© Boardworks Ltd 2005 1 of 47 © Boardworks Ltd 2005 1 of 47 AS-Level Maths: Core 2 for Edexcel...

47
© Boardworks Ltd 2005 1 of 47 © Boardworks Ltd 2005 1 of 47 AS-Level Maths: Core 2 for Edexcel C2.4 Trigonometry 1 This icon indicates the slide contains activities created in Flash. These activities are not edit For more detailed instructions, see the Getting Started presentation.

Transcript of © Boardworks Ltd 2005 1 of 47 © Boardworks Ltd 2005 1 of 47 AS-Level Maths: Core 2 for Edexcel...

© Boardworks Ltd 20051 of 47 © Boardworks Ltd 20051 of 47

AS-Level Maths: Core 2for Edexcel

C2.4 Trigonometry 1

This icon indicates the slide contains activities created in Flash. These activities are not editable.

For more detailed instructions, see the Getting Started presentation.

© Boardworks Ltd 20052 of 47

Co

nte

nts

© Boardworks Ltd 20052 of 47

The sine, cosine and tangent of any angle

The graphs of sin θ, cos θ and tan θ

Exact values of trigonometric functions

Trigonometric equations

Trigonometric identities

Examination-style questions

The sine, cosine and tangent of any angle

© Boardworks Ltd 20053 of 47

θ

OPPOSITE

HY

PO

TE

NU

SE

A D J A C E N T

The three trigonometric ratios

Sin θ =Opposite

Hypotenuse S O HS O H

Cos θ =Adjacent

Hypotenuse C A HC A H

Tan θ =OppositeAdjacent T O AT O A

Remember: S O HS O H C A HC A H T O AT O A

The three trigonometric ratios, sine, cosine and tangent, can be defined using the ratios of the sides of a right-angled triangle as follows:

© Boardworks Ltd 20054 of 47

x

y

O

P(x, y)

r

The sine, cosine and tangent of any angle

These definitions are limited because a right-angled triangle cannot contain any angles greater than 90°.

To extend the three trigonometric ratios to include angles greater than 90° and less than 0° we consider the rotation of a straight line OP of fixed length r about the origin O of a coordinate grid.

Angles are then measured anticlockwise from the positive x-axis.

For any angle θ there is an associated acute angle α between the line OP and the x-axis.

α

θ

© Boardworks Ltd 20055 of 47

The sine, cosine and tangent of any angle

The three trigonometric ratios are then given by:

sin =y

r

cos =x

r

tan =y

x

The x and y coordinates can be positive or negative, while r is always positive.

This means that the sign of the required ratio will depend on the sign of the x-coordinate and the y-coordinate of the point P.

© Boardworks Ltd 20056 of 47

The sine, cosine and tangent of any angle

The relationship between θ measured from the positive x-axis and the associated acute angle α depends on the quadrant that θ falls into.

If we take r to be 1 unit long then these ratios can be written as:

sin = =1

yy

cos = =1

xx

tan =y

x sin

tan =cos

For example, if θ is between 90° and 180° it will fall into the second quadrant and α will be equal to (180 – θ)°.

© Boardworks Ltd 20057 of 47

The sine of any angle

If the point P is taken to revolve about a unit circle then sin θ is given by the y-coordinate of the point P.

© Boardworks Ltd 20058 of 47

The cosine of any angle

If the point P is taken to revolve about a unit circle then cos θ is given by the x-coordinate of the point P.

© Boardworks Ltd 20059 of 47

The tangent of any angle

Tan θ is given by the y-coordinate of the point P divided by the x-coordinate.

© Boardworks Ltd 200510 of 47

The tangent of any angle

Tan θ can also be given by the length of the tangent from the point P to the x-axis.

© Boardworks Ltd 200511 of 47

3rd quadrant

2nd quadrant 1st quadrant

4th quadrant

Tangent is positiveTT

Sine is positiveSS All are positiveAA

Remember CAST

We can use CAST to remember in which quadrant each of the three ratios is positive.

Cosine is positiveCC

© Boardworks Ltd 200512 of 47

The sine, cosine and tangent of any angle

The sin, cos and tan of angles in the first quadrant are positive.The sin, cos and tan of angles in the first quadrant are positive.

In the second quadrant: sin θ = sin αcos θ = –cos αtan θ = –tan α

sin θ = sin αcos θ = –cos αtan θ = –tan α

In the third quadrant: sin θ = –sin αcos θ = –cos αtan θ = tan α

sin θ = –sin αcos θ = –cos αtan θ = tan α

In the fourth quadrant: sin θ = –sin αcos θ = cos αtan θ = –tan α

sin θ = –sin αcos θ = cos αtan θ = –tan α

where α is the associated acute angle.

© Boardworks Ltd 200513 of 47

The sine, cosine and tangent of any angle

The value of the associated acute angle α can be found using a sketch of the four quadrants.For angles between 0° and 360° it is worth remembering that:

when 0° < θ < 90°, α = θ

when 90° < θ < 180°, α = 180° – θ

when 180° < θ < 270°, α = θ – 180°

when 270° < θ < 360°, α = 360° – θ

For example, if θ = 230° we have:

230° is in the third quadrant where only tan is positive and so:

α = 230° – 180° = 50°

sin 230° = –sin 50°

cos 230° = –cos 50°

tan 230° = tan 50°

© Boardworks Ltd 200514 of 47

Co

nte

nts

© Boardworks Ltd 200514 of 47

The sine, cosine and tangent of any angle

The graphs of sin θ, cos θ and tan θ

Exact values of trigonometric functions

Trigonometric equations

Trigonometric identities

Examination-style questions

The graphs of sin θ, cos θ and tan θ

© Boardworks Ltd 200515 of 47

The graph of y = sin θ

© Boardworks Ltd 200516 of 47

The graph of y = sin θ

The graph of sine is said to be periodic since it repeats itself every 360°.

We can say that the period of the graph y = sin θ is 360°.

Other important features of the graph y = sin θ include the fact that:

It passes through the origin, since sin 0° = 0.

The maximum value is 1 and the minimum value is –1. Therefore, the amplitude of y = sin θ is 1.

It has rotational symmetry about the origin. In other words, it is an odd function and so sin (–θ) = –sin θ.

© Boardworks Ltd 200517 of 47

The graph of y = cos θ

© Boardworks Ltd 200518 of 47

The graph of y = cos θ

Like the graph of y = sin θ the graph of y = cos θ is periodic since it repeats itself every 360°.

We can say that the period of the graph y = cos θ is 360°.

Other important features of the graph y = cos θ include the fact that:

It passes through the point (0, 1), since cos 0° = 1.

The maximum value is 1 and the minimum value is –1. Therefore, the amplitude of y = cos θ is 1.

It is symmetrical about the y-axis. In other words, it is an even function and so cos (–θ) = cos θ.

It is the same as the graph of y = sin θ translated left 90°. In other words, cos θ = sin (90° – θ).

© Boardworks Ltd 200519 of 47

The graph of y = tan θ

© Boardworks Ltd 200520 of 47

The graph of y = tan θ

You have seen that the graph of y = tan θ has a different shape to the graphs of y = sin θ and y = cos θ.

Important features of the graph y = tan θ include the fact that:

It passes through the point (0, 0), since tan 0° = 0.

It is symmetrical about the origin. In other words, it is an odd function and so tan (–θ) = –tan θ.

It is periodic with a period of 180°.

tan θ is not defined for θ = ±90°, ±270°, ±450°, … that is, for odd multiples of 90°. The graph y = tan θ therefore contains asymptotes at these points.

Its amplitude is not defined, since it ranges from +∞ to –∞.

© Boardworks Ltd 200521 of 47

Co

nte

nts

© Boardworks Ltd 200521 of 47

The sine, cosine and tangent of any angle

The graphs of sin θ, cos θ and tan θ

Exact values of trigonometric functions

Trigonometric equations

Trigonometric identities

Examination-style questions

Exact values of trigonometric functions

© Boardworks Ltd 200522 of 47

Sin, cos and tan of 45°

A right-angled isosceles triangle has two acute angles of 45°.

45°

45°Suppose the equal sides are of unit length.

1

1

Using Pythagoras’ theorem:

We can use this triangle to write exact values for sin, cos and tan 45°:

cos 45° = tan 45° = 1

2

2

The hypotenuse 2 21 1

1

2sin 45° =

1

2

© Boardworks Ltd 200523 of 47

2 2

2

60° 60°

60°

2

60°

30°

1

3

Sin, cos and tan of 30°

Suppose we have an equilateral triangle of side length 2.

We can use this triangle to write exact values for sin, cos and tan 30°:

If we cut the triangle in half then we have a right-angled triangle with acute angles of 30° and 60°.

Using Pythagoras’ theorem:

The height of the triangle 2 22 1

3

sin 30° =1

2cos 30° =

3

2tan 30° =

1

3

© Boardworks Ltd 200524 of 47

Sin, cos and tan of 60°

Suppose we have an equilateral triangle of side length 2.

We can also use this triangle to write exact values for sin, cos and tan 60°:

3

sin 60° =3

2cos 60° =

1

2tan 60° = 3

2 2

2

60° 60°

60°

2

60°

30°

1

3

If we cut the triangle in half then we have a right-angled triangle with acute angles of 30° and 60°.

Using Pythagoras’ theorem:

The height of the triangle 2 22 1

© Boardworks Ltd 200525 of 47

Sin, cos and tan of 30°, 45° and 60°

The exact values of the sine, cosine and tangent of 30°, 45° and 60° can be summarized as follows:

30°

sin

cos

tan

45° 60°

Use this table to write the exact value of cos 135°.

cos 135° = –cos 45° =

12

1

21

21

3

12

32

32

31

1

2

© Boardworks Ltd 200526 of 47

Sin, cos and tan of 30°, 45° and 60°

Write the following ratios exactly:

1) cos 300° =

3) tan 240° =

5) cos –30° =

7) sin 210° =

2) tan 315° =

4) sin –330° =

6) tan –135° =

8) cos 315° =

12

12

12

32

1

2

3

–1

1

© Boardworks Ltd 200527 of 47

Co

nte

nts

© Boardworks Ltd 200527 of 47

The sine, cosine and tangent of any angle

The graphs of sin θ, cos θ and tan θ

Exact values of trigonometric functions

Trigonometric equations

Trigonometric identities

Examination-style questions

Trigonometric equations

© Boardworks Ltd 200528 of 47

Equations of the form sin θ = k

Equations of the form sin θ = k, where –1 ≤ k ≤ 1, have an infinite number of solutions.

If we use a calculator to find arcsin k (or sin–1 k) the calculator will give a value for θ between –90° and 90°.

This is called the principal solution of sin θ = k.

Other solutions in a given range can be found using the graph of y = sin θ or by considering the unit circle.

For example:

There is one and only one solution in this range.

Solve sin θ = 0.7 for –360° < θ < 360°.

arcsin 0.7 = 44.4° (to 1 d.p.)

© Boardworks Ltd 200529 of 47

44.4°

y = 0.7y = sin θ

Equations of the form sin θ = k

Using the graph of y = sin θ between –360° and 360° and the line y = 0.7 we can locate the other solutions in this range.

So the solutions to sin θ = 0.7 for –360° < θ < 360° are:

θ = –315.6°, –224.4°, 44.4°, 135.6° (to 1 d.p.)

135.6°–224.4°–315.6°

© Boardworks Ltd 200530 of 47

Equations of the form sin θ = k

© Boardworks Ltd 200531 of 47

44.4°

Equations of the form sin θ = k

We could also solve sin θ = 0.7 for –360° < θ < 360° by considering angles in the first and second quadrants of a unit circle where the sine ratio is positive.Start by sketching the principal solution 44.4° in the first quadrant.

Next, sketch the associated acute angle in the second quadrant.

135.6°–224.4° –315.6°

Moving anticlockwise from thex-axis gives the second solution:

Moving clockwise from thex-axis gives the third and fourth solutions:

180° – 44.4° = 135.6°

–(180° + 44.4°) = –224.4°–(360° – 44.4°) = –315.6°

© Boardworks Ltd 200532 of 47

Equations of the form cos θ = k and tan θ = k

Equations of the form cos θ = k, where –1 ≤ k ≤ 1, and tan θ = k, where k is any real number, also have infinitely many solutions. For example:

Solve tan θ = –1.5 for –360° < θ < 360°.

Using a calculator, the principal solution is θ = –56.3° (to 1 d.p.)

–56.3°

–236.3°123.7°

303.7°

Now look at angles in the second and fourth quadrants of a unit circle where the tangent ratio is negative.

This gives us four solutions in the range –360° < θ < 360°:

θ = –236.3°, –56.3°, 123.7°, 303.7°

© Boardworks Ltd 200533 of 47

Equations of the form cos θ = k

© Boardworks Ltd 200534 of 47

Equations of the form tan θ = k

© Boardworks Ltd 200535 of 47

Equations involving multiple or compound angles

Multiple angles are angles of the form aθ where a is a given constant.

Compound angles are angles of the form (θ + b) where b is a given constant.

When solving trigonometric equations involving these types of angles, care should be taken to avoid ‘losing’ solutions.

Solve cos 2θ = 0.4 for –180° < θ < 180°.

Start by changing the range to match the multiple angle:

Next, let x = 2θ and solve the equation cos x = 0.4 in the range –360° ≤ x ≤ 360°.

–180° < θ < 180°

–360° < 2θ < 360°

© Boardworks Ltd 200536 of 47

Equations involving multiple or compound angles

Now, using a calculator: x = 66.4° (to 1 d.p.)

Using the unit circle to find the values of x in the range –360° ≤ x ≤ 360° gives:

66.4°

293.6°–66.4°

–293.6°

x = 66.4°,

But x = 2θ so:

θ = 33.2°, 146.8°, –33.2°, –146.8°

This is the complete solution set in the range –180° < θ < 180°.

293.6°, –66.4°, –293.6°

© Boardworks Ltd 200537 of 47

Equations involving multiple or compound angles

Solve tan(θ + 25°)= 0.8 for 0° < θ < 360°.

Start by changing the range to match the compound angle:

Next, let x = θ + 25° and solve the equation tan x = 0.8 in the range 25° < x < 385°.

0° < θ < 360°

25° < θ + 25° < 385°

Using the unit circle to find the values of x in the range 25° ≤ x ≤ 385° gives:

x = 38.7°, 218.7° (to 1 d.p.)

But x = θ + 25° so:

θ = 13.7°, 193.7° (to 1 d.p.)

Using a calculator: x = 38.7° (to 1 d.p.)38.7°

218.7°

© Boardworks Ltd 200538 of 47

Trigonometric equations involving powers

Sometimes trigonometric equations involve powers of sin θ, cos θ and tan θ. For example:

Notice that (sin θ)2 is usually written as sin2θ.

Solve 4sin2θ – 1= 0 for –180° ≤ θ ≤ 180°.

24sin 1= 0 24sin =12 1

4sin =12sin =

12When sin θ = ,

12When sin θ = – ,

θ = 30°, 150°

θ = –30°, –150°

So the full solution set is θ = –150°, –30°, 30°, 150°

© Boardworks Ltd 200539 of 47

Trigonometric equations involving powers

Treat this as a quadratic equation in cos θ.

Solve 3cos2θ – cos θ = 2 for 0° ≤ θ ≤ 360°.

When cos θ = 1, θ = 0°, 360°

θ = 131.8°, 228.2°

So the full solution set is θ = 0°, 131.8°, 228.2°, 360°

3cos2θ – cos θ = 2

3cos2θ – cos θ – 2 = 0Factorizing:

(cos θ – 1)(3cos θ + 2) = 0

cos θ = 1 or cos θ = – 23

When cos θ = – ,23

© Boardworks Ltd 200540 of 47

Co

nte

nts

© Boardworks Ltd 200540 of 47

The sine, cosine and tangent of any angle

The graphs of sin θ, cos θ and tan θ

Exact values of trigonometric functions

Trigonometric equations

Trigonometric identities

Examination-style questions

Trigonometric identities

© Boardworks Ltd 200541 of 47

Trigonometric identities

Two important identities that must be learnt are:

sintan (cos 0)

cos

sin2θ + cos2θ ≡ 1

An identity, unlike an equation, is true for every value of the given variable so, for example:

The symbol ≡ means “is identically equal to” although an equals sign can also be used.

sin24° + cos24° ≡ 1, sin267° + cos267° ≡ 1, sin2π + cos2π ≡ 1, etc.

© Boardworks Ltd 200542 of 47

Trigonometric identities

We can prove these identities by considering a right-angled triangle:

x

yr

θ

y

rsin =

x

rand cos =

sin=

cos

y

r

xr

=y

x= tan as required.

Also:y x

r r

2 22 2sin + cos = +

2 2

2

+=

x y

r

But by Pythagoras’ theorem x2 + y2 = r2 so:2

2 22

sin + cos = =1 as required.r

r

© Boardworks Ltd 200543 of 47

71.6°

Trigonometric identities

One use of these identities is to simplify trigonometric equations. For example:

Solve sin θ = 3 cos θ for 0° ≤ θ ≤ 360°.

Dividing through by cos θ:sin 3cos

=cos cos

tan = 3Using a calculator, the principal solution is θ = 71.6° (to 1 d.p.)

251.6°

So the solutions in the given range are:

θ = 71.6°, 251.6° (to 1 d.p.)

© Boardworks Ltd 200544 of 47

Trigonometric identities

Solve 2cos2θ – sin θ = 1 for 0 ≤ θ ≤ 360°.

We can use the identity cos2θ + sin2 θ = 1 to rewrite this equation in terms of sin θ.

2(1 – sin2 θ) – sin θ = 1

2 – 2sin2θ – sin θ = 1

2sin2θ + sin θ – 1 = 0

(2sin θ – 1)(sin θ + 1) = 0

So: sin θ = 0.5 or sin θ = –1

If sin θ = 0.5, θ = 30°, 150°

If sin θ = –1, θ = 270°

© Boardworks Ltd 200545 of 47

Co

nte

nts

© Boardworks Ltd 200545 of 47

The sine, cosine and tangent of any angle

The graphs of sin θ, cos θ and tan θ

Exact values of trigonometric functions

Trigonometric equations

Trigonometric identities

Examination-style questions

Examination-style questions

© Boardworks Ltd 200546 of 47

Examination-style question

Solve the equation

3 sin θ + tan θ = 0

for θ for 0° ≤ θ ≤ 360°.

Rewriting the equation usingsin

tan :cos

sin3sin + = 0

cos

3sin cos + sin = 0 sin (3cos +1) = 0

So sin θ = 0 or 3 cos θ + 1 = 0

3 cos θ = –1

cos θ = – 13

© Boardworks Ltd 200547 of 47

Examination-style question

In the range 0° ≤ θ ≤ 360°,

when sin θ = 0, θ = 0°, 180°, 360°.

13when cos θ = – :

cos–1 – = 109.5° (to 1 d.p.)13

cos θ is negative in the 2nd and 3rd quadrants so the second solution in the range is:

250.5°

109.5°θ = 250.5° (to 1 d.p.)

So the complete solution set is:

θ = 0°, 180°, 360°, 109.5°, 250 .5°