

0

0

0

0

0 0

0 1.4

30.0

1.6

1.8

0

0

0

0 0

Page 58: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 58/91

a LL CASE A1

b LL CASE A2

c LL CASE A3

d LL CASE A4

e LL CASE A5

f LL CASE A6

g LL CASE A7

h LL CASE A8

i LL CASE A9

Maximum Longitudinal Moment case

a LL CASE A1

b LL CASE A2

c LL CASE A3

d LL CASE A4

e LL CASE A5

f LL CASE A6

g LL CASE A7

h LL CASE A8

i LL CASE A9

Vide cl.203 of IRC: 6 - 2000 ;

 Allowable increase in stresses of concrete & steel = 50 % for seismic case

For seismic condition load factors (LFs) a (From Table 1 of IRC 6 : 2010)

Live load = 0.2 Bearing Friction = 1

Water Current Forces = 1 Braking Forces = 0.5

Centrifugal Forces = 0.5

For seismic load combination

Resultant Transverse Force = 100 % Trans. Force + 30 % Long. Force + 30 % Vert. Force

Resultant Longitudinal Force = 30 % Trans. Force + 100 % Long. Force + 30 % Vert. Force

Resultant Vertical Force = 30 % Trans. Force + 30 % Long. Force + 100 % Vert. Force

3.2.2.9 CALCULATION OF LOADS FOR SUBSTRUCTURE

 Area of the piercap trapezoidal portion =(9.800+2.300)/2×0.800 = 4.840 m2

Depth of CG from top =0.500+0.800/3×(2×9.800+2.300)/(9.800+2.300) = 0.983 m

Volume of concrete in pier cap = 9.800 x 0.500 x 2.300 + 4.84 x 2.300

= 22.40 m3.

Self wt. of pier cap = 22.40 x 2.4 = 53.76 t. = 54 T

Height of CG of Pier cap

 Area (A) LeverArm (L) A x L

Rectangular area at top 4.900 m2 0.250 m 1.225 m

3

Trapezodal Portion 4.840 m2 1.483 m 7.178 m

3

Total 9.740 m2 8.403 m

3

CG of pier cap from its top = 8.403/9.740 = 0.863 m

CG of pier cap from its bottom = 1.300 - 0.863 = 0.437 m

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1.5

2.5

3.7

2.6

5.1

4.1

0 0 0

0 0 0 0

0 0 0

0 0 0 0

0 0 0

0 0 0 05.3

2.8

2.84.5

3.3

0

0

0

3.5 0 0 0 0

4.7 0 0 0 0

1.8 0 0 0 0

3.2 0 0 0 0

3.5 0 0 0 0

4.2 0 0

3.5

0 0

=1.5

Factored Load / moment for Seismic condition Actual Load (or Moment)

Page 59: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 59/91

= 3.312 m. 

.

.

Pier Cap Wt. 54 t. Trans. seismic force = 4.0 t.

Long. seismic force = 6.0 t.

Vert. seismic force = 11.0 t.

Lever arm (m).

-.

-

.

.

. .

MT ( T - m )

ML ( T - m )  T

L

T

L

3.2.2.10 SUMMARY OF LOADS & BENDING MOMENTS AT PIER BASE (All loads are in tonnes & moments in t-m

Distance from top of Road to Dist. from top of pier cap = 4.612 m.

Section = 6.177 m

1 Dead load including SIDL

2 Live Load

Maximum Reaction & Transverse moment case

a LL CASE A1

b LL CASE A2c LL CASE A3

d LL CASE A4

e LL CASE A5

f LL CASE A6

g LL CASE A7

h LL CASE A8

i LL CASE A9

Maximum Longitudinal Moment case

a LL CASE A1

b LL CASE A2

c LL CASE A3

d LL CASE A4

0 -28 0

0 47 0

105

359

439

38

62

-116

136

0

0

0

0

0

0

-126

-182

-3

-4

-65

-44

0

0

0

0

0

0

88

132

69

69

113

82

105

0

HL (T)

135

343

0037

44 97

8

26 3 3

18

16 11 11

4 0 0

6 6

2.3 0 0

22 3 3

0

4.0 0 0

HT (T)

0 -228

Transverse Forces

447

88 0 19

MT (T-m)

The additional BM at the design sections are calculated by multiplying the horizontal force at top of pier cap & the dist .

design section from top of pier cap

3

0

Vertical load

0

Longitudinal Forces

ML (T-m)

87

0.437

4.612

0

54

1.800

1.300

66

3.312

CALCULATION OF SELF WEIGHT OF PIER UP TO PIER SECTIONS AT DIFFERENT HEIGHT

DISTANCE OF BASE OF PIER FROM BOTTOM OF PIER CAP

193

59

263

PIER

59

The above forces are added to the summary of forces & the revised summary of forces are presented below for different desi

sections.

4

0

306

0 -220

0

2

74

0.000

20

15

2

1.656

54

3.749

1.6

0.000

1.800

0.000

1.300

1.800

0

4

0.000

2

2

0.437

PIER CAP

0

0

0

0

-64

0

6

0

79

P (T)

CALCULATION OF SEISMIC FORCES ON SUBSTRUCTURE AT DIFFERENT HEIGHT

Page 60: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 60/91

e LL CASE A5

f LL CASE A6

g LL CASE A7

h LL CASE A8

i LL CASE A9

4 Braking Force

Maximum Reaction & Transverse moment case

a LL CASE A1

b LL CASE A2

c LL CASE A3

d LL CASE A4

e LL CASE A5

f LL CASE A6

g LL CASE A7

h LL CASE A8

i LL CASE A9

Maximum Longitudinal Moment case

a LL CASE A1

b LL CASE A2

c LL CASE A3

d LL CASE A4

e LL CASE A5

f LL CASE A6

g LL CASE A7

h LL CASE A8

i LL CASE A9

6 Water current forces

7 Seismic in transverse direction

a due to D.L

Maximum Reaction & Transverse moment case

a LL CASE A1

b LL CASE A2

c LL CASE A3

d LL CASE A4

e LL CASE A5

f LL CASE A6

g LL CASE A7

h LL CASE A8

i LL CASE A9

Maximum Longitudinal Moment case

a LL CASE A1

b LL CASE A2

c LL CASE A3

d LL CASE A4

e LL CASE A5

f LL CASE A6

g LL CASE A7

h LL CASE A8

i LL CASE A9

9 Seismic in Vertical direction

a due to D.L

Maximum Reaction & Transverse moment case

a LL CASE A1

b LL CASE A2

c LL CASE A3

d LL CASE A4

0 0 0 1.8 12

3.5 0 0 0 0

0 0 0 2.0 13

0 0 0 1.6 11

0 0 1.5 11

0 0 0 1.0 9

0 0 0 1.3 10

0 0 0 1.0 8

0 0 0 1.1 8

0 0 0 1.8 13

0 0 0 2.1 15

0 0 0 1.1 8

0 11.4 85 0 0

0 0 0 1.4 10

0 8.8 65 0 0

0 63 0 0

0 9.7 72 0 0

0 52 0 0

0 11.4 85 0 0

0 61 0 0

0 8.8 65 0 0

0

0 9.7 72 0 0

0

128

8.4 63 0 0

42

0 48 0 243

7.0 52 0 0

19

0 98

64

128

0 8.3 61 0 0

0102

0

0 95

93 70 0

91 0 0 0 0

3.5 0 0 0

0 3.5 8.2 3.5 8.2

0

0 0 0

0

4.2 0 0 0

0 0

0

12.5 93 0 0

0

52 0 0

0

0

93 0

1.8 0 0 0 0

0

193

0

0.7

36.0

10

1.6

6.9

1.400

0

0

52

10.0 74

6.9

0 0

0

8.3

117

0

74

12.5

10.0

0

30

0

0

0 0

0

5

13

0

0

0

0

0

0

7.0

8.4

0

0 189

101.2

1.4

0

0

00

0

0.6

10

7

Page 61: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 61/91

e LL CASE A5

f LL CASE A6

g LL CASE A7

h LL CASE A8

i LL CASE A9

Maximum Longitudinal Moment case

a LL CASE A1

b LL CASE A2

c LL CASE A3

d LL CASE A4

e LL CASE A5

f LL CASE A6

g LL CASE A7

h LL CASE A8

i LL CASE A9

LOAD COMBINATIONS

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

4.7 0 0 0 0

5.1 0 0 0 0

4.1 0 0 0 0

3.7 0 0 0 0

2.6 0 0 0 0

3.3 0 0 0 0

2.5 0 0 0 0

2.8 0 0 0 0

4.5 0 0 0 0

5.3 0 0 0 0

2.8 0 0 0 0

-( 94 )

nc u ng

+30%7(a+d)+30%

+ + +

549 13 45 14 -141

( 366 ) ( 9 ) ( 30 ) ( 10 )

-131

( 376 ) ( 9 ) ( 46 ) ( 10 ) -( 87 )

( 373 ) ( 9 ) ( 43 ) ( 10 ) -( 60 )nc u ng

+30%x7(a+c)+30

+ + +

563 13 70 15

( 332 ) ( 22 ) ( 113 ) ( 10 ) -( 81 )

   M  a  x   i  m  u  m 

   R  e  a  c   t   i  o  n   &

   T  r  a  n  s  v  e  r  s  e

 

   E   R   T   I   C   A   L

nc u ng

+30%x7(a+b)+30

+ + +

559 13

( 329 ) ( 22 ) ( 120 ) ( 10 ) -( 135 )

+30%x7(a+g)+8(a

+ + +

498 33 169 14

( 328 ) ( 22 ) ( 118 ) ( 10 ) -( 65 )

15 -203

   M  a  x   i  m  u  m 

   L  o  n  g   i   t  u   d   i  n  a   l

   M  o  m  e  n   t  c  a  s  e +30%x7(a+e)+8(a

+e +30%x9 a+e

491 33 177 15

+30%x7(a+f)+8(a+

+ +

493 34 180

484 33 150 14 -141

( 323 ) ( 22 ) ( 100 ) ( 10 ) -( 94 )

34 174 15 -131

( 331 ) ( 22 ) ( 116 ) ( 10 ) -( 87 )

33 169 15 -90

( 329 ) ( 22 ) ( 113 ) ( 10 ) -( 60 )

-

7(a+c)+30%x8(a+

+ +

+7(a+d)+30%x8(a

+d +30%x9 a+d104 (including LF)

+7(a+e)+30%x8(a-

7(a+f)+30%x8(a+f)

+30%x9 a+f 

+7(a+g)+30%x8(a

+ +30%x9 a+

   M  a  x   i  m  u  m 

   R  e  a  c   t   i  o  n   &

   T  r  a  n  s  v  e  r  s  e

   S   E   I   S   M   I   C

   L   O   N   G

   I   T   U   D   I   N   A   L

+30%x7(a+b)+8(a

+b +30%x9 a+b

+30%x7(a+c)+8(a

+c +30%x9 a+c

+30%7(a+d)+8(a+

d +30%x9 a+d

1+2(a)+3(a)+4(a)+

5(a)+6

1+2(b)+3(a)+4(b)+

5(b)-6

1+2(c)+3(a)+4(c)+

5(c)+6

1+2(d)+3(a)+4(d)+

5(d)+6

1+2(e)+3(a)+4(e)+

5(e)-6

1+2(f)+3(a)+4(f)+5

(f)+6

0

1.5 0 0 0 0

+7(a+b)+30%x8(a

+ + +

0

-34 -398

0

497

526

564

493

( 329 )

( 332 )

( 329 )

497

( 9 )

13

101

552

00 0 03.5

0

-123

121

123

40

( 27 ) ( 12 )

-467

64

-34

-98

-122

-( 311 )

64 15 -90

13

( 9 )

( 9 )

( 9 )

13

52

91

( 50 )

13

13

18

( 9 ) -( 23 )

498

534

3.2

( 323 )

( 331 )

( 328 )

493

493

( 9 )

13

   M  a  x   i  m  u  m 

   R  e  a  c

   t   i  o  n   &

   T  r  a  n  s

  v  e  r  s  e

   M  a  x   i  m  u  m 

   L  o  n  g   i   t  u   d   i  n  a   l

   M  o  m  e  n   t  c  a  s  e    N   O   R   M   A   L

   S   E   I   S   M   I   C

   T   R   A   N   S   V

   E   R   S   E

   M

  a  x   i  m  u  m 

   R  e  a  c   t   i  o  n   &

   T  r

  a  n  s  v  e  r  s  e

   M  a  x   i  m  u  m 

   L  o  n  g   i   t  u   d   i  n  a   l

   M  o  m  e  n   t  c  a  s  e

3

-3

10

-3

491

10

484

( 48 )

( 27 )

-4

9

535

491

86

-456

3

-101

150

13

13

9

141

3

-30

( 35 )

40

41

-( 23 )

-2

( 27 )

-( 266 )

3

44

45

( 27 )

72 41

( 30 ) -( 2 )

( 29 )

70

64

( 46 )

( 43 )

( 43 )

76

Page 62: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 62/91

122

123

124

At the level of 1st reinforcement curtailment in pier 

Distance from top of Road to Dist. from top of pier cap = 1.300 m.

Section = 2.87 m

1 Dead load

2 Live Load

Maximum Reaction & Transverse moment case

a LL CASE A1

b LL CASE A2

c LL CASE A3

Maximum Longitudinal Moment case

d LL CASE A1

e LL CASE A2

f LL CASE A9

3 Bearing Friction

a due to D.L

Maximum Reaction & Transverse moment case

b LL CASE A1

c LL CASE A2

d LL CASE A3

Maximum Longitudinal Moment case

e LL CASE A1

f LL CASE A2

g LL CASE A9

4 Seismic in transverse direction

a due to D.L

Maximum Reaction & Transverse moment case

b LL CASE A1

c LL CASE A2

d LL CASE A3

Maximum Longitudinal Moment case

e LL CASE A1

f LL CASE A2

g LL CASE A9

LOAD COMBINATIONS

101 1+2(a)+3(a)+3(b)

102 1+2(b)+3(a)+3(c)

103 1+2(c)+3(a)+3(d)

104 1+2(d)+3(a)+3(e)

105 1+2(e)+3(a)+3(f)

106 1+2(f)+3(a)+3(g)

107 101+4(a)+4(b)

0

78

0

0

61

-122

( 375 ) ( 9 ) ( 43 ) ( 10 ) -( 81 )

( 373 ) ( 9 ) ( 50 ) ( 10 ) -( 135 )

+30%x7(a+g)+30

%x8 a+ +9 a+

563 13 64 14

76

-98

( 371 ) ( 9 ) ( 48 ) ( 10 ) -( 65 )

15 -203

   M  a  x   i  m  u  m 

   L  o  n  g   i   t  u   d   i  n  a   l

   M  o  m  e  n   t  c  a  s  e +30%x7(a+e)+30

%x8 a+e +9 a+e

557 13 72 15

+30%x7(a+f)+30%

x8 a+f +9 a+f  

559 13   S   E   I   S   M   I   C

0 0

0

8

0

-344

6

1

1

0

0 306

-220

-116

2

0

0

0

0

0

0

19

0

0

87

0

0

6

0

0 0

38

0 0

0 0

105

88

MT (T-m)ML (T-m)

Vertical load Longitudinal Forces Transverse Forces

HT (T)

-228

HL (T)

427 0

44 0

0

590

0

0

0

59

0

0

( 0 )

0

-64

0

0

0

0

-( 50 )

-64

2

-28

4

0

0

1

0

0

0

-131

0

-76

-448

0

0

0

37

0

( 24 )

35

115

0

0

34

7

0

0

0 0

3

-93

78

0

0

-28 0

0

0

0

0 0

( 3 )

0

19

0

0

0

0

135

97

343

37

0

0

0

( 296 )

445

515

532

P (T)

471

0

0 0 0

   M  a  x   i  m  u  m

 

   R  e  a  c   t   i  o  n   &

   T  r  a  n  s  v  e  r  s

  e

   N   O   R   M   A   L

   M  a  x   i  m  u  m 

   L  o  n  g   i   t  u   d   i  n  a   l

   M  o  m  e  n   t  c  a  s  e

79

0

0

0

0 0

0

0

0

0

0

  m    &  s  e

506

514

465

Page 63: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 63/91

108 102+4(a)+4(c)

109 103+4(a)+4(d)

110 104+4(a)+4(e)

111 105+4(a)+4(f)

112 106+4(a)+4(g)

At pier cap bottom

Distance from top of Road to Dist. from top of pier cap = 1.300 m.

Section = 2.87 m

1 Dead load

2 Live Load

Maximum Reaction & Transverse moment case

a LL CASE A1

b LL CASE A2

c LL CASE A3

Maximum Longitudinal Moment case

d LL CASE A1

e LL CASE A2

f LL CASE A9

3 Bearing Friction

a due to D.L

Maximum Reaction & Transverse moment case

b LL CASE A1

c LL CASE A2

d LL CASE A3

Maximum Longitudinal Moment case

e LL CASE A1

f LL CASE A2

g LL CASE A9

4 Seismic in transverse direction

a due to D.L

Maximum Reaction & Transverse moment case

b LL CASE A1

c LL CASE A2

d LL CASE A3

Maximum Longitudinal Moment case

e LL CASE A1

f LL CASE A2

g LL CASE A9

LOAD COMBINATIONS

101 1+2(a)+3(a)+3(b)

102 1+2(c)+3(a)+3(c)

103 1+2(c)+3(a)+3(d)

104 1+2(d)+3(a)+3(e)

105 1+2(e)+3(a)+3(f)

-116

0

-( 4 )

-28

0

427 0

Longitudinal Forces

0

0

36

0

2

34

0

0

-83

-128

Vertical load

0

0

0

0

0

0

0

0

0

88

105 37

19

( 8 )

0

0

-6

0

( 0 )

( 0 )

ML (T-m) HT (T)

0

( 24 )

( 24 )

Transverse Forces

-( 77 )( 5 )

35

7

-( 85 )( 23 )

12

-( 125 )

-( 110 )

-165

0

-13

( 0 ) -( 9 )

343

36

MT (T-m)

306

0

0

0

0

0

0

0

0

97

-228

-( 55 )

6

7

-220

-116

0

-188

135

78

3

6

6

-448

78

-131

0

8

115

-93

0

13 0

0 -64

59

0

1

0

37

0 0

0

1

0

2

19

0

0

0

0

0

0

0

0

0

0

0

0 0

0 0

0 0

0

( 299 ) ( 0 )

436 0

P (T)

44

435 0

HL (T)

   S   E   I   S

   M   I   C

   T   R   A   N   S   V   E   R   S   E

0 35( 296 )

( 291 )

0

( 24 )

( 23 )

35

( 0 ) ( 0 )

   M  a  x   i  m  u

 

   R  e  a  c   t   i  o

 

   T  r  a  n  s  v  e

 

   M  a  x   i  m  u

  m 

   L  o  n  g   i   t  u   d

   i  n  a   l

   M  o  m  e  n   t  c  a  s  e

443

( 295 )

( 290 )

444

448

-64 0

59 0

87 0 13 0

0

79

0 0 0 0

0

38 0

0

0

0

1

0

0 0 1

0

0

0

0

   M  a  x   i  m  u  m 

   R  e  a  c   t   i  o  n   &

   T  r  a  n  s  v  e  r  s  e

   N   O   R   M   A   L

  a  x   i  m  u  m 

  n  g   i   t  u   d   i  n  a   l

  m  e  n   t  c  a  s  e

514

471

515

0

532 0

506

0

Page 64: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 64/91

106 1+2(f)+3(a)+3(g)

107 101+4(a)+4(b)

108 102+4(a)+4(c)

109 103+4(a)+4(d)

110 104+4(a)+4(e)

111 105+4(a)+4(f)

112 106+4(a)+4(g)

3.2.2.12 CALCULATION OF LOADS FOR PILE CAP

 Area of the pilecap =(4.300x4.300) = 18.490 m2

Depth of CG from top =0.750 = 0.750 m

Volume of concrete in pier cap = 18.490 x 1.500

= 27.74 m3.

Self wt. of pier cap = 27.74 x 2.4 = 66.56 t. = 67 T

Height of CG of pile cap

 Area (A) LeverArm (L) A x L

Rectangular area at top 6.450 m2 0.750 m 4.838 m

3 4.3

Total 6.450 m2 4.838 m

3 4.3

CG of pier cap from its top = 4.838/6.450 = 0.750 m

CG of pier cap from its bottom = 1.500 - 0.750 = 0.750 m

depth = 2

CALCULATION OF SEISMIC FORCES ON PILE AT TOP OF THE PILE

PILE CAP

Pier Cap Wt. 67 t. Trans. seismic force = 5.2 t.

Long. seismic force = 7.504 t.

Vert. seismic force = 13.4 t.

Lever arm (m).

-.

-T

L

3.2.2.11 SUMMARY OF FORCES AT BASE OF PILE CAP

RTL to GL = 7.677 m Dist. from top of pier cap to base of pier = 4.612 m.

Dist. from top of pier cap to base of Pile Cap = 6.112 m.

1 Dead load including SIDL

2 Live Load

Maximum Reaction & Transverse moment case

 

SUMMARY OF FORCES ON

PILES

-2280

-28

0

P (T) HL (T) ML (T-m)

514 0

Transverse Forces

( 24 ) -( 125 )

MT (T-m)

Vertical load

-344

-76

0

7 36

Longitudinal Forces

HT (T)

35

-116

-( 50 )( 24 )

35 -128

-83

-( 85 )

4

( 3 )

 

   L  o

 

   M  o

 

465

445

( 296 )

0

0

( 0 )

   M

  a  x   i  m  u  m 

   R

  e  a  c   t   i  o  n   &

   T  r  a  n  s  v  e  r  s  e

   S   E   I   S   M   I   C

   T   R   A   N   S   V

   E   R   S   E

   M  a  x   i  m  u  m 

   L  o  n  g   i   t  u   d   i  n  a   l

   M  o  m  e  n   t  c  a  s  e

( 290 )

448

436

( 299 )

435

( 295 )

( 296 )

443 35

( 0 ) ( 8 ) ( 23 )

0

( 291 ) ( 0 )

0 -13

( 23 )

-( 77 )

0

-( 9 )

12

( 24 )( 5 )

444 0 3 35 -188

( 0 ) -( 4 ) ( 24 ) -( 110 )

-6 36 -165

-( 55 )

( 0 ) ( 2 )

( 0 )

0

0

13

6 0 0

5

0.750 0.000 0.000

8

4 0

Page 65: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 65/91

a LL CASE A1

b LL CASE A2

c LL CASE A3

d LL CASE A4

e LL CASE A5

f LL CASE A6

g LL CASE A7

h LL CASE A8

i LL CASE A9

Maximum Longitudinal Moment case

a LL CASE A1

b LL CASE A2

c LL CASE A3

d LL CASE A4

e LL CASE A5

f LL CASE A6

g LL CASE A7

h LL CASE A8

i LL CASE A9

4 Braking Forces

Maximum Reaction & Transverse moment case

a LL CASE A1

b LL CASE A2

c LL CASE A3

d LL CASE A4

e LL CASE A5

f LL CASE A6

g LL CASE A7

h LL CASE A8

i LL CASE A9

Maximum Longitudinal Moment case

a LL CASE A1

b LL CASE A2

c LL CASE A3

d LL CASE A4

e LL CASE A5

f LL CASE A6

g LL CASE A7

h LL CASE A8

i LL CASE A9

6 Water current forces

7 Seismic in transverse direction

a due to D.L

Maximum Reaction & Transverse moment case

a LL CASE A1

b LL CASE A2

c LL CASE A3

d LL CASE A4

e LL CASE A5

f LL CASE A6

g LL CASE A7

h LL CASE A8

i LL CASE A9

Maximum Longitudinal Moment case

a LL CASE A1

b LL CASE A2

c LL CASE A3

0 5.1 26.2 5.1 26.2

0 0

0 11.4 102 0 0

0

0 8.3

0

0 6.9 62 0 0

10.0 89 0

12.5 111

12

0 0 0 0.6 6

0 0 0 1.4

07 12

0 -220

-28 -116

15

0

1.2

97

79

0 343

135

-64 0

0

0

201

12

0 0

0 1.4

0

89

111 0

0

60.7

1.6

0

0

12.5

0

0

0 0

41.2

10.0

0

0

93

37

19

38

66

0

0

306

0

0

0

0

0 59

88

105

0

44

0

0

87

0

0

193

69 0 -3 0 263

88 0 -126 0

113 0 -65 0 359

132 0 -182 0 59

62 0 47 0 136

69 0 -4 0 105

64 0 48 0 243

82 0 -44 0 439

19 0 128

0 70 0 42

74 0 0

128 0 95 0 98

102 0

63 0 0

117 0 30 0 189

0 8.3

75 0 0

0 9.7 86 0 0

0 7.0

62 0 0

0 8.8 78 0 0

0 8.4

86 0 0

0 11.4 102 0 0

0 6.9

0 8.8 78 0 0

74 0 0

0 9.7

0 0 0 1.4 12

0 7.0 63 0 0

0 0 0 1.1 10

0 8.4 75 0 0

0 0 0 1.8 16

0 0 0 2.1 19

0 0 0 1.1 10

0 0 0 1.3 12

Page 66: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 66/91

d LL CASE A4

e LL CASE A5

f LL CASE A6

g LL CASE A7

h LL CASE A8

i LL CASE A9

8 Seismic in Longitudinal direction

a due to D.L

Maximum Reaction & Transverse moment case

b LL CASE A1

c LL CASE A2

d LL CASE A3

Maximum Longitudinal Moment case

e LL CASE A1

f LL CASE A2

g LL CASE A3

9 Seismic in Vertical direction

a due to D.L

Maximum Reaction & Transverse moment case

a LL CASE A1

b LL CASE A2

c LL CASE A3

d LL CASE A4

e LL CASE A5

f LL CASE A6

g LL CASE A7

h LL CASE A8

i LL CASE A9

Maximum Longitudinal Moment case

a LL CASE A1

b LL CASE A2

c LL CASE A3

d LL CASE A4

e LL CASE A5

f LL CASE A6

g LL CASE A7

h LL CASE A8

i LL CASE A9

LOAD COMBINATIONS

101

102

103

104

105

106

107

108

109

1+2(b)+3(a)+4(b)+

5(b)-6

1+2(c)+3(a)+4(c)+

5(c)+6

1+2(d)+3(a)+4(d)+

5(d)+6

1+2(e)+3(a)+4(e)+

5(e)-6

1+2(f)+3(a)+4(f)+5

(f)+6

nc u ng -

7(a+c)+30%x8(a+

+ +nc u ng

+7(a+d)+30%x8(a

+ + +

0

1+2(a)+3(a)+4(a)+

5(a)+6

174

3 0.0 0 0.0 0

nc u ng

+7(a+b)+30%x8(a

+ + +

5 0.0 0 0.0

2 0.0 0 0.0 0

3 0.0 0 0.0 0

4 0.0 0 0.0 0

4 0.0 0 0.0 0

0 0.0 0 0.0 0

104 0.0 0 0.0 0

0 0.0 0 0.0 0

0 0.0 0 0.0 0

0 0.0 0 0.0 0

0 0.0 0 0.0 0

0 36.5 161 0.0 0

0 0.0 0 0.0 0

552 16 99 5

555

   N   O   R   M   A   L

   M  a  x   i  m  u  m 

   L  o  n  g   i   t  u   d   i  n  a   l

   M  o  m  e  n   t  c  a  s  e

 

   A   N   S   V   E   R   S   E

   M  a  x   i  m  u  m 

   R  e  a  c   t   i  o  n   &

   T  r  a  n  s  v  e  r  s  e

568

   M  a  x   i  m  u  m 

   R  e  a  c   t   i  o  n   &

   T  r  a  n  s  v  e  r  s  e

68 47

5

-391

104

151

2517

80

593

558

5

-317

48

-5 -474

-38

13415

564 17 87

2512

601 7

9317

15

-105

619 7 122 -5 -119

1415602

0 0 0 1.0 9

0 0 0 1.0 9

0 0 0 1.6 15

0 0 0 1.5 14

4 0.0 0 0.0 0

0 0 0 2.0 18

3 0.0 0 0.0 0

0 0 0 1.8 17

5 0.0 0 0.0 0

5 0.0 0 0.0 0

2 0.0 0 0.0 0

3 0.0 0 0.0 0

4 0.0 0 0.0 0

3 0.0 0 0.0 0

5 0.0 0 0.0 0

2 0.0 0 0.0 0

4 0.0 0 0.0 0

3 0.0 0 0.0 0

Page 67: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 67/91

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124 -163+30%x7(a+g)+30

+ + +

631 17 79 18

+30%x7(a+f)+30%

+ + +

639 17 99 18 -182

   M  a  x   i  m  u  m 

   L  o  n  g   i   t  u   d   i  n  a   l

   M  o  m  e  n   t  c  a  s  e +30%x7(a+e)+30

%x8 a+e +9 a+e

640 17 95 18 -77

+30%7(a+d)+30%

x8 a+d +9 a+d

629 17 68 18 -120

+30%x7(a+c)+30

%x8 a+c +9 a+c

644 17 93 18 -110

-69

   M  a  x   i  m  u  m 

   R  e  a  c   t   i  o  n   &

   T  r  a  n  s  v  e  r  s  e

   S   E   I   S   M   I   C

   V   E   R   T   I   C   A   L

+30%x7(a+b)+30%x8 a+b +9 a+b

640 17 87 18

+30%x7(a+g)+8(a

+ +30%x9 a+

555 43 192 18 -163

+30%x7(a+f)+8(a+

f +30%x9 a+f 

564 43 211 18 -182

+30%x7(a+e)+8(a

+e +30%x9 a+e

564 43 208 18 -77

18 -120

568 43 206

555 42 181

564 43 200

18 -110

nc u ng

+7(a+g)+30%x8(a

+ + +

17

18 -69

nc u ng

+30%x7(a+c)+8(a

+c +30%x9 a+c

+7(a+e)+30%x8(a

+ + +nc u ng -

7(a+f)+30%x8(a+f)

+ +

   M  a  x   i  m  u  m 

   R  e  a  c   t   i  o  n   &

   T  r  a  n  s  v  e  r  s  e

   S   E   I   S   M   I   C

   L   O   N   G   I   T   U   D   I   N   A   L

nc u ng+30%x7(a+b)+8(a

+ + +

+30%7(a+d)+x8(a

+d +30%x9 a+d

   M  a  x   i  m  u  m 

   L  o  n  g   i   t  u   d   i  n  a   l

   M  o  m  e  n   t  c  a  s  e

555 17 79 47 -18

564 17 99 -38 -459

95 48 72

   S   E   I   S   M   I   C

   T

   M  a  x   i  m  u  m 

   L  o  n  g   i   t  u   d   i  n  a   l

   M  o  m  e  n   t  c  a  s  e

569

Page 68: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 68/91

Page 69: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 69/91

Ductile detailing for Pier 

Calculation for Lateral tie for Pier 

Lateral Tie - up to 1.8m below pier cap bottom and above pile cap top level

Check for adequacy of diameter of stirrups as per IS- 13920:1993 for Pier (Reference Cl: 7.4.7of IS: 13920 - 199

 Ash = 0.09 S Dk (f ck / f y) (Ag/Ak-1)

 Ash = Cross sectional area of bar S = Spacing of hoops

Dk = Diameter of core measured to outside of hoop

 Ag = Gross area of column cross section

 AK =  Area of the concrete core = /4 DK

Diameter of Pier = 1800 mm

Spacing of Lateral ties, S = 75 mm

Clear cover for column = 75 mm

Dk =1800-75-75 = 1650 mm

 AK =3.14×1650×1650/4 = 2.14E+06 mm

 Ag =3.14×1800×1800/4 = 2.54E+06 mm

f ck = M45 Mpa

f y = 500 Mpa Ash =0.09×75×1650×(45/500)×((2.54E+06/2.14E+06)-1) = 191 mm

Diameter of Lateral tie = 16 mm

Cross sectional Area of Lateral tie bar = 201 mm2

Hence OK

Lateral Tie - beyond 1.8m below pier cap bottom and above pile cap top level

 As per Cl. 306.3.3 of IRC: 21 -2000

Maximum spacing of ties is 12 times the size of smallest compression bar.

Diameter of smallest compression bar = 2012 times of smallest compression bar = 240

Hence provide 8mm diameter bar at 200mm C/C below 1200mm from pile top

 Area of cross section of bar forming circular hoops, Ash calculated must be less than the Cross sectional area

Hence provide confined reinforcement of 16 mm diameter bars at 75 mm C/C for a distance

Page 70: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 70/91

3.2.4 DESIGN OF PILE FOUNDATION FOR EJ PIER P13

No. of piles = 4

Minimum Thickness of Pile cap = 1.5 m

Thickness of pile cap = 1.5 m OK

Pile offset from edge = 0.15 m

Pile diameter = 1 m P4

 Area of pile = 0.785 m2 MT

Pier Size = 1.8 m dia

Pile cap top below G.L = 0.000 m 4.3

Density of soil above = 1.8 t/m3 ML

Wt. of soil above pile cap = 0 T

Wt. of pile cap = 67 T P1

Fixity depth = 9.282 m.

Total Length of pile = 17 m 0.65 Z

Submerged density = 1.4 t/m3

.Vertical Capacity of one pile = 350 T (Normal) Horizontal Capacity of Piles =

25 % increase = 438 T (Seismic) 25 % increase =

Normal Seismic

Maximum Pile Load = 223 T 220 T SAFE Max. horizontal load on pile =

Minimum Pile Load = 115 T 100 T SAFE

3.2.4.1 Calculation of loads on piles for each load combination

ML x 1.50 ML ML = Moment along longitudinal direction

4 x 2.250 6.00

MT x 1.50 MT MT = Moment along transverse direction

4 x 2.250 6.00

4.3

=

=

=

=

Load due to ML

Load due to MT

Page 71: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 71/91

3.2.4.2 Calculation of loads on piles for each load combination

Load

no.

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124 19 0 158 13631 79 -16317 18

16639 99 -18217 18 19 0 160

0 160 16640 95 -7717 18 19

0 157 11629 68 -12017 18 19

0 161 15644 93 -11017 18 19

0 160 15640 87 -6917 18 19

32555 192 -16343 18 19 0 139

0 141 35564 211 -18243 18 19

35564 208 -7743 18 19 0 141

30555 181 -12042 18 19 0 139

34568 206 -11043 18 19 0 142

33564 200 -6943 18 19

15

11

134 14115

558 2512

564 87

568 93

80

-39117 -38

17

555 68 2517 47

ML

(T-m)

MT

(T-m)

HL

(T)

HT

(T)

-105

19 0 142 15

16

45

19

19 0

19 0 14148

19 138 17

140

122

151

-5 155

5

-119 20

602

Vertical load

P (T)

P / n

(T)

Load due to

ML (T-

m)

22

619 197

19 0

0

19 0

 Add.load

(pile

cap+soil)

Self wt.of pile

(T)

0 142

0

19 0

19

0 141

141

10415 174

-5

5552 99 -31716

5

601 151 -4747

593

25

19

0

569 95 7217 48

564 99 -45917 -38 16

555 79 -1817 47 19

0 148 29

139 13

0 150

139

Page 72: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 72/91

3.2.4.3 Calculation for Design Loads in Pile cap

Vertical load in Each Pile (T) due to P, M L & MT Vertical Load in Pile Groups (T)

101102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

48

132123

140113

192 61

117

337 126

349

342 117 144

146

131 163

149

163 186 119 96

144 198 172

146 207 353 113

352

174 113

163 189 157 131

149 189 166 126

353 127 158

349 134 163

158 195 164 127

163 186 157 134

341 80 143

352 75 146

143 198 134 80

146 207 136 75

351 94 163

89 149

163 189 119 94

158

149 189 129 89 338

89158 195 126 89 352

61

140

102

132 154

92

300

169

118287

195

311

115 155

169 142

154 146

92 223

126 161 153 118 126

196 149

Load

no.P1+P4P4 P1+P2P1 P3

348152

315

346 256

350

96 163

355

P2

105

155

195 160 102 137

P3+P4

137

195 154 115

96 255 204 46 46 96351

102 208 174 69 309 69

170 146 114 138 138 170

48

304

315

122 149

316

81

122

81 234 201

149 155 129

Page 73: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 73/91

Max. Shear 

1-way Shear 2-way Shear  

T T

T T

T T A

Max BM

T-m

T-m

T-m

3.2.4.4 Design constants

Grade of steel = Fe500 Permissible stress in steel, sst =

Grade of concrete = M35 Permissible stress in concrete, scbc =

Modular Ratio, m = 10 k =

Clear Cover = 0.075 m j =

Q =

Dimension Design Loads

Length (m) Depth (m) From pier

 At A - A' At B - B' For Pile P1

170

( 429 )

For Pier 

619 196 1.5Normal 348 355 Normal

170 353 Seismic 644

Normal 209 213

Seismic

Seismic 102 212

( 113 ) ( 235 )

BM (T-m)

( 141 )( 68 )

( 113 )

1-way Shear (T)

 Along Traffic Direction (A-A') 4.31.5

209 348

 Across Traffic Direction (B-B') 4.3 213 355 0.6

0.6

P4

P3

Page 74: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 74/91

3.2.4.5 Check for Flexure

3.2.4.5.1 Across Traffic Direction (B-B')

Effective cover = 0.075 + 0 + 0.025

170.0 x 4.3 deff provided = 1.5 - 0.088

213

24000 x 0.891 x 1.413

Minimum reinforcement 0.2 % of cross sectional area (Cl. 305.19 of IRC: 21 -2000) = 0.20% x 1.413

Provide 1 layer of 29 no 25 f bars  Ast provided = mm2 >

Clear Spacing = (4.3-2×(0.075+0)-29×25/1000)/(29-1

C/c Spacing = 122 + 25

3.2.4.5.2 Along Traffic Direction (A-A')

Effective cover = 0.075 + 0 + 0.025

170.0 x 4.3 deff.provided = 1.5 - 0.113

209

24000 x 0.891 x 1.388

Minimum reinforcement 0.2 % of cross sectional area (Cl. 305.19 of IRC: 21 -2000) = 0.20% x 1.388

Provide 1 layer of 29 no 25 f bars  Ast provided = mm2 >

Clear Spacing = (4.3-2×(0.075+0+25/1000)-29×25/10

C/c Spacing = 122 + 25

3.2.4.6 Check for 1-way Shear 

3.2.4.6.1 Across Traffic Direction (B-B')

Distance betweeen pier face and centre line pile = 0.6 m < 1.413 m

From Table 12B of IRC: 21- 2000, for  100 x Ast / bd = 0.234 and M 35 grade of concrete

From Cl. 304.7.1.4 of IRC: 21-2000 Vs = 0 - 22.5 x 4.3 x 1.413 = -137

3.2.4.6.2 Along Traffic Direction (A-A')

Distance betweeen pier face and centre line pile = 0.6 m < 1.388 m

From Table 12B of IRC: 21- 2000, for  100 x Ast / bd = 0.239 and M 35 grade of concrete

From Cl. 304.7.1.4 of IRC: 21-2000 Vs = 0 - 22.7 x 4.3 x 1.388 = -135

14235 1193

deff.reqd =213

= 0.540 m

 Ast reqd =

14235 1214

= Ast reqd

deff.reqd =209

= 0.535 m

Page 75: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 75/91

3.2.4.7 Check for 2-way Shear 

Permissble stress for 2-way shear (from Cl307.2.5.5 of IRC: 21- 2000) = 0.16 x 35 = 0.95 MP

Effective depth = 1.388 m (minimum of the depths along two repectiv

Location section = 1.388 / 2 = 0.694 m from pier/pile qace

3.2.4.7.1 For Pier 

Perimeter of region for resisting 2-way shear for Pie = 3.14 x( 1.8 + 2 x 0.694 )= 10.015 m

 Area of region for resisting 2-way shear for Pier = 1.388 x 10.015 = 13.9 m2

Punching Shear force = 619 T

619

13.9

OK

3.2.4.7.2 For Pile P1

Since it is a pile at the corner of the pile cap

Perimeter = 3.14 x ( 1 + 2 x 0.694 / 2 ) = 5.3

 Area available for resisting 2-way shear for Pier = 5.322 x 1.388 = 7.4 m2

Punching Shear force = 196 T

196

7.4Punching shear stress = = 27 T/m2 < 95 T/m2 OK

< 95 T/m2Punching shear stress = = 45 T/m2

Page 76: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 76/91

3.2.5 Design of Circular Pile for EJ Pier P13

Y

MY

XDiameter "D"

Radius 0.5 m

Clear Cover 75 mm

Diameter of Transverse Reinforcement 16 mm

Effective Cover =75/1000+16/1000+0.016/2 0.099 m

No of bars 16 Nos.

Diameter of bar 0.016 m

Code of Practise IRC

Modular Ratio m 10

Grade of Concrete M35Permissible Stresses in Concrete for Direct Compression 8.75 N/mm

2

Permissible Stresses in Concrete for bending Compression 11.67 N/mm2

Permissible Stresses in Steel for Compression 205 N/mm2

Permissible Stresses in Steel for Tension 240 N/mm2

 Allowable increase in perm. Stresses for earthquake cases 50 %

 Area of concrete 0.785 m2

 Area of Steel 3217 mm2

Percentage of Steel 0.41 %

 Area of concrete to resist axial load only = 223×10000 / 8.75 254677 mm2

Minimum Area of Reinforcement

0.8 % of area above =0.8/100×254677 2037 mm2

0.4 % of gross area pile =0.4/100×0.785×1000000 3142mm

2

Minimum area of reinforcement 3142 mm2 Steel Prov > Min reqd

Load P MY s CONCRETE s ST COMP s ST TENSION scbc ssc, all sst, all

Case (T) (T-m) (N/mm2) (N/mm

2) (N/mm

2) (N/mm

2) (N/mm

2) (N/mm

2)

101 215 18 #NAME? #NAME? #NAME? 11.67 205.0 -240.0

102 174 10 #NAME? #NAME? #NAME? 11.67 205.0 -240.0

103 172 15 #NAME? #NAME? #NAME? 11.67 205.0 -240.0

104 213 18 #NAME? #NAME? #NAME? 11.67 205.0 -240.0

105 223 10 #NAME? #NAME? #NAME? 11.67 205.0 -240.0

106 193 20 #NAME? #NAME? #NAME? 11.67 205.0 -240.0

107 188 59 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

108 210 48 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

109 173 58 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

110 189 59 #NAME? #NAME? #NAME? 17.50 307.5 -360.0111 220 48 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

112 167 58 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

113 182 54 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

114 177 54 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

115 167 53 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

116 182 54 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

117 165 54 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

118 162 54 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

119 182 29 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

120 182 29 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

121 185 28 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

122 182 29 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

123 192 29 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

124 190 29 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

   M  a  x .   V  e  r   t   i  c  a   l   L  o  a   d   C  a  s  e  s

Page 77: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 77/91

Load P MY s CONCRETE s ST COMP s ST TENSION scbc ssc, all sst, all

Case (T) (T-m) (N/mm2) (N/mm

2) (N/mm

2) (N/mm

2) (N/mm

2) (N/mm

2

101 123 18 #NAME? #NAME? #NAME? 11.67 205.0 -240.0

102 173 10 #NAME? #NAME? #NAME? 11.67 205.0 -240.0

103 145 15 #NAME? #NAME? #NAME? 11.67 205.0 -240.0

104 121 18 #NAME? #NAME? #NAME? 11.67 205.0 -240.0

105 115 10 #NAME? #NAME? #NAME? 11.67 205.0 -240.0

106 120 20 #NAME? #NAME? #NAME? 11.67 205.0 -240.0

107 132 59 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

108 111 48 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

109 142 58 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

110 133 59 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

111 100 48 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

112 147 58 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

113 138 54 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

114 145 54 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

115 147 53 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

116 138 54 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

117 155 54 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

118 153 54 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

119 176 29 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

120 177 29 #NAME? #NAME? #NAME? 17.50 307.5 -360.0121 167 28 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

122 176 29 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

123 165 29 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

124 162 29 #NAME? #NAME? #NAME? 17.50 307.5 -360.0

Ductile detailing for Pile

Calculation for Lateral tie for Pile

Lateral Tie - up to 1.0m below pile cap bottom level

Check for adequacy of diameter of stirrups as per IS- 13920:1993 for pile

(Reference Cl: 7.4.7of IS: 13920 - 1993)

 Ash = 0.09 S Dk (f ck / f y) (Ag/Ak-1)

 Ash = Cross sectional area of bar 

S = Spacing of hoops

Dk = Diameter of core measured to outside of hoop

 Ag = Gross area of column cross section

 AK =  Area of the concrete core = /4 DK2

Diameter of Pier = 1000 mm

Spacing of Lateral ties, S = 90 mm

Clear cover for column = 75 mm

Dk =1000-75-75 = 850 mm

 AK =3.14×850×850/4 = 5.67E+05 mm

 Ag =3.14×1000×1000/4 = 7.85E+05 mm

f ck = M35 Mpaf y = 500 Mpa

 Ash =0.09×90×850×(35/500)×((7.85E+05/5.67E+05)-1) = 185 mm

Diameter of Lateral tie = 16 mm

Cross sectional Area of Lateral tie bar = 201 mm2

Hence OK

Lateral Tie - beyond 1.0m below pile cap bottom level

 As per Cl. 306.3.3 of IRC: 21 -2000

Maximum spacing of ties is 12 times the size of smallest compression bar.

Diameter of smallest compression bar = 1612 times of smallest compression bar = 192

Hence provide 8mm diameter bar at 200mm C/C below 1200mm from pile top

   M   i  n   i  m  u  m    V  e  r   i  c  a   l   L  o  a   d   C  a  s  e  s

 

area of Lateral tie bar used in the Pile

 

Page 78: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 78/91

Page 79: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 79/91

Bearing Mark BL6 BL5

3.6 1.6

Lever arm from face of pier along transverse direction 3.6 1.6

W H M T W H M

(kN) (kN) (kNm) (kN) (kN) A DL (including 0% increase) 237 853.2 0 240 38

B SIDL (including 0% increase) 281.186 1012.3 0 85.391 13

C LL

(For bending moment in pier cap)

LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 -3.43 -12.3 2.299

LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 114.62 412.6 216.3 34

LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 -6.4 -22.9 44.9 7

(For torsional moment in pier cap)

LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 0 0.0 0 0

LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 0 0.0 0 0

LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4 0 0.0 0 0

D Impact 4.5/(6+22.25)×100= 16.0 % 16.0 %

LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 -0.5 -2 0.4

LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 18.3 66 | 34.6 5

LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 -1 -3.7 7.2 1

(For torsional moment in pier cap)

LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 0 0 0 0

LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 0 0 0 0

LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4 0 0 0 0

E Bearing Friction = mW (For elestomeric bearing only LL is considered)

Friction co-efficient, m = 0

horizontal force due to change in tempreture = 0.00 kn 0.00 0 0.00

ecc. = 0.35 m

torsional moment developed in per cap = 0 kn-m

DL 0×237×(0.350+0.480)= 0 0×240×(0.350+0

SIDL 0×281.186×(0.350+0.480)= 0 0×85.391×(0.350+0

LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 0 0 0

LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 0 0 0LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 0 0 0

(For torsional moment in pier cap)

LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 0 0 0

LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 0 0 0

LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4 0 0 0

Page 80: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 80/91

Bearing Mark BL6 BL5

3.6 1.6

Lever arm from face of pier along transverse direction 3.6 1.6

W H M T W H M

(kN) (kN) (kNm) (kN) (kN)

F Braking Force

LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 20.0 0.0 16.6 20.0

LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 25.0 0.0 20.8 25.0

LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 13.9 0.0 11.5 13.9

(For torsional moment in pier cap)

LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 16.6 0.0 13.8 16.6

LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 19.4 0.0 16.1 19.4

LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4 14.0 0.0 11.6 14.0

G Centrifugal Force = Wv2/127R

Design Speed, v = 100 kmph

Radius of curvature, R = 1000000 m 1000000 m

LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 0 =-3.427×100^2/127/1000000 0 =2.299×100^2LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 0 =114.62×100^2/127/1000000 0 =216.322×100

LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 0 =-6.352×100^2/127/1000000 0 =44.932×100^

Total Reaction at each bearing for load combination = DL+SIDL+LL+Impact+Bearing Friction+Braking Force+Centrifugal Forc

LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 514.3 1851.1 16.6 328.1 52

LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 651.1 2344.1 20.8 576.3 92

LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 510.8 1838.9 11.50 327.3 60

(For torsional moment in pier cap)

LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 518.2 1865.5 13.8 325.4 52

LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 518.2 1865.5 16.1 325.4 52

LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4 518.2 1865.5 11.6 325.4 52

Page 81: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 81/91

Bearing Mark BR6 BR5

3.6 1.6

Lever arm from face of pier along transverse direction 3.6 1.6

W H M T W H M

(kN) (kN) (kNm) (kN) (kN) A DL (including 0% increase) 237 853.2 0 240 384.0

B SIDL (including 0% increase) 281.186 1012.3 0 85.391 136.6

C LL

(For bending moment in pier cap)

LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 -6.7 -24.1 -2.44 -2.45 -3.9

LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 159.5 574.2 33.65 322.33 515.7

LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 1.8 6.3 6.08 -30.18 -48.3

(For torsional moment in pier cap)

LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 -14.6 -52.7 -10.98 -2.62 -4.2

LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 221.1 796.0 165.8 425.77 681.2

LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4 209.3 753.5 -7.85 36.23 58.0

D Impact 4.5/(6+22.25)×100= 16.0 % 16.0 %

LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 -1.1 -3.9 -0.4 -0.4 -0.6

LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 25.5 91.9 5.4 51.6 82.5

LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 0.3 1 1 -4.8 -7.7

(For torsional moment in pier cap)

LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 -2.3 -8.4 -1.8 -0.4 -0.7

LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 35.4 127.4 26.5 68.1 109

LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4 33.5 120.6 -1.3 5.8 9.3

E Bearing Friction mW (For elestomeric bearing only LL is considered)

Friction co-efficient, m = 0

horizontal force due to change in tempreture 0.00 kn 0.00 0 0.00

ecc. = 0.00 m

torsional moment developed in per cap = 0 kn-m

DL 0×237.0×(0.350+0.480)= 0.0 0×240.0×(0.350+0.4

SIDL 0×281.2×(0.350+0.480)= 0.0 0×85.4×(0.350+0.4

LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 0 0 0

LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 0 0 0LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 0 0 0

(For torsional moment in pier cap)

LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 0 0 0

LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 0 0 0

LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4 0 0 0

Page 82: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 82/91

Bearing Mark BR6 BR5

3.6 1.6

Lever arm from face of pier along transverse direction 3.6 1.6

W H M T W H M

(kN) (kN) (kNm) (kN) (kN)

F Braking Force

LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 20.0 0.0 16.6 20.00 0.0

LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 25.0 0.0 20.8 25.00 0.0

LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 13.9 0.0 11.5 13.85 0.0

(For torsional moment in pier cap)

LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 16.6 0.0 13.8 16.62 0.0

LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 19.4 0.0 16.1 19.39 0.0

LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4 14.0 0.0 11.6 14.00 0.0

G Centrifugal Force

Design Speed, v =

Radius of curvature, R = 1000000 m

LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 0 =-6.686×100^2/127/1000000LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 0 =159.491×100^2/127/1000000

LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 0 =1.751×100^2/127/1000000

Total Reaction at each bearing for load combination = DL+SIDL+LL+Impa

LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 510.4 1837.5 13.4 322.54 516.11

LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 703.2 2531.5 59.80 699.323 1118.86

LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 520.2 1872.8 18.57 290.41 464.64

(For torsional moment in pier cap)

LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 501.2 1804.3 1.0 322.38 515.74

LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 774.7 2788.9 208.4 819.26 1310.86

LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4 761.0 2739.6 2.5 367.42 587.89

Page 83: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 83/91

Design forces

Bending Moment at the face of the pier  M (due to reactions from all above bearings)

LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 514.259×3.6+328.09×1.6+510.4×3.6+322.543× = 472

LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 651.106×3.6+576.313×1.6+703.177×3.6+699.3 = 691

LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 510.834×3.6+327.265125×1.6+520.237×3.6+2 = 470(For torsional moment in pier cap)

LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 518.186×3.6+325.391×1.6+501.24×3.6+322.37 = 470

LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 518.186×3.6+325.391×1.6+774.696×3.6+819.2 = 648

LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4 518.186×3.6+325.391×1.6+760.996×3.6+367.4 = 571

From CL 304.7.1.1.2 of IRC: 21 - 2000 V = W - Md tanb / d

tan b 0.2 =800/4000

Effective depth 1.212 m

Bending Moment at a distance equal to effective depth from pier face Md (due to reactions from BR5,BR6 + BL5 BL6

LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 =(510.4×(3.6-1.212)+322.54×(1.6-1.212)+514.3×(3.6- 269

LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 =(703.2×(3.6-1.212)+699.32×(1.6-1.212)+651.1×(3.6- 372

LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 =(520.2×(3.6-1.212)+290.41×(1.6-1.212)+510.8×(3.6- 270

(For torsional moment in pier cap)LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 =(501.2×(3.6-1.212)+322.38×(1.6-1.212)+518.2×(3.6- 268

LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 =(774.7×(3.6-1.212)+819.26×(1.6-1.212)+518.2×(3.6- 353

LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4 =(761.0×(3.6-1.212)+367.42×(1.6-1.212)+518.2×(3.6- 332

Shear at a distance equal to effective depth from pier face V (due to reactions from BR5,BR6 + BL5 BL6

LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 =(510.4+322.54+514.3+328.1-2699.3×0.2/1.212) 122

LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 =(703.2+699.32+651.1+576.3-3729.0×0.2/1.212) 201

LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 =(520.2+290.41+510.8+327.3-2701.9×0.2/1.212) 120

(For torsional moment in pier cap)

LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 =(501.2+322.38+518.2+325.4-2685.7×0.2/1.212) 122

LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 =(774.7+819.26+518.2+325.4-3531.5×0.2/1.212) 185

LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4 =(761.0+367.42+518.2+325.4-3323.5×0.2/1.212) 142

Torsion at a distance equal to effective depth from pier face T (due to reactions from BR5,BR6 alone)

LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 2

LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 17

LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 -3

(For torsional moment in pier cap)

LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 1

LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 57

LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4

Page 84: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 84/91

From CL 304.7.2.4.2 of IRC: 21 - 2000

Mt = T(1+D/b)/1.7

LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 25.7955×(1+1300/2300)/1.7= 2

LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 172.76075×(1+1300/2300)/1.7= 15

LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 -35.266875×(1+1300/2300)/1.7= -3(For torsional moment in pier cap)

LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 15.34885×(1+1300/2300)/1.7= 1

LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 578.85445×(1+1300/2300)/1.7=

LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4 4.824×(1+1300/2300)/1.7=

Me = Msw+M+Mt

LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 372.4+4729.8+23.8= 512

LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 372.4+6916.4+159.1= 744

LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 372.4+4700.1+-32.5= 504

(For torsional moment in pier cap)

LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 372.4+4706.4+14.1= 509

LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 372.4+6485.8+533= 739

LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4 372.4+5713.5+4.4= 609

From CL 304.7.2.3 of IRC: 21 - 2000

Vt = 1.6 T/b

LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 1.6×25.7955/2.3= 1

LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 1.6×172.76075/2.3= 12

LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 1.6×-35.266875/2.3= -2

(For torsional moment in pier cap)

LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 1.6×15.34885/2.3= 1

LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 1.6×578.85445/2.3= 40

LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4 1.6×4.824/2.3=

Ve = Vsw+V+Vt

LL case A1 for BL6, BL5, BL4, BR6, BR5 & BR4 218.57+1229.857793+17.9= 146LL case A2 for BL6, BL5, BL4, BR6, BR5 & BR4 218.57+2014.576661+120.2= 235

LL case A3 for BL6 , BL5, BL4 , BR6, BR5 & BR4 218.57+1202.894915+-24.5= 139

(For torsional moment in pier cap)

LL case B1 for BL6, BL5, BL4, BR6, BR5 & BR4 218.57+1224.004405+10.7= 145

LL case B2 for BL6, BL5, BL43, BR6, BR5 & BR4 218.57+1854.774673+402.7= 247

LL case B3 for BL6 , BL5, BL4, BR6, BR5 & BR4 218.57+1423.559233+3.4= 164

Page 85: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 85/91

Design Parameters

Grade of concrete M45 Grade of steel

Permissible stress in concrete, scbc 15.0 MPa Modular Ratio m

Permissible tensile stress in steel in flexure, sst 240 MPa Permissible stress in steel in shear, ss

k = 10×15.0/(10×15.0+240) = 0.385 Total depth, D

 j = 1-0.385/3 = 0.872 Total depth at a distance equal to effect

Q = 0.385×0.872×15.0/2 = 2.515 = 1300-(1

Width, b

Clear Cover = 40 mm Maximum Bending Moment

Dia. of spacer bars will be used if required = 32 mm Maximum Shear

Provide

Main reinforcement f 32 , 25 Nos. in 1 st layer = 20

f 32 , 13 Nos. in 2 nd layer = 10

f 0 , 0 Nos. in 3 nd layer =

Total reinforcement provided = 30

Transverse reinforcement f 10 10 lgd. stps. at 200 mm. c/c. =

Effective cover = (20096×66+10450×130+0×178)/(20096+10450+0) = 88 mm.

Effective depth provided = 1300-88 = 1212 mm.

Check for Flexure

Effective depth required = [7447.9×10^6/(2.515×2300)]^0.5 = 1134.8 mm

Reinforcement required =7447.9×10^6/(240×0.872×1212×2300) = 29370 mm2

Minimum reinforcement @ 0.2 % as per Cl. 305.19 of IRC: 6 -2010 = 5575.2 mm2

Page 86: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 86/91

Check for Shear 

Max. shear stress from table 12A of IRC: 21 - 2000 for corresponding grade of concrete tcmax

Effective depth of section at a distance equal to effective depth from pier face =1058-88

Shear stress te =2476.0×10^3/(2300×970)

100 Ast / bd =100×30546/(2300×970)

Permissible shear stress in concrete (from table 12B of IRC: 21 -2000) tc

Shear force for which the reinforcement is required Vs

 Asw reqd for shear   Asw

Minimum shear reinforcement (as per CL. 304.7.1.5 of IRC: 21-2000) =0.4×2300×200/(0.87×415)

Hence provide 10 legged 10 mm Dia. bars @ 200 mm c/c

Page 87: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 87/91

## Design of Pier Cap

A B

C

800

D

Pier Centre Line

Elevation

4000

4500

1500 3500

2300

BR1

BR3 Plan4500

1500 3500

Bearing Mark BL1

3.6

Lever arm from face of pier along transverse direction 3.6

W H M T

(kN) (kN) (kNm)

 A DL (including 0% increase) 180 648.0 0

B SIDL (including 0% increase) 13.509 48.6 0

C LL

(For bending moment in pier cap)

LL case A1 for BL1, BL2, BL3, BR1, BR2 & BR3 195.81 704.9

LL case A2 for BL1, BL2, BL3, BR1, BR2 & BR4 -5.05 -18.2

LL case A3 for BL1 , BL2, BL3 , BR1, BR2 & BR3 141.0 507.8

(For torsional moment in pier cap)

LL case B1 for BL1, BL2, BL3, BR1, BR2 & BR3 0 0.0 0

LL case B2 for BL1, BL2, BL3, BR1, BR2 & BR4 0 0.0 0

LL case B3 for BL1 , BL2, BL3, BR1, BR2 & BR3 0 0.0 0

D Impact 4.5/(6+22.25)×100= 16.0 % 4.5/(6+22.25)×100=

LL case A1 for BL1, BL2, BL3, BR1, BR2 & BR3 31.3 112.8

LL case A2 for BL1, BL2, BL3, BR1, BR2 & BR4 -0.8 -2.9 |

LL case A3 for BL1 , BL2, BL3 , BR1, BR2 & BR3 22.6 81.2

(For torsional moment in pier cap)

LL case B1 for BL1, BL2, BL3, BR1, BR2 & BR3 0 0 0

LL case B2 for BL1, BL2, BL3, BR1, BR2 & BR4 0 0 0

LL case B3 for BL1 , BL2, BL3, BR1, BR2 & BR3 0 0 0

500

900

Page 88: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 88/91

F Braking Force

LL case A1 for BL1, BL2, BL3, BR1, BR2 & BR3 20.0 0.0 16.6

LL case A2 for BL1, BL2, BL3, BR1, BR2 & BR4 25.0 0.0 20.8

LL case A3 for BL1 , BL2, BL3 , BR1, BR2 & BR3 13.9 0.0 11.5

(For torsional moment in pier cap)

LL case B1 for BL1, BL2, BL3, BR1, BR2 & BR3 16.6 0.0 13.8

LL case B2 for BL1, BL2, BL3, BR1, BR2 & BR4 19.4 0.0 16.1

LL case B3 for BL1 , BL2, BL3, BR1, BR2 & BR3 14.0 0.0 11.6

F Centrifugal Force = Wv2/127R

Design Speed, v = 100 kmph

Radius of curvature, R = 1000000 m

LL case A1 for BL1, BL2, BL3, BR1, BR2 & BR3 0 =195.813×100^2/127/1000000

LL case A2 for BL1, BL2, BL3, BR1, BR2 & BR4 0 =-5.047×100^2/127/1000000LL case A3 for BL1 , BL2, BL3 , BR1, BR2 & BR3 0 =141.0435×100^2/127/1000000

Total Reaction at each bearing for load combination = DL+SIDL+LL+Impact+Bearing Friction+Braking Forc

LL case A1 for BL1, BL2, BL3, BR1, BR2 & BR3 420.6 1514.4 16.6

LL case A2 for BL1, BL2, BL3, BR1, BR2 & BR4 187.7 675.6 20.8

LL case A3 for BL1 , BL2, BL3 , BR1, BR2 & BR3 357.2 1285.6 11.50

(For torsional moment in pier cap)

LL case B1 for BL1, BL2, BL3, BR1, BR2 & BR3 193.5 696.6 13.8

LL case B2 for BL1, BL2, BL3, BR1, BR2 & BR4 193.5 696.6 16.1

LL case B3 for BL1 , BL2, BL3, BR1, BR2 & BR3 193.5 696.6 11.6

Design forces

Bending Moment at the face of the pier  M (due to reactions froLL case A1 for BL1, BL2, BL3, BR1, BR2 & BR3 420.622×3.6+341.048×2.6+535.002×3

LL case A2 for BL1, BL2, BL3, BR1, BR2 & BR4 187.662×3.6+242.6715×2.6+180.222×

LL case A3 for BL1 , BL2, BL3 , BR1, BR2 & BR3 357.1525×3.6+128.945125×2.6+173.1

(For torsional moment in pier cap)

LL case B1 for BL1, BL2, BL3, BR1, BR2 & BR3 193.509×3.6+245.348×2.6+683.679×3

LL case B2 for BL1, BL2, BL3, BR1, BR2 & BR4 193.509×3.6+245.348×2.6+171.797×3

LL case B3 for BL1 , BL2, BL3, BR1, BR2 & BR3 193.509×3.6+245.348×2.6+385.419×3

From CL 304.7.1.1.2 of IRC: 21 - 2000 V = W - Md tanb / d

tan  0.2 =800/4000

Effective depth 1.222 m

Bending Moment at a distance equal to effective depth from pier face Md (due to reactions fro

LL case A1 for BL1, BL2, BL3, BR1, BR2 & BR3 =(535.0×(3.6-1.222)+466.48×(2.6-1.22LL case A2 for BL1, BL2, BL3, BR1, BR2 & BR4 =(180.2×(3.6-1.222)+247.57×(2.6-1.22

LL case A3 for BL1 , BL2, BL3 , BR1, BR2 & BR3 =(173.1×(3.6-1.222)+139.43×(2.6-1.22

(For torsional moment in pier cap)

LL case B1 for BL1, BL2, BL3, BR1, BR2 & BR3 =(683.7×(3.6-1.222)+538.75×(2.6-1.22

LL case B2 for BL1, BL2, BL3, BR1, BR2 & BR4 =(171.8×(3.6-1.222)+251.95×(2.6-1.22

LL case B3 for BL1 , BL2, BL3, BR1, BR2 & BR3 =(385.4×(3.6-1.222)+403.26×(2.6-1.22

Shear at a distance equal to effective depth from pier face V (due to reactions fro

LL case A1 for BL1, BL2, BL3, BR1, BR2 & BR3 =(535.0+466.48+420.6+341.0-3385.2×

LL case A2 for BL1, BL2, BL3, BR1, BR2 & BR4 =(180.2+247.57+187.7+242.7-1550.4×

LL case A3 for BL1 , BL2, BL3 , BR1, BR2 & BR3 =(173.1+139.43+357.2+128.9-1630.8×

(For torsional moment in pier cap)

LL case B1 for BL1, BL2, BL3, BR1, BR2 & BR3 =(683.7+538.75+193.5+245.3-3166.4×

LL case B2 for BL1, BL2, BL3, BR1, BR2 & BR4 =(171.8+251.95+193.5+245.3-1554.0×LL case B3 for BL1 , BL2, BL3, BR1, BR2 & BR3 =(385.4+403.26+193.5+245.3-2270.5×

Page 89: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 89/91

Design Parameters

Grade of concrete M45 Grade of steel

Permissible stress in concrete, scbc 15.0 MPa Modular Ratio m

Permissible tensile stress in steel in flexure, sst 240 MPa Permissible stre

k = 10×15.0/(10×15.0+240) = 0.385 Total depth, D

 j = 1-0.385/3 = 0.872 Total depth at a

Q = 0.385×0.872×15.0/2 = 2.515 MPa

Width, b

Clear Cover = 40 mm Maximum Bend

Dia. of spacer bars will be used if required = 32 mm Maximum Shea

Provide

Main reinforcement f 32 , 25 Nos. in 1 s

f 32 , 13 Nos. in 2 n

f 0 , 0 Nos. in 3 n

Total reinforcement provided

Transverse reinforcement f 12 8 lgd. stps. at 200 mm.

Effective cover = (20096×56+10450×120+0×168)/(20096+10450+0) =

Effective depth provided = 1300-78 =

Check for Flexure

Effective depth required = [6523.2×10^6/(2.515×2300)]^0.5 =

Reinforcement required =6523.2×10^6/(240×0.872×1222×2300) =

Minimum reinforcement @ 0.2 % as per Cl. 305.19 of IRC: 6 -2010 =

Check for Shear 

Max. shear stress from table 12A of IRC: 21 - 2000 for corresponding grade of concrete tcmax

Effective depth of section at a distance equal to effective depth from pier face =1056-78

Shear stresste

=1696.5×10^3/(

100 Ast / bd =100×30546/(23

Permissible shear stress in concrete (from table 12B of IRC: 21 -2000) tc

Shear force for which the reinforcement is required Vs

 Asw reqd for shear   Asw

Minimum shear reinforcement (as per CL. 304.7.1.5 of IRC: 21-2000) =0.4×2300×200/(0.87×415)

Hence rovide 8 le ed 12 mm Dia. bars 200 mm c/c

Page 90: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 90/91

Table 12B of IRC: 21- 2000 Fro

tc for given Grade of Concrete

100Ast/bd M20 M25 M30 M35 M40

0.15 0.18 0.19 0.20 0.20 0.200.25 0.22 0.23 0.23 0.23 0.23

0.50 0.30 0.31 0.31 0.31 0.32

0.75 0.35 0.36 0.37 0.37 0.38

1.00 0.39 0.40 0.41 0.42 0.42

1.25 0.42 0.44 0.45 0.45 0.46

1.50 0.45 0.46 0.48 0.49 0.49

1.75 0.47 0.49 0.50 0.52 0.52

2.00 0.49 0.51 0.53 0.54 0.55

2.25 0.51 0.53 0.55 56.00 0.57

2.50 0.51 0.55 0.57 0.58 0.60  

2.75 0.51 0.56 0.58 0.60 0.62

3.00 0.51 0.57 0.60 0.62 0.63

0.15 0.18 0.19 0.2 0.2 0.2

0.25 0.22 0.23 0.23 0.23 0.23

0.150 0.180 0.190 0.200 0.200 0.200

0.15 0.18 0.19 0.2 0.2 0.2

0.25 0.22 0.23 0.23 0.23 0.23

0.150 0.180 0.190 0.200 0.200 0.200

0.15 0.18 0.19 0.2 0.2 0.2

0.25 0.22 0.23 0.23 0.23 0.23

0.234 0.214 0.224 0.225 0.225 0.225

0.15 0.18 0.19 0.2 0.2 0.2

0.25 0.22 0.23 0.23 0.23 0.23

0.239 0.215 0.225 0.227 0.227 0.227

   F  o  r   P   i   l  e   C

  a  p  w   i   t   h   9   P   i   l  e  s

   F  o  r   P   i   l  e

   C  a  p  w   i   t   h   6   P   i   l  e  s

Page 91: 001 R0 STK Substructure Design AMH to Be Sent

7/29/2019 001 R0 STK Substructure Design AMH to Be Sent

http://slidepdf.com/reader/full/001-r0-stk-substructure-design-amh-to-be-sent 91/91

m Table 9 of IRC:21- 2000

Grade Ec (GPa)

M15 26.0

M20 27.5

M25 29.0

M30 30.5

M35 31.5

M40 32.5

M45 33.5

M50 35.0

M55 36.0

M60 37.0

Zone Factor 

Zone Z Soil Type Sa /g x T Limit (sec)

V 0.36 Rocky 1.00 0.40

IV 0.24 Medium 1.36 0.55

III 0.16 Soft 1.67 0.67

II 0.10

Maximum 2.50