% Area o % Volumen

download % Area o % Volumen

of 15

Transcript of % Area o % Volumen

  • 8/10/2019 % Area o % Volumen

    1/15

    IMAGE ANALYSIS & QUANTITATIVE METALLOGRAPHY

    A. N. Sinha

    Scientist

    National Metallurgical Laboratory

    Jamshedpur - 831 007

    INTRODUCTION

    The metallographic examination constitutes simply a planar

    section view of a three dimensional structure. It is not enough to

    recognize this fact; one must also understand how shape in a three

    dimensional construction can degenerate into traces in random planar

    section. In fact, one must be able by mental visual skill to recreate from

    slices of hard boiled egg, the oblate ellipsoid when they came. For

    example, an inclusion, or porosity can appear to be different when

    observed in different planer section and the assessment of volume will

    be qualitative and only quantitative to the extent of visual judgement.

    Actual quantitative evaluation of inclusion and porosity, their shape and

    size distribution are very important for predicting the mechanical

    properties of the metals and alloys. Similarly, the grain size is another

    important factor in the hardenability of steels, ductility of brass and in

    the ductile-brittle transition of alloys. The amount of ferrite in stainless

    steels is a factor in their foregeability. The average flake size of graphite

    is a control parameter in the strength of gray cast iron. These are only a

    few instances where numerical limits to metallographic parameters are

    practical factors in quality or production control. Since we can not

    obtain large number of specimens to get correct three dimensional

    picture, quantitative analysis is an appropriate alternative. Two factors

    must be assumed in all such quantitative studies. The planar section or

    sections be representative of the whole. In the matter of arriving at

    average values for dimensions of distributed particles one must have a

    knowledge of the actual or approximate shape of the particles. Few

    particles are actually perfectly spherical. but this is a mathematical

    convenience.

    Kinds of Measurement

    The quantities one may wish to determine can be derived from

    one or more of several kinds of measurements based upon real analysis,

    point counting, and lineal analysis.

    Areal analysis involves the measurement with a planimeter (or by

    other means) of the area of a microconstituent intercepted by a planar

    cross section. Point counting involves the superposition of an

    appropriate line grid such as transparent graph paper into a

    microstructural feature, counting the number per unit area of grid

    intersections which fall on that type of feature. Lineal analysis involves

    the estimate of the proportion per unit length of a random line

    superimposed on a micrograph occupied by the specific type of

    microstructural feature. Lineal analysis involves the estimate of the

  • 8/10/2019 % Area o % Volumen

    2/15

    proportion per unit length of a random line superimposed on a

    micrograph occupied by the specific type of microstructural feature. In

    another version of this, a count is made of the number of intersections

    per unit length which a random line makes with a specific type of

    distributed particle.

    A basic rule in quantitative observations made on planar section is

    that all three ratios are equal and that in turn they are equal to the

    volume fraction.

    Va a Na La

    V

    = A

    =

    N =

    L

    Earlier it used to be made manually and quantitative

    measurements were very time consuming and difficult. Thanks to

    computer technology, a large variety of Automatic Image Analysers are

    available and now we can measure grain size, particle size, distribution,

    aspect ration of odd shaped flakes of cast iron, retained austenite in

    ferrite, and ferrite in stainless steel with ease. However, the basic

    principle remains the same.

    Measurement of Grain size

    Most of the basic difficulties in quantitative metallographv are

    contained in the problem of assignment of numerical magnitudes to the

    grains of a polycrystalline aggregate. All the grains may not be of same

    size and so on. Therefore, an average statistical concept is taken into

    consideration assuming all grains to be spherical.

    One of the basic measurements in grain size determination is the

    number of grains counted per unit area of planar field of observation.

    From analysis of the distributions of sections which will be encountered

    in space occupied by truncated octahedra, the ASTM system gives the

    following relationship :

    n 2N-1

    where n = number of grains per square inch.

    at 100 x magnification

    & N= ASTM grain size number

    Standard charts are available and by comparing the

    microstructures at 100 x magnification one can determine the ASTM

    grain size of the microstructures. Image Analysers are now available for

    this with suitable programming.

    Measurement of Particle Sizes

    The volume fraction of a dispersed phase can be determined by

    simple lineal, areal, or point count analysis and this determination is

    independent of the shape, ideal or otherwise, which the particles

    posses. This is not true, however. for the problem of estimating the

    number of particles per unit volume and the dimensions of particles. In

    both the cases, the shape of the particle must be known. In practice

  • 8/10/2019 % Area o % Volumen

    3/15

    one must be able to decide whether the distributed phase approximates

    a sphere, a disc, a rod, an ellipsoid, or some such ideal geometric

    shape. Relationships have been derived for particle density and

    dimensions using parameters measurable on a polished section. Each

    relationship pertains to a specific geometric shape and assumes a

    uniform size distribution. The problem of nonuniform size distribution

    must be considered separately. However, all these rigorous

    mathematical derivations are beyond the scope of present course.

    Quantitative metallography equipments can do these without any human

    factor, except to use them with skill. A histogram of particle size and

    volume can obtained easily which gives the idea of distribution.

    Normally inclusions are determined by this method. However, for day to

    day work, ASTM charts are available which are designated A, B, C & D

    for Sulphides, Alumina, Silicates and Oxides types of inclusions. They

    are thick and thin. All these charts are at 100 x magnifications. By

    comparison with these charts, inclusions of the microstructures can be

    identified and quantified. The volume % of these inclusions can be

    measured with the help of Image Analyser.

    Automatic Image Analyser

    Now-a-days a large number of versatile programmed Automatic

    Image Analysers are available for quantitative metallography. These can

    be operated manually also. The image analyser is interfaced with an

    optical microscope which produces microstructures and is transmitted

    to TV screen with the help of TV camera. It works on the basic

    principle of differentiating between the greyness of phases or particles,

    which can be initiated electronically as per choice. Once initiated.

    these phases or particles can be measured both manually as well as by

    automatic computer programming. The image analysers have got three

    options, namely area, count and intercept functions. Sometimes we may

    like to edit the picture on TV screen. Therefore, image editors are also

    available with image analyser. Besides optical microscope. the TV

    camera can be shifted for analysing the photographs also. No

    metallography laboratory can be complete without image analyser.

    However. for routine type of industrial work ASTM charts for

    ASTM grain size. inclusions charts for Alumina. Sulphides, Silicates and

    Oxides are sufficient, as the image analysers are very costly and are

    needed for advanced quantitative metallography only. Here, one thing

    must be mentioned that special etching is needed to produce different

    greyness to the required phases. without which image analyzer is

    useless. Probably, colour metallography laboratory is a must.

    REFERENCES

    1.

    R.T. Howard and M.Cohen. Trans. AIME 172, 413-426 (1947).

    2.

    C.S,Smith and L.Guttman, Trans. AIME, 197, 81-87 (1953).

    3.

    J.E.Hillard and J.W.Cahn. Trans, AIME, 221, 344-352. 1961.

    4.

    R.L.Fullman, Trans, AIME, 197, 447-452 (1953).

    5.

    William Rostoker and James R.Dvovak, Interprtation of

    Metallographic Structures, Academic Press, New York, 1965.

    6. Metals Handbook - ASM

    J-3

  • 8/10/2019 % Area o % Volumen

    4/15

    AMF.111CP t

    4

    SOCIETY FOR TESTING MATEPRIALS

    1916 PACE ST.. Pf-ilt.AfIft.PWA 3

    PA

    o

    - J..

    ,

    .

    .

    -

    J-4

  • 8/10/2019 % Area o % Volumen

    5/15

    4..1)7 -

    4

    r

    , - -

    ...,..

    ty..

    f.

    - .

    tR

    Y i S t r

    44 ,

    e

    r

    \

    -

    .

    e- 1

    .

    -t-

    l

    ..,

    to :

    1,

    - , ..7. -.

    . .: : ;:

    - . . , . . : - . .

    -. .

    ,.

    . : . ,

    - . . .

    ....

    -

    7 , 7 . -

    ,

    ,,

    : . - , , , 4 . . . . - , , . . .

    - . : . % - . . - ,

    2

    ,

    : k t - i i 1 , = z . . ; . .' , ' . .: . : .

    --

    '

    w

    -ii.? .

    :.

    . :

    .-

    - ..; , 1 4 - G . . - -

    '. . . ? "

    ,'" ?: : : 7 , '

    ".;'

    : :

    .

    4 .

    , ;

    ,

    . . ; . : . : : . .

    . . . . - : , ` . - .

    ,. -

    ,,

    . . : .

    ,

    . . . . , . , . . . . , . . . . : . . .

    .. . . . . . . . i . . . .. .

    .

    .. .

    ,:q..

    ,c

    .

    ,. .

    .

    .,.,

    .. .

    , . , . . , . . . , , . . .

    - . .

    :

    .

    .. .

    ,

    ii

    ,.;

    .

    . ; . ;

    ,

    ,..

    - ::

    .,

    -

    :. : : : :

    ,

    - ,:. . .7.

    .tr

    .

    - - . .i

    . g i : . :

    . z ' . .-7

    1

    .. .- 4 -

    ;i: , . . 1

    .

    :

    "i.

    4r.

    ..,

    ;

    -.:

    '

    .

    4 , 4 .

    -

    .

    - ..

    ,.

    ,

    44et

    ,

    -

    ,Iiif, , , f -

    .

    .:*

    ',,

    e - 1 .-

    :- -,

    7

    , , , , ,

    , :11 - ,

    . . . p . - ,

    . . . . .

    . . , , , . . . . , - . , . . , . . - . 0

    ,

    -; :

    . , : . _

    - - ,

    - ,

    ), ::. . i .r. : -

    ,,,

    f-ni-

    ,

    , - . : - -

    . . . ,. . . . . ,. . :. f.. _.

    ,

    -i,....4.i'..,.

    )..

    ',..

    S

    1,... 44:44::....13I

    1 "

    ,

    C.

    77

    ;_

    ..7*C.;4.4.:1

    e.;.

    .;41

    :; :

    ....-`'.

    .. 1.% I'

    -

    5 , - . :

    : - :

    '

    - ,

    4 - _

    . . . , : , . . - , , . . . . . , . . . . . , , . . . : . ,

    s r

    . , : . . . . . . . . , .. . :

    : - . . . .

    I;

    , : : : . . . . . . . . . , , - ; "

    .,.

    4 : e . T . 1 .

    ,. . . . . : it - A s - - . . . . .

    ;

    4 1 ;,

    .,

    . . . :1 4. . . . ;.

    . . ; , .

    7 . 7 -;,

    :

    . . . ,:,.. 47

    .. .

    ,

    . . . . . , . .

    ` .

    ,

    1.. .

    ,,

    ,

    ,

    ,.

    -1

    . * "

    ,

    .,;'''1- ,.,,

    ,

    . .; . . . .:_

    ;

    .4 ,

    '

    4.: ..ttz

    ,

    .

    :

    o ls . 41.

    -r. , .scit

    :

    , - -?

    -

    ,

    -

    .". i

    - - - , -:.-

    1*. . . , :

    - '1.-

    ..Ar... . -

    ',.-

    ,..

    -- 7 `

    ,

    ..;,,..

    7 ,:

    -

    '. f

    -- -

    : ' , . t

    .

    .

    .'

    .

    - i

    ' . . ; . . ' . . : . ' - : , - - ;

    x. " r . .

    41,

    z A

    .

    - ; : t ; ', .,

    i

    ,

    . . - : , - ' . . , ' : , : : : ' ' . ' . ,

    - i .

    'f .

    : - . , , ' . . ' , -

    ,

    -

    . . . ' , . . ; . " . . . ; 4 . . . . . i . * : ` , - - - - - : ' . . . ' - , . : 1 " . ' : : : : . - . . , . . : : : ' . . . -

    ,

    W ) : :1 7 f r t '4

    ,

    - : T X : J .

    ,

    . 0 . *

    , . . . j.

    - . . . . .

    . . : , . . - : .

    .

    :-, . m . ..,.

    -,,

    ,.....C

    .

    -.-

    - , .

    ...

    .,/,.4..

    . , . . . . 7 : -

    , . . : : .

    : f . . .

    .-

    .

    .. .

    5ti ,I

    3

    ,, , . . . . .5

    . .:

    2,;

    . 1

    .._..

    4

    ., , ,.,1_ _ . .; . : ,,. . : :::. _ ...

    .,

    . ;.

    , .i

    .

    .

    ,. .;

    7;,..;,

    S.

    .: ,...- ..- ; - .....-... . ... ..

    . . , ....,,,. . ,..., .72, ..

    . -..- .

    ..2...,....

    - ,;. r .... :a,

    ..

    : . . ,:..

    . . -

    a : ,

    .

    ..

    .,....: :-. -, at ..-- :: .

    .. ..

    . . . : . . , - . 1 . . . . . . , . . . . . . . . . . .

    .

    ..

    . . . . . . . . . . . : 4 .

    ,: . - -

    . . ' . '

    .

    -

    .

    ii

    .

    ,

    .

    ..

    r

    4 4

    .

    -

    :

    ,

    ,.

    .

    :

    .....

    ..

    .

    -

    .

    . 1.

    -

    ..

    . ,,.

    . .-.

    -

    .-

    .,.

    -

    .

    . .i

    - .

    .

    .

    .

    .

    .

    .V

    -

    ,t

    .

    ,;.

    -

    ,

    -

    .

    :.

    .

    t

    .

    ,;

    ,.

    -

    - :

    .

    ' .

    :

    4

    ,

    ,

    ,

    -

    4

    --

    .

    -

    -

    .

    . . .,

    ...

    :

    . : 7

    4

    ,

    1

    -

    .w

    .

    -

    .,

    ,

    .

    ;I:

    w

    -

    :

    - e

    ,

    :;

    -

    .

    ,

    .,t.:

    :

    -

    . .

    -

    .

    I

    :

    .

    ,

    *

    -

    .-

    44

    .-:-:

    ..

    4

    .

    .:1;%

    -,

    "

    ii

    .

    ..

    .

    .::-

    .. .4 : , . . -..

    :

    . . . : .- % , , L , - ; - , - , - ,- ' , Z . . - .

    1 ' , . : " : . 4 ; . - . . : . " - :

    : * . % : : : - :- ' , - . . - - - - .

    .i"

    - .

    - - - . : " - " .-4

    : 3;

    ;.

    .

    - ?. . 74-

    ,-

    g; - , , , , , , , , ,

    :

    , . . . . - ,

    ' 4 . 4 -.

    . - . 7

    '. '.. .. .

    1 . - ' 2 - .

    . i g s - L t.7i,m';e

    4

    :

    .t

    - .

    - ,-- .4

    ,

    4 . - , . .

    ,

    4 t .

    .. - 4 *

    . . - - .

    . . . . - - - .

    4 .

    .

    . . .

    s-,.

    3>..; - -. ..,- - .1

    ...A .--

    1 .,

    . . . t 1 . . - , - -

    . ' . . ' - -Z

    ,

    4 . i . . . . .. .

    . . ; -

    .

    . .1 . "1 '

    1 " ; - ' - ' . . 1 - = i i . ' ' '

    ,

    . ' 7 . .

    :. E . P 4 - j 1 k

    *

    A", . . .L - . 4 v

    ,,- , 1

    { . . . . , . . . / .,

    .. 7 ..

    . , - , , 4 " 4 4

    ,-

    ,

    f

    4 , -

    -,

    : . 7 : 1 < . . . - l ' i r

    _ . . . . . . , , .

    1 1

    , .., . , : . , . : . : . . . . . , , .

    . . . . . . . . . . . , , . . , . :

    ,

    . . . . . . . . . . . . s , . . , - ? , ,,?.A.

    :

    .

    t

    vti.,

    ,

    . : ; . 4 ,*

    ,, , - * e : - . . . . , * - . - ; . - . : - ,;

    4 4 - -

    , . - 1

    ,

    - 7 4 . -

    1

    - i .4 . ,

    ,:

    . 0 %

    .

    ....., .

    ':

    -

    . . :4 . - , .

    .i.:t

    , . .

    -..

    ,

    : - .

    - .

    .T. , . . . ,;;

    (

    44.' -'

    ., .

    r

    ,

    i., ... ,......... ,..:.,

    ,..

    ,, .

    .

    ......

    , i. 9 : ; ,. .

    ..:.

    1...

    , . . . .. ..

    ,;:

    /....... .....

    ,

    ........... . . . . ,,_,1-........ sy .

    ....11,

    , 3 :

    2,...

    t

    - . , . . ..,

    -

    ,;;

    -;

    , , , ,

    ;

    :

    ;

    . : . .:....v

    ,. .-

    i.., : : .,-.-. ; , . ., .;_

    .. .

    i

    ,

    . ...,

    :i

    e.:

    sl

    v

    ..

    ,

    .,

    . , ....:.;'

    , ,:iii:x.t2.S4i.:,

    - '........,-;- :L

    ,

    '.',,

    . . - ' i . . . . - , :11, . :

    -.

    1

    r

    ir

    lyZ---i

    :e

    ; .-. ' '..%,..

    .

    4i...i.

    ..

    7.-,:--

    , ... - ;

    :-

    1

    .:

    s'

    - -

    -

    ,

    ':..',. - ...,;

    . . . . . ; . ' ' . ' ' ' ' ' .

    . . ; . -

    - ' - ' - i " ' . . " " " ' ' ' ' '

    :

    ,' :.. I " ; " ;

    . . . . . . , . . . ; - .

    a , . . . " . . . . . - ( -

    . . .

    ..l

    1 , . i l i l i

    : - : r . . . " . . - -

    ;' 1

    t

    ;; i

    t

    '

    ''

    '

    . 4 , , , . . .

    ,

    .

    : . 2 . : : : : .

    . . . ' . , , . -r- , :),. . .

    .

    , -

    '

    J 5

  • 8/10/2019 % Area o % Volumen

    6/15

  • 8/10/2019 % Area o % Volumen

    7/15

    Z . 4

    ,

    ie4

    7 . ,

    = V o

    ot

    ,

    ,

    . -

    ' - . st

    . 7 N. 1 ,_,.

    ;

    . . .

    4

    -1 . Y . . . /

    r .

    c

    ... , .

    .

    . . , .

    r

    - - - ? "

    r ./.4

    :', .t -7,1.r

    - 'e

    - . tr ' 7:

    : - *

    - , , e j, .

    .

    I

    q

    .

    -

    ,

    ,

    r-

    -

    :

    No

    .

    1

    -4

    1

    +... i

    .

    '' -

    ',,,e .t . tk

    i

    1 .

    ?. .-\ ,

    .

    \- ..

    ., .,-

    ' ' .1

    S

    :4:

    . . . . . . . . , . ' d . -

    s

    .. ;:

    i

    _ . . . .

    hi,..

    l -t l

    i

    ; '

    1

    -

    41..1..

    .

    r

    ftp

    rt-

    .L .....; 'AV '

    i

    .g

    ,,,'

    S 2"4= ' :,.- ,_:''` , : f .

    rcz

    .,*

    1

    y

    ?_-r.

    ri ;-1-

    tl ..

    >4...,

    .,..t.:-3,.-

    ., .-.. . 4

    r

    .. .,

    ;_

    -

    :

    -:. . . 7

    4 -

    ':

    I

    k . 1

    '' ki

    ll-1

    ,.r

    .

    .)t

    q . . . ; : _

    t /

    ) . i . 4 ,-

    I

    >

    i 71,-., ;. ,.,--' ,,.... ,- _

    7 4 ' . - .: -

    , c.

    -

    : r L - ' :

    1 -

    ;{ '';ii

    tA .

    : 4 4 5 _ 3 z

    . ,1 .

    Vtfr_:.;:J .`;, ( 7.'

    ..1 .

    '-

    ,

    1

    2

    ' --

    'I -

    e . ; ' ' . .

    ' . ' ' ' ' "-Ce'

    i

    ' ;' . ,.--?

  • 8/10/2019 % Area o % Volumen

    8/15

    2

    _1-8

    A

    MAI& Type)

    T H IN S E RIE S

    EA VY SER I ES

    Thkkness np to approx. 4 microns 0.00016 In.)

    hldroso nficreo. 6 microns ..00025

    I..)

  • 8/10/2019 % Area o % Volumen

    9/15

    Nor f

    As

    a

    J-9

  • 8/10/2019 % Area o % Volumen

    10/15

    H E A V Y S E R I E S

    Tlikbam west. LS

    microns (0.0006 in.)

    T H I N S E R I E S

    Thickness up to approx. 9 microns 000035 is.)

    Airsiss

    Type)

    - 1 - 1 0

  • 8/10/2019 % Area o % Volumen

    11/15

  • 8/10/2019 % Area o % Volumen

    12/15

    C

    (1111katl

    J-12

    THIN SERIES

    Thickness up to approx. 5 microns (0.0002 Is.)

    HEAVY SERIES

    Thelma wpm 9 asiestes (0,00033 In.)

  • 8/10/2019 % Area o % Volumen

    13/15

    .

    ................

    i

    c

    tai

  • 8/10/2019 % Area o % Volumen

    14/15

    c f .

    J

    .14

    THIN

    taltite

    Thicksams

    op t ie

    isprtek 11 LM*ONION

    VT

    likidirs owes

    S t

    COAX k.)

  • 8/10/2019 % Area o % Volumen

    15/15

    oxrc

    . 7 - 1 5