Unit-1: Boolean Algebra Unit-2: Minimization of Switching Functions Unit-3: Combinational Logic...

75

Transcript of Unit-1: Boolean Algebra Unit-2: Minimization of Switching Functions Unit-3: Combinational Logic...

Unit-1: Boolean Algebra

Unit-2: Minimization of Switching Functions

Unit-3: Combinational Logic Design

Unit-4: Programmable Logic Devices, Threshold Logic

Unit-5: Sequential Circuits

Unit-6: Algorithmic State Machines

Digital Design: Morris Mano, PHI,2nd Edition.

Switching & Finite Automata Theory-Zvi Kohavi,

TMH, 2nd Edition.

BINARY SYSTEMS PROBLEMS

Octal :

16 = 8¹ x 2 + 8º x 0 => (16)10 = (20)8

32 = 8¹ x 4 + 8º x 0 => (32)10 = (40)8

20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37, 40

Hexadecimal :

16 = 16¹ x 1 + 16º x 0 => (16)10 = (10)16

32 = 16¹ x 2 + 16º x 0 => (32)10 = (20)8

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B , 1C, 1D, 1E, 1F, 20

1.2-) What is the exact number of bytes in a 1.2-) What is the exact number of bytes in a

system that contains (a) 32K byte, (b)64M bytes, system that contains (a) 32K byte, (b)64M bytes,

and (c)6.4G byteand (c)6.4G byte ??

(a) 32K byte:

1K = 2¹º = 1,024

32K = 32 x 2¹º = 32 x 1,024 = 32,768

32K byte = 32,768 byte

(b) 64M byte:

1M = 2²º = 1,048,576

64M = 64 x 2²º = 64 x 1,048,576 = 67,108,864

64M byte = 67,108,864 byte

(c) 6.4G byte:

1G = 2³º = 1,073,741,824

6.4G = 6.4 x 2³º = 6.4 x 1,073,741,824 = 6,871,747,674

6.4G byte = 6,871,747,674 byte

1.3-) What is the largest binary number that can 1.3-) What is the largest binary number that can

be expressed with 12 bits? What is the equivalent be expressed with 12 bits? What is the equivalent

decimal and hexadecimal ?decimal and hexadecimal ?

Binary:

(111111111111)2

Decimal:

(111111111111)2 = 1x 2º+ 1 x 2¹ + 1 x 2² +…..+ 1 x 2¹¹ + 1 x 2¹²

(111111111111)2 = 4,095

Hexadecimal:

(1111 1111 1111)2

F F F

(FFF)16=

1.4-) Convert the following numbers with the 1.4-) Convert the following numbers with the

indicated bases to decimal : (4310)indicated bases to decimal : (4310)5 5 , and (198), and (198)1212 . .

(4310)5 = 0 x 5º + 1 x 5¹ + 3 x 5² + 4 x 5³ = 0 + 5 + 75 + 500

(4310)5 = 580

(198)12 = 8 x 12º + 9 x 12¹ + 1 x 12² = 8 + 108 + 144

(198)12 = 260

1.7-) Express the following numbers in decimal : 1.7-) Express the following numbers in decimal :

(10110.0101)(10110.0101)2 2 , (16.5), (16.5)16 16 ..( 1 0 1 1 0 . 0 1 0 1 )2

4 3 2 1 0 -1 -2 -3 -4

(10110.0101)2 = 2 + 4 + 16 + (1/4) + (1/16)

(10110.0101)2 = 22.3125

( 1 6 . 5 )16

1 0 -1

(16.5)16 = 6 + 16 + (5/16)

(16.5)16 = 22.3125

= 2¹ + 2² + (2^4) +( 2^-2) + (2^-4)

1.8-) Convert the following binary numbers to 1.8-) Convert the following binary numbers to

hexadecimal and to decimal : (a) 1.11010 hexadecimal and to decimal : (a) 1.11010

(a) ( 1 . 1101 0 )2 = ( 1 . D )16 = 1 x 16º + D x (16^-1)

1 D 0 0 -1

1.9-) Convert the hexadecimal number 68BE to 1.9-) Convert the hexadecimal number 68BE to

binary and then from binary convert it to octal .binary and then from binary convert it to octal .

(68BE) 16

Binary form:

(0110 1000 1011 1110)2=(0110100010111110)2

6 8 B E

Octal form:

(0 110 100 010 111 110)2

0 6 4 2 7 6

=(064276)8

(a)(a) 1.10-) Convert the decimal number 345 to 1.10-) Convert the decimal number 345 to

binary in two ways :binary in two ways :

Convert directly to binary; Convert directly to binary;

Convert first to hexadecimal, then from Convert first to hexadecimal, then from

hexadecimal to binary. Which method is hexadecimal to binary. Which method is

faster ?faster ?

(345)10

Number Divided by 2

Remainder

345 345/2=172 1

172 172/2=86 0

86 86/2=43 0

43 43/2=21 1

21 21/2=10 1

10 10/2=5 0

5 5/2=2 1

2 2/2=1 1

Method 1:

Method 2:

Number Divided by 16

Remainder

345 345/16=21 9

21 21/16=1 5

(345)10=(159)16 (1 101 1001)2

1.11-) Do the following conversion problems :1.11-) Do the following conversion problems :

(a) Convert decimal 34.4375 to binary .(a) Convert decimal 34.4375 to binary .

(b) Calculate the binary equivalent of 1/3 (b) Calculate the binary equivalent of 1/3

out to 8 places.out to 8 places.

Then convert from binary to decimal. How Then convert from binary to decimal. How

close is the result to 1/3 ?close is the result to 1/3 ?

(c) Convert the binary result in (b) into (c) Convert the binary result in (b) into

hexadecimal. Then convert the result to hexadecimal. Then convert the result to

decimal . Is the answer the same ?decimal . Is the answer the same ?

(a) 34.4375

34 0.4375

34:2=17 r=0

17:2=8 r=1

8:2=4 r=0

4:2=2 r=0

2:2=1 r=0

34=(100010)2

0.4375*2=0.875 r=0

0.875*2=1.75 r=1

0.75*2=1.5 r=1

0.5*2=1.0 r=1

0*2=0 r=0

0.4375=(0.01110)2

34.4375=(100010.01110)234.4375=(100010.01110)2

(b) 1/3=0.3333…

0.33333*2=0.66666 r=0 0.66666*2=1.33332 r=1 0.33332*2=0.66664 r=0 0.66664*2=1.33328 r=1

. .

.0.3333…=(0.010101….)= 0+ ¼ + 0 +

1/8 + 0 + 1/32 +… =~0.33333…

(c)

0.010101010…=0.0101 0101 0101

(0.555..)16=5/16 +5/256 +5/4096 +…=~0.33203

1.12-) Add and multiply the following numbers 1.12-) Add and multiply the following numbers

without without

converting them to decimal.converting them to decimal.

(a) Binary numbers 1011 and 101 .(a) Binary numbers 1011 and 101 .

(a) 1011 (11) (a) 1011 (11) 1011(11)1011(11)

101 (5) 101(5) 101 (5) 101(5) +__________ x_____ +__________ x_____

10000(16) 1011 10000(16) 1011 0000 0000 + 1011 + 1011 _________ _________

110111 (55) 110111 (55)

1.13-) Perform the following division in binary : 1.13-) Perform the following division in binary :

1011111 1011111 ÷÷ 101 . 101 . (1011111)2=95

(101)2=5

95/5=19 (10011)2

1011111 101101 10011000111 101

0101

101

0000

1.14-) Find the 9’s- and the 10’s-complement of 1.14-) Find the 9’s- and the 10’s-complement of

the following decimal numbers :the following decimal numbers :

(a) 98127634 (b) 72049900 (c) 10000000 (d) (a) 98127634 (b) 72049900 (c) 10000000 (d)

00000000 .00000000 .

9’s comlements :

(a)99999999-98127634=01872365

(b)99999999-72049900=27950099

(c)99999999-10000000=89999999

(d)99999999-0000000=99999999

10’s complements

(a)100000000- 98127634= 01872366(b)100000000-72049900=27950100(c)100000000-10000000=90000000

1.16-) Obtain the 1’s and 2’S complements of the 1.16-) Obtain the 1’s and 2’S complements of the

following binary numbers :following binary numbers :

(a)11101010 (b)01111110 (c)00000001 (a)11101010 (b)01111110 (c)00000001

(d)10000000 (d)10000000

1’s complements:1’s complements:(a) 00010101 (b)10000001 (c)11111110 (d)01111111 (a) 00010101 (b)10000001 (c)11111110 (d)01111111

2’s complement :2’s complement :(a) 00010110 (b)10000010 (c)11111111 (d)10000000(a) 00010110 (b)10000010 (c)11111111 (d)10000000

Boolean Algebra

1. Axiomatic definition of Boolean algebra2. Binary operators3. Postulates and Theorems4. Switching functions5. Canonical forms and standard forms6. Simplification of switching functions using

theorems

1. Axiomatic definition of Boolean algebra2. Binary operators

3. Postulates and Theorems

Postulate 2 (a) x+0 = x (b) x.1 = x

Postulate 5 (a) x+x’ = 1 (b) x.x’ = 0

Theorem 1 (a) x+x = x (b) x.x = x

Theorem 2 (a) x+1 = 1 (b) x.0 = 0

Theorem3, involution (x’)’ = x

Postulate3, commutative (a) x+y = y+x (b) xy = yx

Theorem4, associative (a) x+(y+z)=(x+y)+z (b) x(yz) = (xy)z

Postulate4, distributive (a) x(y+z)=xy+xz (b) x+yz = (x+y)(x+z)

Theorem5, DeMorgan (a) (x+y)’ = x’y’ (b) (xy)’ = x’+y’

Theorem6, absorption (a) x+xy = x (b) x(x+y)=x

4. Switching functions

x y x.y x y x+y x x’

0 0 0 0 0 0 0 1

0 1 0 0 1 1 1 0

1 0 0 1 0 1

1 1 1 1 1 1

x y z Y+z x.(y+z) x.y x.z (x.y)+x.z

0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 1 1 1 0 0 0 0

1 0 0 0 0 0 0 0

1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1

1 1 1 1 1 1 1 1

x.(y+z) = (x.y)+(x.z)

Operator Precedence

1.( )2.NOT3.AND4.OR

x y z F1 F2 F3 F4

0 0 0 0 0 0 0

0 0 1 0 1 1 1

0 1 0 0 0 0 0

0 1 1 0 0 1 1

1 0 0 0 1 1 1

1 0 1 0 1 1 1

1 1 0 1 1 0 0

1 1 1 0 1 0 0

xy

z

F1

z

y

F2x

(a) F1 = xyz’(b) F2 = x+y’z

(c) F3 = x’y’z+x’yz+xy’

F3z

y

x

(c) F4 = xy’+x’z

F4

z

y

x

Implementation of Boolean Function with GATES

1. x+x’y = (x+x’)(x+y) = 1.(x+y)=x+y

2. x(x’+y) = xx’+xy = 0+xy=xy

3. x’y’z+x’yz+xy’= x’z(y’+y)+xy’= x’z+xy’

4. xy+x’z+yz (Consensus Theorem)=xy+x’z+yz(x+x’)=xy+x’z+xyz+x’yz=xy(1+z)+x’z(1+y)=xy+x’z

5. (x+y)(x’+z)(y+z)=(x+y)(x’+z)by duality from function 4

(A+B+C)’ = (A+X)’= A’X’= A’.(B+C)’= A’.(B’C’)= A’B’C’

(A+B+C+D+…..Z)’ = A’B’C’D’…..Z’ (ABCD….Z)’ = A’+B’+C’+D’+….+Z’Example using De Morgan’s Theorem (Method-1)F1 = x’yz’+x’y’zF1’ = (x’yz’+x’y’z)’ = (x+y’+z)(x+y+z’)F2 = x(y’z’+yz)F2’= [x(y’z’+yz)]’ = x’+(y+z)(y’+z’)

F1 = x’yz’ + x’y’zDual of F1 = (x’+y+z’)(x’+y’+z)Complement F1’ = (x+y’+z)(x+y+z’)

F2 = x(y’z’+yz)Dual of F2=x+[(y’+z’)(y+z)]Complement =F2’= x’+ (y+z)(y’+z’)

Minterm or a Standard Product n variables forming an AND term provide 2n possible

combinations, called minterms or standard products (denoted

as m1, m2 etc.).

Variable primed if a bit is 0

Variable unprimed if a bit is 1

Maxterm or a Standard Sumn variables forming an OR term provide 2n possible

combinations, called maxterms or standard sums (denoted as

M1,M2 etc.).

Variable primed if a bit is 1

Variable unprimed if a bit is 0

MINTERMS MAXTERMS

x y z Term Designation Term Designation

0 0 0 x’y’z’ m0 x+y+z M0

0 0 1 x’y’z m1 x+y+z’ M1

0 1 0 x’yz’ m2 x+y’+z M2

0 1 1 x’yz m3 x+y’+z’ M3

1 0 0 xy’z’ m4 x’+y+z M4

1 0 1 xy’z m5 x’+y+z’ M5

1 1 0 xyz’ m6 x’+y’+z M6

1 1 1 xyz m7 x’+y’+z’ M7

x y z Function f1 Function f2

0 0 0 0 0

0 0 1 1 0

0 1 0 0 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

f1 = x’y’z+xy’z’+xyz =m1 + m4 + m7f2 = x’yz+xy’z+xyz’+xyz = m3 + m5 + m6 + m7

f1 = x’y’z+xy’z’+xyz

f1’ = x’y’z’+x’yz’+x’yz+xy’z+xyz’

f1 =(x+y+z)(x+y’+z)(x+y’+z’)(x’+y+z’) (x’+y’+z)

= M0.M2.M3.M5.M6

= M0M2M3M5M6

f2 = x’yz+xy’z+xyz’+xyz

f2’ = x’y’z’+x’y’z+x’yz’+xy’z’

f2 = (x+y+z)(x+y+z’)(x+y’+z)(x’+y+z)

= M0 M1 M2 M4

Boolean functions expressed as a sum of

minterms or product of maxterms are said

to be in canonical form.

m3+m5+m6+m7 or M0 M1 M2 M4

Example: F = A+B’C

F = A(B+B’)+B’C(A+A’)

= AB+AB’+AB’C+A’B’C

= AB(C+C’)+AB’(C+C’)+AB’C+A’B’C

= ABC+ABC’+AB’C+AB’C’+AB’C+A’B’C

= A’B’C+AB’C’+AB’C+ABC’+ABC

= m1+m4+m5+m6+m7F(A,B,C)=(1,4,5,6,7)

ORing of term AND terms of variables A,B &CThey are minterms of the

function

Example: F = xy+x’zF = xy+x’zF = (xy+x’)(xy+z) distr.law (x+yz)=(x+y)(x+z)

= (x+x’)(y+x’)(x+z)(y+z)= (x’+y)(x+z)(y+z)= (x’+y+zz’)(x+z+yy’)(y+z+xx’)= (x’+y+z)(x’+y+z’)(x+z+y)(x+z+y’)(y+z+x)(y+z+x’)= (x+y+z)(x+y’+z)(x’+y+z)(x’+y+z’)= M0 M2 M4 M5F(x,y,z) = (0,2,4,5)

ANDing of terms Maxterms of the function (4 OR terms of variables x,y&z)

F(A,B,C) = (1,4,5,6,7) sum of minterms

F’(A,B,C) = (0,2,3) = m0+m2+m3

F(A,B,C) = (m0+m2+m3)’ = m0’.m2’.m3’ = M0 M2 M3 = (0,2,3) Product of maxterms

SimilarlyF(x,y,z) = (0,2,4,5)F(x,y,z) = (1,3,6,7)

Sum of Products (OR operations)F1 = y’+xy+x’yz’ (AND term/product term)

Product of Sums (AND operations)F2=x(y’+z)(x’+y+z’+w)

(OR term/sum term)Non-standard formF3=(AB+CD)(A’B’+C’D’)

Standard form of F3F3=ABC’D’ + A’B’CD

x y F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Operator symbols

+ , ,

F0 = 0 F1 = xy F2 = xy’ F3 = x

F4 = x’y F5 = y F6 = xy’ +x’y F7= x +y

F8 = (x+y)’ F9 = xy +x’y’ F10 = y’ F11 = x +y’

F12 = x’ F13 = x’ + y F14 = (xy)’ F15 = 1

Equivalence is also known as equality, coincidence, and exclusive NOR.

16 logic operations are obtained from two variables x & y

Standard gates used in digital design are: complement, transfer, AND, OR , NAND, NOR, XOR & XNOR (equivalence).

NAME GRAPHIC

SYMBOL

ALGEBRIC

FUNCTION

TRUTH

TABLE

AND F=XY X Y F

0 0 0

0 1 0

1 0 0

1 1 1

OR F=X+Y X Y F

0 0 0

0 1 1

1 0 1

1 1 1

XY

F

YX

F

NAME GRAPHIC

SYMBOL

ALGEBRIC

FUNCTION

TRUTH

TABLE

Inverter

F=X’

X F

0 1

1 0

Buffer

F=X

X F

0 0

1 1

NAND F=(XY)’

X Y F

0 0 1

0 1 1

1 0 1

1 1 0

X F

X F

X FY

NAME GRAPHIC

SYMBOL

ALGEBRIC

FUNCTION

TRUTH

TABLE

NOR F=(X+Y)’

X Y F

0 0 1

0 1 0

1 0 0

1 1 0

Exclusive-OR

(XOR)

F=XY’+X’Y

= X Y

X Y F

0 0 0

0 1 1

1 0 1

1 1 0

Exclusive-NOR

or

EquivalenceF=XY+X’Y’

=X Y

X Y F

0 0 1

0 1 0

1 0 0

1 1 1

FYX

X FY

FXY

Y (X Y) Z=(X+Y) Z’

Y

x(X+Y)’

=XZ’+YZ’

[Z+(X+Y)’]’

(Y+Z)’

(X ( Y Z)=X’(Y+ Z)

=X’Y+X’Z

[X+(Y+Z)’]’

Z

X

Z

Demonstrating the nonassociativity of the NOR operator

(X Y) Z X (Y Z)

XYZ

(X+Y+Z)’

XYZ

(XYZ)’

(a) There input NOR gate (b) There input NAND gate

ABC

D

E

F=[(ABC)’. (DE)’]’=ABC+DE

(c) Cascaded NAND gates

Multiple-input AND cascaded NOR and NAND gates

XY

Z F=X Y Z

(a) Using two input gates

XYZ

(b) Three input gates

(b) Three input exclusive OR gates

TRUTH TABLE

X Y Z F 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 0

XOR

XNOROdd function

Even function

F=X Y Z

0

1 H

L

0

1

H

L

LOGIC

VALUE

SIGNAL

VALUE

LOGIC

VALUE

SIGNAL

VALUE

Negative LogicPositive Logic

Signal amplitude assignment and type of logic

X y z

1 1 0

1 0 1

0 1 1

0 0 1

Truth table for negative logic

L=1 H=0

xz

y

Graphic symbol for negative logic NOR gate

+ive logic NAND or -ive logic NOR

+ive logic NOR or -ive logic NAND

Same gate can function

DEMONSTRATION OF POSITIVE AND NEGATIVE LOGIC

F(A,B,C)=(1,4,5,6,7) F(A,B,C)=(1,2,3,6,7) F(x,y,z)=(1,4,5,6,7) F(x,y,z) = (0,2,4,5)

The End