Chip v4: Measurement from room temperature down to LN2. Chip v4: MIP signal with oscilloscope...

1
Chip v4: Measurement from room temperature down to LN2. Chip v4: MIP signal with oscilloscope persistence Experimental results of various versions chips. - First version noise is better since the shaper was external. - For the latest version, a noise reduction is obtained by cooling down the chip at the level of the actual detector capacitance. Chip v4: Histograms measure of the noise could be experimentally observed out of the ADC with the DAQ system [3]. The delta : 5.4mV corresponds to FWHM/2 (Full width at half maximum). Since the rms Noise (σ) ~ FWHM/2.35 We verify that "sqrt-integ-noise**2" maximum value : 5.32 ~5.4mV*2/2.35 Chip v4: Noise comparison of the CSA with ideal bias current (PA1^2) versus fully designed CSA (PA^2) Version 4 configurations : Cpa : 250 or 500fF Rpa : 1, 2, 3 or 4MΩ Shaping center frequency : 0.5, 1, 2 or 4 µs Charge Sensitive Amplifier (CSA) in cold gas of Charge Sensitive Amplifier (CSA) in cold gas of Liquid Argon (LAr) Time Projection Chamber Liquid Argon (LAr) Time Projection Chamber (TPC) (TPC) Specifications : • Multichannel 3fC to 120fC (0.5μs pulse) Charge Sensitive Amplifier • Less than 1500 e- ENC with 250pF Detector capacitance (Signal/Noise ratio of 10) • Able to work in LAr vapours @ -150°C with an affordable power dissipation : 1mW/channel, considering a power pulsing rate of 2.5% (effective consumption : 40mW) • Low cost highly integrated solution implies an ASIC CMOS process circuit. E.Bechetoille, H. Mathez , Y. Zoccarato IPNL, 4 rue E. Fermi 69622 Villeurbanne, France — University Lyon 1, CNRS/IN2P3, MICRhAu contact : e.bechetoille (at) ipnl.in2p3.fr Noise summary [** OUT_PA-noise **] Device Param Noise Contribution % Of Total /MP34 id 0.000417014 32.85 /MN8 id 0.000292864 16.20 /MN8 fn 0.000186043 6.54 /MN180 id 0.000185096 6.47 /MN19 id 0.000155535 4.57 /MN180 fn 0.000144948 3.97 /MP36 id 0.000129472 3.17 /R1/R2 thermal_noise 0.000128369 3.11 /R1/R1 thermal_noise 0.000128365 3.11 /R27 rn 0.00012745 3.07 /MN33 id 0.000112945 2.41 /MP1 id 0.000109437 2.26 /MP2 id 0.000101267 1.94 /MN19 fn 8.17541e-05 1.26 /MP33 id 8.03967e-05 1.22 /R5 rn 7.19811e-05 0.98 /MP123 id 6.79982e-05 0.87 R6.R2.rpolyh1 thermal_noise 6.73008e-05 0.86 /MP35 id 6.48913e-05 0.80 /MP34 fn 5.46878e-05 0.56 R6.R1.rpolyh1 thermal_noise 5.10705e-05 0.49 /MN32 id 5.08948e-05 0.49 R3.R2.rpolyh1 thermal_noise 4.92785e-05 0.46 R3.R1.rpolyh1 thermal_noise 4.25442e-05 0.34 R4.R1.rpolyh1 thermal_noise 4.15188e-05 0.33 R4.R2.rpolyh1 thermal_noise 3.98648e-05 0.30 R2.R1.rpolyh1 thermal_noise 3.98639e-05 0.30 R2.R2.rpolyh1 thermal_noise 3.97519e-05 0.30 /I10/MP1 id 3.08658e-05 0.18 Integrated Noise Summary (in V) Sorted By Noise Contributors Total Summarized Noise = 0.000727636 Total Input Referred Noise = 0.493965 Noise Conclusion and Perspectives 4 chips comparison Evident difficulties of prototyping a circuit without models at low temperature (-150°C) Improvement on the consumption at equal noise level are under study. Effort on biasing element could be profitable. A low quiescent current buffer is under test. Specifications fulfilled. NSS-MIC 2010 - 2010 IEEE Nuclear Science Symposium and Medical Imaging Conference - Knoxville, Tennessee, 30 October – 6 November 2010 Version 1 detailed in [1] has no integrated shaper. With an external shaper, noise reaches 1100 e - at -110°C. Version 2 has a default in the amplifier of the shaper. A re-design was necessary. Version 3: Modified CSA using Gain Boost technique[2]. Stability issue due to a bad sizing of the compensation resistance. Results : higher noise at low temperature Version 4 is range limited because the intrinsic gain had been voluntary increased Context C pa R pa C D 250pF Detector H τ= [0.5; 1; 2 ;4]µs 2 ) 1 ( ) ( p p H p H o Charge Sensitive Amplifier -A shaper buffe r 500n s Input current 500n s CSA output Shaper output 500n s An investigation on the AMS 180nm will be done when the technology will be available. A 128-channel test (4 cards of 4 chips of 8 channels) on a detector with a digital acquisition [3] system will be published rapidly. When the design will be validated, a 32 or 64-channel chip will be submitted. http://micrhau.in2p3.fr/ CSA Shaper Buffer Version 1 : PA_TOP 1654µm X 1664µm= 2.75mm² Version 2 : TOP_EST 1974µm X 2364µm= 4.66mm² Version 3 : TOPPING 1914µm X 2544µm=4.876mm² Version 4 : T2K_V4 1914µm X 2684µm=5.14mm² Physic experiment : •A near detector (from the Hardron target) will allows physic experiments as well as electronic experiments for larger scale detectors (100 kilotonnes ) [1] CMOS Charge amplifier for liquid argon Time Projection Chamber detectors, E. Bechetoille, WOLTE08, Jena, Germany. http://hal.in2p3.fr/in2p3-00339737/ [2] Feedforward compensation techniques for high-frequency CMOS amplifiers, W. Sansen, [3] MicroTCA implementation of synchronous Ethernet-Based DAQ systems for large scale experiments, C. Girerd et al. RT2009, Beijing, China. http://hal.in2p3.fr/in2p3-00394783/ 1 C pa R pa H Charge Sensitive Amplifier - A Shaper buff er 1 2 3 4 5 6 7 2 3 4 5 6 7 1524 1584 1799 1915 18.1 14.0 18.9 18.6 1400 1600 1800 2000 -200 -150 -100 -50 0 50 10 12 14 16 18 20 AVERAG E EN C (e-) G ain (m V /fC) Fully digital ‘I2C-like’ configuration protocol Experimental application Application in a joint test with LHEP Bern C pa R pa H Charge Sensitive Amplifier - A Shaper buff er 8 channels x 4 chips =32 channels per pane. 3 pane in the LAr tank (vapours) one outside 32-channel

Transcript of Chip v4: Measurement from room temperature down to LN2. Chip v4: MIP signal with oscilloscope...

Page 1: Chip v4: Measurement from room temperature down to LN2.  Chip v4: MIP signal with oscilloscope persistence  Experimental results of various versions.

Chip v4:Measurement from room temperaturedown to LN2.

Chip v4:MIP signal with oscilloscope persistence

Experimental results of various versions chips.- First version noise is better since the shaper was external.- For the latest version, a noise reduction is obtained by coolingdown the chip at the level of the actual detector capacitance.

Chip v4:Histograms measure of the noise could be experimentally observed out of the ADC with the DAQ system [3]. The delta : 5.4mV corresponds to FWHM/2(Full width at half maximum). Since the rms Noise (σ) ~ FWHM/2.35We verify that "sqrt-integ-noise**2" maximum value : 5.32 ~5.4mV*2/2.35

Chip v4:Noise comparisonof the CSA withideal bias current (PA1^2)versus fully designed CSA (PA^2)

Version 4 configurations :•Cpa : 250 or 500fF•Rpa : 1, 2, 3 or 4MΩ•Shaping center frequency : 0.5, 1, 2 or 4 µs

Charge Sensitive Amplifier (CSA) in cold gas of Liquid Charge Sensitive Amplifier (CSA) in cold gas of Liquid Argon (LAr) Time Projection Chamber (TPC)Argon (LAr) Time Projection Chamber (TPC)

Charge Sensitive Amplifier (CSA) in cold gas of Liquid Charge Sensitive Amplifier (CSA) in cold gas of Liquid Argon (LAr) Time Projection Chamber (TPC)Argon (LAr) Time Projection Chamber (TPC)

Specifications : • Multichannel 3fC to 120fC (0.5μs pulse) Charge Sensitive Amplifier• Less than 1500 e- ENC with 250pF Detector capacitance (Signal/Noise ratio of 10)• Able to work in LAr vapours @ -150°C with an affordable power dissipation : 1mW/channel, considering a power pulsing rate of 2.5% (effective consumption : 40mW)• Low cost highly integrated solution implies an ASIC CMOS process circuit.

E.Bechetoille, H. Mathez, Y. ZoccaratoIPNL, 4 rue E. Fermi 69622 Villeurbanne, France — University Lyon 1,

CNRS/IN2P3, MICRhAu contact : e.bechetoille (at) ipnl.in2p3.fr

Noise summary[** OUT_PA-noise **]Device Param Noise Contribution % Of Total/MP34 id 0.000417014 32.85 /MN8 id 0.000292864 16.20 /MN8 fn 0.000186043 6.54 /MN180 id 0.000185096 6.47 /MN19 id 0.000155535 4.57 /MN180 fn 0.000144948 3.97 /MP36 id 0.000129472 3.17 /R1/R2 thermal_noise 0.000128369 3.11 /R1/R1 thermal_noise 0.000128365 3.11 /R27 rn 0.00012745 3.07 /MN33 id 0.000112945 2.41 /MP1 id 0.000109437 2.26 /MP2 id 0.000101267 1.94 /MN19 fn 8.17541e-05 1.26 /MP33 id 8.03967e-05 1.22 /R5 rn 7.19811e-05 0.98 /MP123 id 6.79982e-05 0.87 R6.R2.rpolyh1 thermal_noise 6.73008e-05 0.86 /MP35 id 6.48913e-05 0.80 /MP34 fn 5.46878e-05 0.56 R6.R1.rpolyh1 thermal_noise 5.10705e-05 0.49 /MN32 id 5.08948e-05 0.49 R3.R2.rpolyh1 thermal_noise 4.92785e-05 0.46 R3.R1.rpolyh1 thermal_noise 4.25442e-05 0.34 R4.R1.rpolyh1 thermal_noise 4.15188e-05 0.33 R4.R2.rpolyh1 thermal_noise 3.98648e-05 0.30 R2.R1.rpolyh1 thermal_noise 3.98639e-05 0.30 R2.R2.rpolyh1 thermal_noise 3.97519e-05 0.30 /I10/MP1 id 3.08658e-05 0.18 Integrated Noise Summary (in V) Sorted By Noise

ContributorsTotal Summarized Noise = 0.000727636Total Input Referred Noise = 0.493965

Noise

Conclusion and PerspectivesConclusion and Perspectives

4 chips comparison

•Evident difficulties of prototyping a circuit without models at low temperature (-150°C)•Improvement on the consumption at equal noise level are under study. Effort on biasing element could be profitable. •A low quiescent current buffer is under test. •Specifications fulfilled.

NSS-MIC 2010 - 2010 IEEE Nuclear Science Symposium and Medical Imaging Conference - Knoxville, Tennessee, 30 October – 6 November 2010

•Version 1 detailed in [1] has no integrated shaper. With an external shaper, noise reaches 1100 e- at -110°C.•Version 2 has a default in the amplifier of the shaper. A re-design was necessary.•Version 3: Modified CSA using Gain Boost technique[2]. Stability issue due to a bad sizing of the compensation resistance. Results : higher noise at low temperature•Version 4 is range limited because the intrinsic gain had been voluntary increased

Context

Cpa

Rpa

CD

250pF

Detector

H

τ= [0.5; 1; 2 ;4]µs

2)1()(

p

pHpH o

Charge Sensitive Amplifier

-A

shaper

buffer

500ns

Input current

500ns

CSA output Shaper output

500ns

•An investigation on the AMS 180nm will be done when the technology will be available.•A 128-channel test (4 cards of 4 chips of 8 channels) on a detector with a digital acquisition [3] system will be published rapidly.•When the design will be validated, a 32 or 64-channel chip will be submitted.

http://micrhau.in2p3.fr/

CSA Shaper Buffer

Version 1 : PA_TOP

1654µm X 1664µm=2.75mm²

Version 1 : PA_TOP

1654µm X 1664µm=2.75mm²

Version 2 : TOP_EST1974µm X 2364µm=4.66mm²

Version 2 : TOP_EST1974µm X 2364µm=4.66mm²

Version 3 : TOPPING1914µm X

2544µm=4.876mm²

Version 3 : TOPPING1914µm X

2544µm=4.876mm²Version 4 : T2K_V4

1914µm X 2684µm=5.14mm²

Version 4 : T2K_V41914µm X

2684µm=5.14mm²

Physic experiment :•A near detector (from the Hardron target) will allows physic experiments as well as electronic experiments for larger scale detectors (100 kilotonnes )

[1] CMOS Charge amplifier for liquid argon Time Projection Chamber detectors, E. Bechetoille, WOLTE08, Jena, Germany. http://hal.in2p3.fr/in2p3-00339737/[2] Feedforward compensation techniques for high-frequency CMOS amplifiers, W. Sansen, [3] MicroTCA implementation of synchronous Ethernet-Based DAQ systems for large scale experiments, C. Girerd et al. RT2009, Beijing, China. http://hal.in2p3.fr/in2p3-00394783/

1

Cpa

Rpa

H

Charge Sensitive Amplifier

-A

Shaper

buffer

1

234

5

67

2

3

4

5

6

7

1524

1584

17991915 18.1

14.0

18.9 18.6

1400

1600

1800

2000

-200 -150 -100 -50 0 50

10

12

14

16

18

20

AVERAGE ENC (e-)Gain (mV/fC)

Fully digital ‘I2C-like’ configuration protocol

Experimental application

•Application in a joint test with LHEP Bern

Cpa

Rpa

H

Charge Sensitive Amplifier

-A

Shaper

buffer

8 channels x 4 chips =32 channels per pane.3 pane in the LAr tank (vapours) one outside

32-channel