Theorems and Proofs with Proofs - Mr. Gilmartin's Classroom! 2!!!!!,

17
THEOREMS WE KNOW PROJECT 1 Name_________________ Date___________ Period_____ This is a list of all of the theorems that you know and that will be helpful when working on proofs for the rest of the unit. In the Notes section I would like you to write anything that will help you remember the theorem, such as an example problem, writing the theorem in your own word, a picture of what the theorem represents, etc. In the Proof section I would like you write the proof of the theorem. These are all theorems that you have seen and/or written the proof of before in math 3 or in previous classes. If you do not remember the proof use your book, the internet (remember to cite your source), your classmates, and as always Mr. G and I as a resource. The two proofs that you are responsible for are due Monday 2314. Notes and 3 questions on proofs are due Wednesday 2514 The final project will be due Friday 2714. Theorems of Geometry Angles: If two angles are supplements of the same angle, then they are equal in measure. Notes: Proof: Statements Reasons <DAB≅<HEF Given <DAB+<BAC=180° Definition of supplementary angles <HEF+<FEG=180° Definition of supplementary angles 180<DAB=<BAC Property of subtraction 180<HEF=<FEG Property of subtraction 180<HEF=<BAC Substitution property <BAC and <FEG are equal to 180 <DAG therefore they are equal Properties of equality <BAC=<FEG Equality If two angles are complements of the same angle, then they are equal in measure Statements Reasons <DAB≅<HEF Given <DAB+<BAC=90° Definition of complementary angles D A C B H E G F

Transcript of Theorems and Proofs with Proofs - Mr. Gilmartin's Classroom! 2!!!!!,

THEOREMS  WE  KNOW  PROJECT       1  

  Name_________________  Date___________  Period_____  

This  is  a  list  of  all  of  the  theorems  that  you  know  and  that  will  be  helpful  when  working  on  proofs  for  the  rest  of  the  unit.  In  the  Notes  section  I  would  like  you  to  write  anything  that  will  help  you  remember  the  theorem,  such  as  an  example  problem,  writing  the  theorem  in  your  own  word,  a  picture  of  what  the  theorem  represents,  etc.  In  the  Proof  section  I  would  like  you  write  the  proof  of  the  theorem.  These  are  all  theorems  that  you  have  seen  and/or  written  the  proof  of  before  in  math  3  or  in  previous  classes.  If  you  do  not  remember  the  proof  use  your  book,  the  internet  (remember  to  cite  your  source),  your  classmates,  and  as  always  Mr.  G  and  I  as  a  resource.      The  two  proofs  that  you  are  responsible  for  are  due  Monday  2-­‐3-­‐14.  Notes  and  3  questions  on  proofs  are  due  Wednesday  2-­‐5-­‐14  The  final  project  will  be  due  Friday  2-­‐7-­‐14.      Theorems  of  Geometry    Angles:  If  two  angles  are  supplements  of  the  same  angle,  then  they  are  equal  in  measure.  Notes:            

   

     

   

             

Proof:  Statements     Reasons  <DAB≅<HEF   Given  <DAB+<BAC=180°   Definition  of  

supplementary  angles  

<HEF+<FEG=180°   Definition  of  supplementary  angles    

180-­‐<DAB=<BAC   Property  of  subtraction  

180-­‐<HEF=<FEG   Property  of  subtraction  

180-­‐<HEF=<BAC   Substitution  property  

<BAC  and  <FEG  are  equal  to  180-­‐<DAG  therefore  they  are  equal    

Properties  of  equality  

<BAC=<FEG   Equality      

If  two  angles  are  complements  of  the  same  angle,  then  they  are  equal  in  measure                    

 Statements     Reasons  <DAB≅<HEF   Given  <DAB+<BAC=90°   Definition  of  

complementary  angles  

 

D   A   C  

B  

H   E   G  

F  

  2  

                     

<HEF+<FEG=90°   Definition  of  complementary  angles    

90-­‐<DAB=<BAC   Property  of  subtraction  

90-­‐<HEF=<FEG   Property  of  subtraction  

180-­‐<HEF=<BAC   Substitution  property  

<BAC  and  <FEG  are  equal  to  180-­‐<DAG  therefore  they  are  equal    

Properties  of  equality  

             

Notes:  

             

Proof:    Prove:  <BOD  =  <DBA  Know:    

• <BOD+<COB=180°  by  supplementary  angles  

• <COA+<COB=180°  by  supplementary  angles  

• If  <COA+<COB=180  then  <COA=180-­‐<COB  

• If  <BOD+<COB=180  then  <BOD=180-­‐<COB  

• Therefore  <BOD=<COA  

The  sum  of  the  measures  of  the  angles  of  a  triangle  is  180°.    Notes:                      

Proof:  

An  exterior  angle  of  a  triangle  is  equal  in  measure  to  the  sum  of  the  measures  of  its  two  remote  interior  angles.    Notes:   Proof:  

THEOREMS  WE  KNOW  PROJECT       3  

  Name_________________  Date___________  Period_____  

                   If  two  sides  of  a  triangle  are  equal  in  measure,  then  the  angles  opposite  those  sides  are  equal  in  measure.    Notes:  

     

Proof:  Statement     Reasons    

 Given  

 Each  angle  has  one  unique  angle  bisector  

  An  angle  bisector  is  an  ray  whose  endpoint  is  the  vertex  of  the  angle  and  which  divides  the  angles  into  two  congruent  angles  

 Reflexive  property  a  quantity  is  congruent  to  itself.    

  SAS-­‐  if  two  sides  and  the  included  angle  of  one  triangle  are  congruent  to  the  corresponding  parts  of  another  triangle,  the  triangles  are  congruent.    

  C.P.C.T.C.      

If  two  angles  of  a  triangle  are  equal  in  measure,  then  the  sides  opposite  

  4  

those  angles  are  equal  in  measure  Notes:                

Proof:                  

If  a  triangle  is  equilateral,  then  it  is  also  equiangular,  with  three  60°  angles  Notes:  

 

Proof:  Statement     Reason    ΔABC  is  equilateral     Given  AC ≅ BC;AB ≅ AC   Def.  of  

equilateral  triangle  

<A≅<B;<B≅<C   Isosceles  triangle  theorem  

<A≅<C   Transitive  property  

ΔABC  is  equal  angular  

All  angles  are  equal  

360°÷3=60°   Property  of  division  

All  3  angle  measures  are  60°  

Division  above.    

 

If  a  triangle  is  equiangular,  then  it  is  also  equilateral.    Notes:            

   

   

Proof:  Statement   Reason  <A≅<B   Given  <B≅<C   Given  AB ≅ BC   Two  angles  

congruent,  opposite  sides  are  congruent  

BC ≅ AC   Two  angles  are  congruent  opposite  sides  are  congruent    

AB = AC   Transitive  property    

       

A  

B   C  

THEOREMS  WE  KNOW  PROJECT       5  

  Name_________________  Date___________  Period_____  

 

 

Lines  

If  two  parallel  lines  are  intersected  by  a  transversal,  then  alternate  interior  angles  are  equal  in  measure.  Notes:            

       

Proof:    Given:  a||b  Prove:  <1≅<3    Angle  1  is  equal  to  angle  4  because  corresponding  angels  are  equal.  Angle  3  is  equal  to  Angle  4  because  of  vertical  angles  theorem.  Angle  1  is  equal  to  angle  3  because  of  transitive  property.  Therefor  if  a  transversal  intersects  2  parallel  lines  alternate  interior  angles  are  equal.  

If  two  parallel  lines  are  intersected  by  a  transversal,  the  co-­‐interior  angels  are  

         

The  sum  of  the  angle  measures  of  an  n-­‐gon  is  given  by  the  formula  S(n)=(n-­‐2)180°  Notes:                          

Proof:                      

The  sum  of  the  exterior  angle  measures  of  an  n-­‐gon,  one  angle  at  each  vertex  is  360°.  Notes:                  

Proof:  

1  2  

3  4  

5  6  

  6  

supplementary.  Notes:                    

Proof:    

If  two  lines  are  intersected  by  a  transversal  and  corresponding  angles  are  equal  in  measure,  then  the  lines  are  parallel.  Notes:        

         

     

           

Proof:  Statements     Reasons    <ACL≅<MAR   Given  

(Corresponding  Angles)  

<PCS≅<ACL   Vertical  Angles  <MAR≅<QAC   Vertical  Angles  <MAR+<QAM=180°   Supplementary  

angles  <MAR+<CAR=180°   Supplementary  

angles  <QAM≅<CAR   If  two  angles  are  

supplementary  to  the  same  angle  they  are  congruent  

<CAR≅<SCL   Corresponding  angles  

<PCA≅<SCL   Vertical  angles  PL ||QR   The  transversal  

intersects  the  two  lines  with  the  same  angles.    

 

If  two  lines  are  intersected  by  a  transversal  and  alternate  interior  angles  are  equal  in  measure,  then  the  lines  are  parallel.  Notes:                  

Proof:                    

P  

Q  

L  

M  

R  

C  

A  

S  

THEOREMS  WE  KNOW  PROJECT       7  

  Name_________________  Date___________  Period_____  

If  two  lines  are  intersected  by  a  transversal  and  co-­‐interior  angles  are  supplementary,  then  the  lines  are  parallel.  Notes:                  

Proof:                    

If  two  lines  are  perpendicular  to  the  same  transversal,  then  they  are  parallel.  Notes:  

     

Proof:  Lines  k  and  l  are  cut  by  t,  the  transversal.  <1(top  right  of  line  k)  and  <5(top  of  line  “l”  left)  are  corresponding  angles,  along  with  <3(bottom  right  of  line  k)  to  <7(bottom  right  of  line  l),  <2(top  left  of  line  k)  to  <6(bottom  left  of  line  l),  and  <4(bottom  left  of  line  k)  to  <8(bottom  left  of  line  l).  The  definition  of  corresponding  angles  is,  “if  two  parallel  lines  are  cut  by  a  transversal,  then  the  corresponding  angles  are  congruent”.  The  converse  of  that  statement  is,  “if  the  corresponding  angles  are  congruent,  the  lines  are  parallel.”  Since  all  angles  equal  90  degrees,  all  corresponding  angles  are  congruent.  Thus,  two  line  perpendicular  to  a  transversal  are  parallel.              

If  a  transversal  is  perpendicular  to  one  of  two  parallel  lines,  then  it  is  perpendicular  to  the  other  one  also.  Notes:                    

Proof:  What  is  given?   r || l, t ⊥ r                          What  do  you  need  to  prove?   r ⊥ l    Statements   Reason    r || l, t ⊥ r   Given  <l  is  a  right  angle   Def.  of  

perpendicular  lines  M<l=90°   Def.  of  right  angles  m<1≅m<2   Corresponding  

  8  

angles  m<1=m<2   Def.  of  congruent  

angles  m<2=90°   Substitution  

property    <2  is  a  right  angle   Def.  of  right  angle  t⊥ l   Def.  of  

perpendicular  lines    

If  a  point  is  the  same  distance  from  both  endpoints  of  a  segment,  then  it  lies  on  the  perpendicular  bisector  of  the  segment.    Notes:                  

Proof:  Statement   Reason      

                         

 

Triangles:  

If  a  line  is  drawn  from  a  point  on  one  side  of  a  triangle  parallel  to  another  side,  the  it  forms  a  triangle  similar  to  the  original  triangle  Notes:                            

Proof:                          

In  a  triangle,  a  segment  that  connects  the  midpoints  of  two  sides  is  parallel  to  the  third  side  and  half  as  long.    Notes:      

Proof:      

THEOREMS  WE  KNOW  PROJECT       9  

  Name_________________  Date___________  Period_____  

                 

               

If  two  angles  and  the  included  side  of  one  triangle  are  equal  in  measure  to  the  corresponding  angles  and  side  of  another  triangle,  then  the  triangles  are  congruent.  (ASA)  Notes:        

       

   

Proof:  <ABC=<ADC   Given  

Line  DC=Line  BC   Given  

Angle  DCA=  Angle  ACB  

Given  

Line  AC=  Line  AC   Reflexive  property  of  equality  

Triangle  ADC-­‐Triangle  ABC  

SAS    

If  two  angles  and  a  non-­‐included  side  of  one  triangle  are  equal  in  measure  to  the  corresponding  angles  and  sides  of  another  triangle,  then  the  two  triangles  are  congruent.  (AAS)  Notes:            

Proof:    

If  two  sides  and  the  included  angle  of  one  triangle  are  equal  in  measure  to  the  corresponding  sides  and  angle  of  another  triangle,  then  the  triangles  are  congruent.  (SAS)  Notes:                          

Proof:  

  10  

 If  the  altitude  is  drawn  to  the  hypotenuse  of  a  right  triangle,  then  the  two  triangles  formed  are  similar  to  the  original  triangle  and  to  each  other.    Notes:                          

Proof:  

In  any  right  triangle,  the  square  of  the  length  of  the  hypotenuse  is  equal  to  the  sum  of  the  squares  of  the  lengths  of  the  legs  Notes:          

Proof:    

If  the  altitude  is  drawn  to  the  hypotenuse  of  a  right  triangle,  then  the  measure  of  the  altitude  is  the  geometric  mean  between  the  measures  of  the  parts  of  the  hypotenuse.    Notes:      

   

   

         

   Statements   Reasons    h=altitude     By  definition  ΔABD  is  similar  to  ΔBCD  

Altitude  creates  similar  triangles    

BDAD

=DCBD

 Properties  of  similar  triangles  

hAD

=DCh  

Properties  of  similar  triangles  

h2 = AB•DC   Properties  of  ratio  

h = AD•DC   Definition  of  geometric  mean.    

 

The  sum  of  the  lengths  of  any  two  sides  of  a  triangle  is  greater  than  the  length  of  the  third  side.    Notes:    

       

     

Proof:  Statements   Reasons  BE is the shortest distance from vertex B to AE  

short distance theorem  

BA>BE. BA^2=AE^2+BE^2- AB>BC  

Pythagorean theorem  

A  

B  

A  C  

 

D  

h  

THEOREMS  WE  KNOW  PROJECT       11     Name_________________  Date___________  

Period_____        

         

Triangle AEC= AC^2=AE^2+EC^2= AC>EC

Pythagorean theorem.

AC^2= EC^AE^2

 AB^2-BE^2= EC^2-AE^2

substitution property  

AB+AC>BE+BC addition property  AB+AC>BC segment addition

postulate    

In  an  isosceles  triangle,  the  medians  drawn  to  the  legs  are  equal  in  measure.    Notes:                  

   

   

Proof:    Statement     Reasons  ΔABC  is  isosceles   Given  Draw  medians  BD and CE  

Through  any  2  points  there  is  1  line  

AB ≅ AC   Properties  of  an  isosceles  triangle  

AB = AC   Definition  of  congruence  

12AB = 1

2AC   Multiplication  

property    

BE = 12AB;DC = 1

2AC   A  median  bisects  the  line  it  passes  

through  BE = DC   Substitution  

property  BE ≅ DC   Definition  of  

congruence  <B≅<C   Property  of  an  

isosceles  triangle    BC ≅ BC   Reflexive  property    ΔEBC≅ΔDCB   SAS  theorem    CE ≅ DC   C.P.C.T.C.  

 

 

Quadrilaterals:  

In  a  parallelogram,  the  diagonals  have  the  same  midpoint.    Notes:   Proof:  

Statement: Proof:

A quadrilateral ABCD is a parallelogram if AB is

Given

a  

b   c  

d  e  

B   C  

  12  

         

parallel to CD and BC is parallel to DA.

AB ll CD Definition of a parallelogram

L BAE is congruent to L DCE

Alternate interior angles postulate

AB is congruent to CD Opposite sides in a parallelogram

L ABE is congruent to L CDE

Alternate interior angles postulate

Triangle AEB is congruent to triangle DEC

ASA

AE is congruent to EC CPCTC

BE is congruent to ED CPCTC  

In  a  kite,  the  diagonals  are  perpendicular  to  each  other.    Notes:                      

Proof:                    

In  a  rectangle,  the  diagonals  are  equal  in  measure.  Notes:                      

Proof:                    

In  a  parallelogram,  opposite  sides  are  equal  in  measure.  Notes:          

Proof:  Statement     Reason    <ABD≅<BDC   Alternate  interior  

angles  <DBC≅<ADB   Alternate  interior  

B  

THEOREMS  WE  KNOW  PROJECT       13     Name_________________  Date___________  

Period_____        

     

angles  DB ≅ DB   Reflexive  property    ΔADB≅ΔCBD   ASA  AB ≅ DC;AD ≅ BC   C.P.C.T.C.  

 

If  a  quadrilateral  is  a  parallelogram,  then  consecutive  angles  are  supplementary.  Notes      

   

   

Proof:  Lets  consider  two  consecutive  angles  DAB  and  ABC.  Draw  the  straight  line  AE  as  the  continuation  of  the  side  AB  of  the  parallelogram  ABCD.  Then  the  angle  CBE  is  congruent  to  the  angle  DAB  as  these  angles  are  the  corresponding  angles  at  the  parallel  lines  AC  and  BC  and  the  transverse  AE.  The  angles  ABC  and  CBE  are  adjacent  supplementary  angles  and  make  in  sum  the  straight  angle  ABE  of  180°.  Therefore,  two  consecutive  angles  DAB  and  ABC  are  non-­‐adjacent  supplementary  angles  and  make  in  sum  the  straight  angle  of  180°.    Similarly,  consider  two  other  consecutive  angles  ABC  and  BCD.  Draw  the  straight  line  BF  as  the  continuation  of  the  side  BC  of  the  parallelogram  ABCD.  Then  the  angle  DCF  is  congruent  to  the  angle  ABC  as  these  angles  are  the  corresponding  angles  at  the  parallel  lines  DC  and  AB  and  the  transverse  BF.  The  angles  BCD  and  DCF  are  adjacent  supplementary  angles  and  make  in  sum  the  straight  angle  BCF  of  180°.  Therefore,  two  consecutive  angles  ABC  and  BCD  are  non-­‐adjacent  supplementary  angles  and  make  in  sum  the  straight  angle  of  180°.  You  can  repeat  these  steps  for  the  other  two  sets  of  consecutive  angles.  Therefore  if    a  quadrilateral  is  a  parallelogram  then  all  the  of  the  consecutive  angles  are  supplementary.                

If  a  quadrilateral  is  a  parallelogram,  then  opposite  angles  are  equal  in  measure.      Notes:          

Proof:  Statements     Reasons  AD || BC   Given  

CD || AB   Given  

  A  

C  D  

E  

  14  

         

 

<BCD≅<CDE   Alternate  int.  Angles  <CDE≅<BAD   Corresponding  angles    <BCD≅<BAD   Transitive  property    <FAB≅<ABC   Alternate  interior  

angles  <FAB≅<ADC   Corresponding  angles    <ABC≅<ADC   Transitive  property                

The  sum  of  the  measures  of  the  angles  of  a  quadrilateral  is  360°.  Notes:                        

Proof:  Quadrilaterals  can  be  divided  into  two  triangle  

Definition  of  a  quadrilateral  

The  angles  of  triangles  are  equal  to  180  degrees  

Triangle  Angle  Sum  Theorem  

Two  triangles    angles  add  up  to  360  degrees  

Additive  property  of  addition  

Quadrilaterals  angles  add  up  to  360  degrees  

Substitution  property  of  addition  

Help  from:  http://www.mathwords.com/  a/additive_property_of_equality.htm    

If  both  pairs  of  opposite  angles  of  a  quadrilateral  are  equal  in  measure,  then  the  quadrilateral  is  a  parallelogram.  

A  

B  

C  

D  

F  

THEOREMS  WE  KNOW  PROJECT       15     Name_________________  Date___________  

Period_____  Notes:  

     

   

Proof: We need to prove the opposite angles are congruent. So, we need to prove that L A = L C and L B = L D.

Statement: Reason:

LCBE + LCBA = 180degrees, LFCB + LDCB = 180 degrees.

Supplementary angles theorem

LCBE is congruent to LDAB LBCF is congruent to LADC

Corresponding angles postulate

LCBE is congruent to LBCD LBCF is congruent to LABC

Alternate interior angles postulate

Hence, LDAB is congruent to LDCB

Steps 1,2, and 3

 

If  the  two  diagonals  of  a  quadrilateral  bisect  each  other,  then  the  quadrilateral  is  a  parallelogram.  Notes:        

   

 

                 

Proof:  Statements     Reasons  Quadrilateral ABCD   given  Line AP is congruent to PD. Line BP is congruent to PC  

diagonals bisect each other  

Angle APB is congruent to angle CPD

vertical angle theorem.  

Triangle ABP is congruent to triangle CPD

SAS  

Angle BCD is congruent to angle CBA

CPCTC  

Angle BCD is congruent to angle CBA

alternate interior theorem  

AB||DC converse of parallel transversal theorem  

Diagonals bisect so  

A  

B  

C  D  

P  

  16  

line AP is congruent to PD and line CP is congruent to BD Angle CAP is congruent to angle BDC

alternate interior theorem  

Angle APC is congruent to angle DBP

vertical angles theorem  

Triangle APC is congruent to Triangle BDP

SAS  

Angle ABC is congruent to angle BCD

alternate interior angle theorem  

Line AC||BD converse of parallel transversal theorem  

Quadrilateral ABCD definition of parallelogram  

 

In  an  isosceles  trapezoid,  (1)  the  legs  are  equal  in  measure,  (2)  the  diagonals  are  equal  in  measure,  and  (3)  the  two  angles  at  each  base  are  equal  in  measure.  Notes:          

       

Proof:    Statement   Reasons  

Trapezoid  ABCD  is  isosceles  

Given  

<D  and  <C  are  base  angles    

Definition  of  base  angles  

<D≅<C   Properties  of  an  isosceles  trapezoid  

AD ≅ BC   Given  

Draw  diagonal  segments   AC and BC  

Through  any  two  points,  there  is  exactly  one  line  

DC ≅ DC   Reflexive  property  of  congruence  

ΔADC  ≅ΔBDC   SAS  theorem  

a   b  

c   d  

THEOREMS  WE  KNOW  PROJECT       17     Name_________________  Date___________  

Period_____  AC ≅ BD   C.P.C.T.C    

 

   Rubric:    Theorems  We  Know  Project  ____/50  40  Points   35  Points   30  Points     20  Points     10  Points   0  Points  All  theorems  have  notes.    

39-­‐32  theorems  have  notes.    

31-­‐24  theorems  have  notes    

23-­‐16  theorems  have  notes.    

15-­‐8  theorems  have  notes  

8  or  less  theorems  have  notes.    

Proofs  (points  taken  off  for  each  missing  proof  out  of  10):