ˆ˝- $!% 9 5 ˝˚ :˝; ˛˚’= )*+ % ˝!˙. ˆ -

10
24 :; $!% 95 !<=! >- !. ?-< .@ = ’= )*+ % BF’ V )@ $7 Y !D2 3!C Z #@5 !7 G& [ ) K MP / / OP Q& R M_ / M / OP ( T ! U !1 2HS .-* ‘, U( . !1 ;!( o 7 . 7! . .7-* 7!1 7 791 7,c .2 E!1 !9 ‘S ?S ..4 . 79I -* . o ,S 6 . U7( . 7!9 ‘7S 7o q 7 .2 9*H ..4 . -* .2 C r:S 2 2, ! .U72V 7 . ’7# . 37 1< - *( . W!- *S& ;! = -* . ! . U !9 ‘S 9I 7S f! 7 ‘, 2o *6 -* ;!( > . S f! 3 C 86 . $7 =* T 4 ! . E7! $o. ;! 4 M !CI f! ) L o ( $ ! 3 . 7&- 7 f37! L7- . *S& ;! !.4 M) ;S/ U ? # . ! . ,@ ? .: ]_ > ^_ > ^__ > NTU ]___ ,@ .7: pH > ^ > s > t j !.4 M) C f2. .2 . . U S f! , $59T . b_ u ]_ 9 M4 2S pH 7 7 , j u s =K# .V \(( ^^ > jv > vt vj w1 ,( <. . , $59T . !9 ‘S 9I b_ u Y_ 79 74 M 7 2S pH , j =K# .V jv > v^ > vj vv w1 ,( <. . . U S f! 7 7 [Z( pH ;!I ,( $W D ,( =K# . .. ! 23 .. . ‘S 9I ! pH ! . = 0E #/ : ’* +* $," $-! ."+ / (0+ $ . Comparison of Water Turbidity Removal Efficiencies of Moringa oleifera Seed Extract and Poly-aluminum Chloride Bijan Bina 1 Abbas Shasavani 2 Gholamreza Asghare 3 Akbar Hasanzade 4 (Received Sep. 6, 2006 Accepted Mar. 8, 2007) Abstract Coagulation and flocculation are essential processes in water treatment plants. Metal salts such as aluminum sulphate and ferric chloride are commonly used in the coagulation process in Iran. Poly-aluminum chloride (PAC) has been used recently in Baba-Sheykhali Water Treatment Plant in Isfahan. Synthetic coagulants have health problems associated with them and are additionally uneconomical for use in developing countries. In this study, PAC and Moringa oleifera seed extract were compared for their efficiency as coagulants. Moringa oleifera, locally called “oil gaz” in Iran, grows in southern parts of Iran. One variety of this tree, Moringa progeria, is indigenous to Iran. For the purposes of this study, lab experiments were performed using distilled water containing synthetic caoline. Four turbidity levels of 10, 50, 500, and1000 (NTU) and four pH levels of 5, V T7‘& a, UX/ WK7< UT/ 3 <8 Y <* T7‘& a, UX/ W^!4% K7< )/ W [email protected] Z <8 T7‘& a, UX/ W.3I UT/ W.#b% UIb !/ [ <8 T7‘& a, UX/ WK7< UT/ , Kc!6 : 1- Professor of Environmental Health, Isfahan University of Medical Sciences 2- PhD Student of Environmental Health, Tehran University of Medical Sciences, [email protected] 3- Assoc. Prof. of Pharmacology, Isfahan University of Medical Sciences 4- Faculty Member, Department of Environmental Health, Isfahan University of Medical Sciences

Transcript of ˆ˝- $!% 9 5 ˝˚ :˝; ˛˚’= )*+ % ˝!˙. ˆ -

Page 1: ˆ˝- $!% 9 5 ˝˚ :˝; ˛˚’= )*+ % ˝!˙. ˆ -

24

��� �:��;���$!% ���95 ��!���<=! �>���-� ��!�.� ?����-<� �.@ =�� '�=�� )*+ �%

� '� BF'� V��)@��� $�7� Y

�!D2� �3!�C Z#@5 !7�� G��&[

)��K��MP/�/OPQ&�R�M_/M�/OP(

T�!U�

����!��1 �2HS � .�-* � ���� ̀ , �� ���U( �. ���!��1 ;!�( � �o � �� ��� 7����.���7!� �. .�7-* � �7!��1 ���7� ��791 ��7,c� �� � �.��2�� E!�1 �!�9� � `�� �S� ?��S�� ..�4 .�79I ��� �-* �.� �� ��o� ��,S�� �6 �. ���U7( �. �7!��9� `�� �7S� 7 �oq�7��� ��

� �.��2�� �9*H�� ..�4 .�� �-* �� �.��2�����C r�:S �� ��2� ��� � �2���,� ����!�� �.�U72V� ��7� �. '�7# �. �����37� �� �1�< �� ���- �*��( ���� .��� �W!�- �*S�& ;!� �� =����-* �. �! � �. ���U� � �!��9� `�� �S� �9I ��� ��7��S�� �f!�� 7� �

`, ���� ��� �2o�� �*��6 ��� �-* ;!�(>� ���� .����S�� �f!�� ��3� ���C 86� �. $7�� =��* �T�� �4 �� ���!� .E7!� $o�. ;!� �� � �4 �M� �!�C�I �f!�� )L��� ��o ($�� ���!� ��3� � �� .�7&- �� ��� �7� ���f37!� �� L�7�- �. �*S�& ;!�

�!.�4 M�) � ;�S�/�� ���U ?���� ���# .!� �� ���.��,@ ?���� �.��: ]_>^_>^__ � >NTU ]___ ���,@ .��7: �pH >^>s>t�j�!.�4 M�) � ��C ��f2�. �� �.��2�� �� .� �. ���U�����S�� �f!�� ��,� $59T �. b_u]_�9� M�4��� �2�S pH �7� �7���� ��,� jus=K# �� �.�V \�(�( �� ^^>jv>vt�vj� w�1 ��,(���� �<�. ���� .��,� $59T �. �!��9� `�� �S� �9I b_uY_�79� 74M�7��

� �2�SpH ����� ��,� ��j=K# �� �.�V jv>v^>vj�vv� w�1 ��,(���� �� �<�. ���� .� �. ���U� ����S�� �f!�� �7� ���7 � ��[Z( pH��� ;�!�I ��,(���� �� $�W D�� ��,(���� =K# �. � .��. ��!��23��.��. .������� �� `�� �S� �9I �!pH� ��� ���!.

�=0E���#/�:�'�*�� �����+*� $,���"��$�-!� ������� .����"+� ��/ ��(0+ ��$�.

Comparison of Water Turbidity Removal Efficiencies of Moringa oleifera Seed Extract and Poly-aluminum Chloride

Bijan Bina 1 Abbas Shasavani 2 Gholamreza Asghare 3 Akbar Hasanzade4

(Received Sep. 6, 2006 Accepted Mar. 8, 2007)

Abstract Coagulation and flocculation are essential processes in water treatment plants. Metal salts such as aluminum sulphate and ferric chloride are commonly used in the coagulation process in Iran. Poly-aluminum chloride (PAC) has been used recently in Baba-Sheykhali Water Treatment Plant in Isfahan. Synthetic coagulants have health problems associated with them and are additionally uneconomical for use in developing countries. In this study, PAC and Moringa oleifera seed extract were compared for their efficiency as coagulants. Moringa oleifera, locally called “oil gaz” in Iran, grows in southern parts of Iran. One variety of this tree, Moringa progeria, is indigenous to Iran. For the purposes of this study, lab experiments were performed using distilled water containing synthetic caoline. Four turbidity levels of 10, 50, 500, and1000 (NTU) and four pH levels of 5, V��T7`& a ,� U�X�/� WK7��< U�T�/� ��3���<8��

Y����<* �T7`& a ,� U�X�/� W^!4% K7��< ����� � )�/� [email protected]

Z���<8�� �T7`& a ,� U�X�/� W�.�3I�� U�T�/� W�. #b ��%��� UI�b ��!�/�

[���<8�� �T7`& a ,� U�X�/� WK7��< U�T�/� ��,� Kc!6 :�

1- Professor of Environmental Health, Isfahan University of Medical Sciences 2- PhD Student of Environmental Health, Tehran University of Medical Sciences, [email protected] 3- Assoc. Prof. of Pharmacology, Isfahan University of Medical Sciences 4- Faculty Member, Department of Environmental Health, Isfahan University of Medical Sciences

���� � ������ ���� ����

Page 2: ˆ˝- $!% 9 5 ˝˚ :˝; ˛˚’= )*+ % ˝!˙. ˆ -

25

6, 7, and 8 were used for the jar test. It was found that oleifera seed extract was capable of removing 98, 97, 89, and 55% of the turbidity in the four experiments at optimum concentration levels of 10-30 (mg/l) for all four pH levels of 6 to 8, respectively. PAC, in contrast, removed 99, 98, 95, and 89% of the turbidity at optimum concentrations of 20-30 (mg/l) for a pH level of 8. The results indicate that Moringa oleifera seed extract has little effect on pH level and enjoys higher removal efficiency for higher turbidity levels. Reducing pH level decreased PAC turbidity removal efficiency.

Keywords: Turbidity, Moringa oleifera, PAC, Coagulation, Flocculation.

������� # 3;?23+�I�- ��' �"3���8� �� 3*�� ��"# R#�� �� �." #���)�� .

�� ��� "W�'l�." %$�)�� )# 3;k¢#$] %$�)�� (�Q� �# 0L���� � �� �� �8�" :�1'� � ��� �#$ 3�"��� .%���� ��2� �# �# 0�-�$<��

��)V ����" �2�����8 #�$� b�#�� (1/ �� ���M� +2M- 6'$9 :�; �� (Y�#�V R$� 32��)� ��+��$� 3�+2��"]c[.�� -��2� T��# ����

���� b��1� 0��31H" � ����;� � +2M- �� 0�18 � � �-�$<� ���" !38�� �8�# R�C�3"��# ..D9 ��<�� �#�"�Y �� %���2� �� 0��-

�� �#�.�'� ?2�� 32�)� R$� ##�� .�� �"�Y �.D�9 �# %$+�� �- ##��� ��� �#�.�'� 32��)� ��+��$� �)V �� %�1.F� .3�A6+� �� #�.��'�

�3++� ����8� ��1"� �� ��#� �# � 3"��# �C2�6� 0M�+' 0�- ��� #$�8 .3�+"�� �2�1�D��Y�" R$� 32��)� ��+��$� �)V �� �23��U �)� ��V�

3��+2��" ���� ����@� �� ��� �� 3��"��# �2�M"�>���' (���F�Y ]k m[.�Y�+�8 0M���2# �9�V$�.I�"� �# �3�++� R$�I� �1� T��� ��+��$�

('� �38 .KW���;� ��+��$� ���2�M� 0����� �# T�Y# T��$� �� �&2 �� 38��]k!m e[.��)* �� �+�� �Q� �# R$�U�-�� G��� �� (�

pH �� �� ��� ##����� �-�� #�' 0�1�� �# %� �2 3���2]q[.�#�.D9 �23+ �# %��I)H"� �$<� �23' b�+25� �� �� "�Y)��$�" �$1* 0�1&C)/ �� � �6�C> ���)V �� �19 0� #$8 (��3�A� �e/f��9

q. /R�� �)���� ��� �R$�� ��� �����- �3�++� 3�A6+� ?��� %�$+��� �#�.�'� 3++�]l[.#�$�� O)��� 0�1<�� �� �#�.�'� ��2��9 A��'

:W� (�1/ �"�# *��' !<�2� !('$V T�C* �� �-��� �� 0���'!���� b�/�3+� � �$��� %���� � �(2�&I�"�' (�'� �� ��efff

"�# �� %��' 3+- �$<� �# ��V :�' ������" (�Y�# 0��-c0����:W� "�Y# � �3� �� 0��' �� �#�.�'� �- ��3"# .M��" �V �$<� �#

Z$����� ��$�" 0��1��� �M� ����8 ��� �� �� ��+�' �$> �k:W� �� 3"#�� ]l[.�6�C> #�$� )�/ �� Z$���� (�'� =`�; (�1/ ��

�-�H<2���� Z��A� �# b� 3� %� �� (�'� �38 �#�.�'�.����� ��2�dqb� 3� 3F�# NTU cqf +�1� (�)h �# �� qf��)�� R��� �� �

��� =`; ��� "3�2�� ]r[.J���� ��'3+1� b��A�A�9 ��)� I�'��(I2�m"$� "�# 0 � �� �9�6�S� 3+- �$<� O�)��� 0�- ��2� ��

1 Nirmali 2 Cactus 3 National Environmental Engineering

��� ���69 �$�+��� �1"� �2 �#�# R��N"� �3�++� 3�A6+� ?��� %�$�+� b��C� � ('� ��� 3":�����" (Y�#e03�+- ��9 (Y�# !q����� !

��$�l�+� ���Y ���� !r)�)C+8 !s 3�Zd� ��� �2� �3�+-# %�<" �������� b� 3�� =`�; (�1/ #�$�� ��2� �2 3�8�� ]l[.�����cf !X"��cc %�'$��� !ck ... )�/ �� �2�' �6�C> #�$� 3+�I�- (�1/ ��

=`;�38 �#�.�'� b� 3� 3"�]c s[.%���� �2� �# ���.� � ��H+2�$� M�� R��" �� %���2� �$�+/ �# ��

!('� �$1<� �+h ���1� %�$+� ��9 ���"# ��6�C> �3�++� 3�A6+� �2('� �38 �Y�+8]d[.��.� � �H+2�$� [)6�� 0��I��� (Y�# ?2

'�H+2�$� �#�$"�Y �cm � !('� T��8 ce�� "$� 3�8�� ]c cf[.� T�" # � =��>� �# "�# �� %�#$' �$<� _$DY 0�- �2� (�Y�#

�� �#�.�'� �� b� 3� �-�� (1/ ##�� .(Y�# ���.� � ��H+2�$� �$1<�� ���' :W� (�Y�# ��2 �� ��� ��N�8 �� T�" # � =��>� �#

�� 38��]cc[.= �6� ���8 3+- ��$� ��.� � "$� �# �"$� �2�9 "$� �- ��� ('�- .(Y�# �2� �- ('� R �A� �&<Y � (CI" �

?<Y ��" ?<Y �;�$" �# �;�$" �# �- �� 38� �$>�� 3+� �MN6� (Y�# � ce '� = �6� (]c[. 3+- 0�1<�� �� � 6� �#

�A2���!�1�Lh )R��"(� (Y�# �2� 0�1)� �1��� !+� %�$ ?2 7�C+� �`�h�2����� ���� # � ]q ck[.(�Y�# ��2� 0��1���!���8�' ��

�����2 ��x9 ��V �"36� #�$� !�- ��� ��- 3�8�� ]q ck[.0�$���� "�# �-� ��I)� �$� (Y�# 0�-2�H+���I� W�� ��2��V %� �.I��)�� �# (���'������� M2$���N9 �"$���Y ����� (���1/ ������ ##�����

]q ck[.�"�# �� �38 �����'� �h � 0���# (�Y�# ��2� 0��-rm3F�# �h � MV (�V (1/ ('� 3�'� ?�x � �#�.��'� 0������ ##�� ]ck[.��.� � �H+2�$� �# %� E��.9�� �#�� 38� (��' �

�� ��� � :�I&2e�� ��� 3'�.(�Y�# �2� �2�1" E�.9�� l��9 cq

4 Strychnos potatorum 5 Tamerindus Indica 6 Cyamopsis 7 Hibiscus sabdariffa 8 Trigonella foenum 9 Lens esculenta 10 Okura 11 Rice 12 Chitosan 13 Moringaceae 14 Miracle Tree

�������� ���� ���� � �

Page 3: ˆ˝- $!% 9 5 ˝˚ :˝; ˛˚’= )*+ % ˝!˙. ˆ -

26

��� ('�]c!ck cm[.�� (�Y�# ��2� �� �"$� ?2 R��" ��H+2�$��2�+/�V)Z �� ��Y (�"������ �;�$�" �# (�'� %��2� �$<� ��$�

��� 38� %��I $)� %��I�' %��'� 3�2��" ]d[.�� �#�.��'� 0��2�M� ��.� � �H+2�$� � �38 �#� � ��#� �# �� �.D9 �# ('.?�2 T����

����� �&�� 3���@)Rhamnosyloxy Benzyl-isothiocynate ( �#"�# =`�; �2��"�$9 �� (�'� �3�8 �Y�+�8 (Y�# �2� 0�-c��9 e

R�.�)� ��2��H �� #��# �� �# ]c ce[.�� �3�8 ������'� ���D��"�# 0�- ���.� � ��H+2�$� !R��.�)� 3�8� ��$�+2n �U� Z�"$� #$�' !

Z ���U� �$�$)������'� !���-n��$2����� ����1� �� :����C9 Z ���2 �� �� �� �2�#�3+� � ���" �-�� G��� � 32��" ##�� ]cq cl[.

:��' �# �"��' b�6�S� [C>cdde �"�# ���D�� ���.� � ��H+2�$� �� %��M�-dd!b� 3� �-�� 3F�# lf��9 rf�� ����' 3�F�#

�� M�" �� =`; 32��" ]ce[.:��' �# ��'���" b�6�S�cdds %�<�" �� �"�# ���D�� �# 0#��A6"� :��6� T���� � 3-# ���.� � ��H+2�$�!

�$�&)� %� ��� 0��2�# �"$�9�� ��x9 �Vcm�SA" %$���# $�)�� ?2��&� M2�cfacc��38�� ]e!q cf[.b��6�S� 2$����Cc�#

�# :�'kffm %�<" #�# ��� � �"�# ���D� �2 ���.� � ��H+2�$� �# �� b� 3� =`; ���] ��� ���2���� R$�� ^3�8�� ]m[.���"�# ��'$V

��.� � �H+2�$� [�C> (�'� �3�8 �#�.��'� :��6� ���� 3�$9 (1/ T<�� b�6�S�k:�' �# cddl M�� ��V ����� �)+� �`/ (����

�'$V �� TF�; �38 ���.� � �H+2�$� (�'� 0���N9 ����� ��� ������ ]cr[.� �38 3�$9 �N �N; # ���D� )�' "� ���.� � ��H+2�$� q

��� �3��8 3���$9 ���N ���N; �� ������ ������� (��'� R$��� )���' ]c!q cf[.�&2n$$�� �N �� TF�; ��.� � �H+2�$� �� �� 3"�$9

�+2M- �# �1/$�9 T��* �-�� G��� ##�� �#�.�'� #$� %�$+� 0��- ��# ##��]m[.�38 �����'� ���D� ���.� � �H+2�$� 0 � ��� pH

�9 �.D�9 �� p�V �� (��U��)* ��&2��&� (2�3-g���" ��Q #��`�� ]c cf[.�)I"� b�6�S�m:�' �# cdds �� %�<" ?��" �� 3-#

�23' 32�)�!�M/� (�L; 0�"�# �# 0#��A6"� :��6� 0��- ��H+2�$���.� � �� �2�M�� �� 3�-# ]cf[.�#$I�9 b��6�S�e:��' �# cddd

�� %�<" � � 3-#�?�" �2�9�Q :�6� T��� �����'� (1/ 0#�A6"�"�# �# 0�-��.� � �H+2�$�('� �23' 32�)� ?�" .�����2���D��

�23��' 3��2�)� J��'$9 �3��8 �������'�e/r���D��� �� ��<���� ������� � �38 �����'� ��� b� 3�� =`�; �# �SA� �� )�' 3�8�� ]e[.£� b�6�S� [C>�#��q:�' �# kffc �����'� �+�x9 �V :�6� T��� �

1 Muyibi 2 Michel 3 Anselme 4 Tesuji 5 Okuda

"�# �� �38 0�- ��.� � �H+2�$� ��"$�2 ¤2$69 M��2# )�' me� ��������2� (�'� ��SA� �� J'$9 �38 �����'� ���D� �� �9�Q

�$�&)� %� 0���# ��+�x9 �V :�6� �#��mfff �# (�'� %$���# (�)hl/f�)�� R��� �� ���� �d/ddb� 3�� 3�F�# NTU cf��

�� =`; 32��".�2� ��+,�- ��� ���� �2�M�� G��� �+�x9 �V �#�� ��" �� :$)�� ##�� ]cs[.�)V 3�2��)� ��+��$�� ��2 32��)� ��+��$�

������ ?��2 ���C���9 ����� �� ��9��3�- �"3��6� :$��&)� (��'� �����$+� p&)��� ?2 %� 0�- #�I- ��� ��+��$� �� 0� 3�8�� ]cd[.

��� T�&<9 ��� J��� �# ��2�V 0�1��)h �# B���9 �2� 3�+ p&)��I- ��2� #��� �� �D��+� �2��"�$9 G���� (�F�Y ���- �#�# 0�

�� �# �3�++� 3A6+����� #��A6"� 3�+2 ##��� .���Y��' 0���# �#��� ��2���$�� :$��� � 0���)V(AL3(OH)6-X CLX.YH20)Z�� 38���

�3�- �+�� �> �+��� [��S� ?2�32�)� 3�'� �� ��+��$� 3�I��� 3�$9 �2� #$8

2AL(OH)3 + nHCL Al2 (OH)n Cl6-n+ H2O

��3A�Z��� ck�9cs('� ��o�� .3�.� %$�'W$��� 0��� � �#dq3F�# b�C���9 Z��� ��������3�8�� ��� .:� �3�2� (��; �#

%�M���A12O3��� ������ mf3�F�# ��� 3�8��]kf[.:$�&)� �# 0���-�)V +��$�� !3�2��)� ��+��$�� �� �� T���$� T���8 0����)V b�$�F

0���1&�" b�.$��' %� E�$��"� � ��6� �# 3��2��)� 3�I��� �3�- ��I)� !��'��V !�23' !3+"�� �"36�!�2M��+� !(�'� ����h 3�2��)� .

� %� �� �& $� ��� � ��+��$� b�.$' =LY�� ��$�+� b�$F �� �-�� #$8!��$�� �3��� ���� 32��)� ��+��$� �)V :$&)� �# ��+

%$�9�� �� ��$H�� v�M� 0�-���)V T&8 � 0��-Al13 %$�2 ��� 0��-r+�b�$FAl13(OH)24O4(H2O)]+7 [�� �-�� #$8 ]kc[.pH

���)V 3��F�# ?��2 :$��)�� 3��2��)� ��+��$��� q/m���9 q���� 3��8��.�)V 32��)� ��+��$� �- 72�� b�$F � T&8 � �- _$)Y �� 3��/ cs �9mf��� 3�$9 3F�# $�8#]kk[.#�$�� 3�2��)� ��+��$�� ��)V

�# �#�.���'� #�$��� ��"$�" 3����/ E$��" �� [���A�9 ���2� �# �#�.���'��.D9 ��� �$<�� (Y��' �� #$�� %�1.�F� �)6���8���� �� �"�Y�� 38�� .

���G1� ���� �����,��, 9&�� ;���� ��

�� ��H<�2���� �# ��6�C> b� 3�� 0 �; �� ���� ��3A� 0��31H" T�# !(I��" �)�� %#$� ��32�V�" B��9�9 ��2� �� =`�; �$��+� ��

�3++� )Y�3� 0�-�$����!32#�� �#�.�'� �SA� �� �� .�2���� �-�#R$�)� ��H<�"�# (�8�31� �3&<"�# �L@�� �� ���8 ��H<2����

3�8 R��N"� %�1.F� �&8MV .�8 �� ^�#�D�9 b�$�F �� �3������� �

���� � ������ ���� ����

Page 4: ˆ˝- $!% 9 5 ˝˚ :˝; ˛˚’= )*+ % ˝!˙. ˆ -

27

/01��"�# 0�- � �H+2�$���.� =Lh �'$V ��

/01��"�# 0�- ��.� � �H+2�$� �% 3=Lh �'$V

�"$�" ��H<2���� �# #$/$� ��N; �� \�l 3�2#�� (�8�#�� ���� ���-$� (��'� P � [��S� ?C' ��$U�� %$�I"��'$' �� p�'

"$�" �# b� 3� #�N2� (1/ 3�8 �#�.��'� ��-]k[.�"�# #�$�� 0��- �# �#�.�'� �1�8$� %���'� 0�� �<�� b��A�A�9 M���� �� [�A�9 �2�

%� %��'�+8��� J�'$9 (�Y�# ��2� "$� 3�2g9 �� pV 32#�� �19 "�# "$� !M��� $������� � ��� 3�9��'� J'$9 (Y�# �2� 0�-0�$+�

����* 3��2g9 #�$� %�1.F� �&8MV R$)� ��H<"�# 0��' ��# �3&<"�#(��� .�#0�1)&8 c k"�# �2$D9 !�3�8 �#� � (�Y�# ��2� 0��-('�.

����B$"�o�� ��$L,�p���

(��8 (Y�' ?C' ��$U�� �� �#�.�'� �� [�A�9 �2� �#��$)�c ����2����8 :$���H2Al2Si2O8,8H2O)��+��$� :n�&�)�' �9��3�- (

1 Fluka

� � ~"� 3�.' �#$V b�$F #��# #$/ �3�8 ����� �� "$�" �# !��8 ������ �# #$��/$� �� \�-����2��H<!#���N2� ��$+D��� b� 3��� 32#�� .� B�9�9 �2� �cf�� �� �3�8 %� ��$U��� �#$�V �� R��� b3�m0��# �� % � ?2 �# (��' cfq ��"��' /�# ?<�Y #����

� �#$�" ���Y % � �� p�' �#�� # �# (��' ��" b3�'�$9�&� # 3; �#�# ���*qf�)�� ��@� ��$U��� �#$�V �� ��SA� �� ���� �

32#�� .b3� � �� %$�I"��'$'ke����* ���9� b����; �# (���' 3��6� �#�# ��� �� �$��)�� ���N; %� ��q/cJ��'$9 �3�"���'� �����

b3��� ��� ���*�� %M���-kf3��2#�� �$��)�� KL����� ��A�*# .p���' b3�� �� �� %$�I"��'$'e����* %$&�' (��; �# (���' �#�# ��9

(8�# b��j 9 �9 3"#�� ��<" .� ��� ?2 ���� ?�2 � �2 � 72�� �<�8 � TA�+� 0� 38 0��31H" �$�'� %�$+� ]k[.

�������� ���� ���� � �

Page 5: ˆ˝- $!% 9 5 ˝˚ :˝; ˛˚’= )*+ % ˝!˙. ˆ -

28

��%��,�� ;��2S q��rC�� ��#$"� �F(����

(Y�# �$�� ���.� � ��H+2�$�!mfakf��"��' ��- #��# :$�> ���� 0 �; �$��kf('� T&8 0 �� "�# .��"�# �- J'$�� �$>eam

#��# %� R�� ]q[.� �����'� (1/ "�# ���D ��.� � �H+2�$� �3���� �'$V¦ �#��� � % ��- �# �� %� �I�- p��' �#�� �3/ �� "�# q

"�# �#$V R�� ��.� � �H+2�$� ��� �� qff ��)�� ��); �� ���� 3�2�)� :� �23'cb3�� �� %$�I"��'$' �#$�" �$)�� �W$� cf��� �A�*#

�D�� ������'� (�1/ �I��>�+o� %M�- ?2 �� �#�.�'���!��1��#� 38 .0��- �"� � ��� 0`h�� ��)�� ?2 �� �� %$�I"��'$' ��#� �#s

�2����� (�1/ ���)�� �� 0�$C� ���D� �#�# �$C� 0��� �&�� ��- 32#�� �#�.�'� ]e[.

��d�1/� U��5� 1#!< K@,B '!!+* ��8!;I� �X#�� % ��,& I

����,� !#!% ;H

�-�<� �� ?2 �- �3��� �� cfff �)�� ��� �38 �Y�' �� "$�" �� �����<� b� 3� 38 �V"$�" 0 � �� �2���� �- �2�- B��9�9 �� 32#�� R�N"� �2�:

ca%�M�� ���69 pH"$�" � � b� 3� �-�ka"$�" 0 � �� ��/ �2���� �� ?�2 ��- ��� R��Y �� 0�- #

"�# ���D� �3++� 3A6+� ���.� � �H+2�$� �2��)� ��+��$�� ��)V �� 3b� 3� =`; �# #�$� �� ?2 �- +�1� (�)h (��� R�N"� �2�1+9

�3�� ('# .�2���� �2� �# �-���D�� �+�1� (��)h ����69 (1/ "�# ��.� � �H+2�$� 0��1��)h �� 3�2��)� ��+��$�� ��)V qf!eq!ef !mq!mf!kq!kf!cq!cf q�)�� R��� �� �#�.��'� ���� �

32#��)���c(.

ma��� �# k�2����� ��-!pH �"$�" b� 3�� 0 ��; �� 0��- �# ��<���1 ��3A�s!r!l q� �23�' 3�I� �3�- )�'

32#�� ���+9 ?2�32�)� 3�'� .���69 �2���� �2� R�N"� �� =3- � �Q�pH��� 0 � �� ��2� �2 ##$� �3++� 3A6+� �

eab����o9 %�M�� pH "$�" �2�1" b� 3� R��N"� �� p�V ��-�2���� 0�- �- �# ��/ #32#�� �'��� �$� ��� �qa� �38 �����'� ���D� �� "$�" ?2 b3�k!� � cq!� � mf � � lf�2 �# � � ���,3���2#�� 0��3���1H" :� .�����������2� �2

���D� "$�" b� 3� =`; �# �- � � b� 3� �� �� 0�-NTUqf pH �� ����� r�� 3�2#�� �2����� �# X2���" T&�8m�3�8 �#� �

('�.�2���� 0�- � ��/ ��H�'# )�' �8"�Y (���8 (Y�' 0�

32��� p��)��c32#�� R�N"� .B��9�9 �� 3+� 3+9 �L�Y� (��'ckf � A�*# �# � # b3�k A�*# ef� A�*# �# � # b3��kf

9 %��� A�*# ������ �+�<�"mf3�8 ����� ���" �# �A�*# .(�1/"$�" b� 3� ���69 X+�' b� 3� ��H�'# �� �-HACH 2100A

���3"� 0��� %�M�� 0���pH��H�'# �� pH 32#�� �#�.�'� ��� .

%�`>� a��C, [���A�9 ���2� �#��' b� 3��� �# 3���� W���� �� NTUcfff���9

NTUqff b� 3� !J'$�� NTUqf b� 3�� ��2��VNTUcf ����� 3��2#�� #���N2� �� �#�D��� �2 ��"�# ��� ����.� � ���H+2�$�

�)V 3�2#�� I�2�A� �$� 0�19� 3� =`; �# 32��)� ��+��$� .X2���" �# 0�1)&8e�9r('� �38 �#� � .

1 Philips & Brid

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45 50

(mg/L) ;�((� ���(� &�

(NTU

)!��G,�

���

2 روز 15 روز 30 روز 60 روز

/01%���� 0 � �� 0��31H" %��� ��Qg9��2"�# ���D� ��.� � �H+2�$�=`; �#� � b� 3� NTU qf pH �� ����� � � r

���� � ������ ���� ����

Page 6: ˆ˝- $!% 9 5 ˝˚ :˝; ˛˚’= )*+ % ˝!˙. ˆ -

29

T&8 [C>eh !"�# ���D� +�1� (�) ��.� � �H+2�$� =`; �# b� 3� NTUcfff �� ����� cf�)�� R��� ��� �pH ������ +�1�

��s��38�� .(�)hcfR��� ��)�� ���"�# ���D�� ���� ���H+2�$�����.� � =`��; ��� �#���* e/dd��� � b� 3��� 3��F�#NTU cfff

�� +�1� (�)h �# �2�1" b� 3� 38��cf�)�� R��� �� �� ���� �NTUc/e('� ���2 �-�� .��)V +�1� (�)h �# 3�2��)� ��+��$��

b� 3� =`;NTU cfff �� ����� mf�)�� R��� ��� �pH +�1� �� �����s��38��.�)V (��)h �# 32��)� ��+��$�mfR��� ��)�� ���

=`��; ��� �#���* �����l/dd��� � b� 3��� �� 3��F�# NTU cfff �� � 38�� � �� �2�1" b� 3 NTUe���-�� 3�-# .T&�8 [�C>q�"�# ���D�� �+�1� (�)h !���.� � ��H+2�$� b� 3�� =`�; �#

NTUqff ��� ������ cf��)�� R��� �� ���� �pH ��� ������ �+�1� l�� 38�� ."�# ���D� !(�)h �2� �# ��.� � �H+2�$� =`�; �� �#��* r/ds�� b� 3� 3F�# b� 3� 38��NTU qff � NTUk/l

�� �-�� 3��2 .�)V +�1� (�)h b� 3�� =`�; �# 3�2��)� ��+��$�NTU qff ����� kf�)�� R��� ��� �pH �� ����� +�1� s��38�� .

=`�; �� �#��* 3�2��)� ��+��$� �)Vd/dsb� 3�� 3�F�# NTU qff���� �� �2��1" b� 3� 38�� NTUq/q��� �-��� 3�-# .

T&8 [C>l��D� !"�# ���.� � �H+2�$� �-�� � �#�* dc3�F�# b� 3� NTUqf��38�� ."�# ���D� ���.� � �H+2�$� (��)h �#

+�1�kf�)�� R��� ��� �pH ��� ����� +�1� rb� 3�� !NTUqf �9 �� NTUl���-�� 3-# .��)V �+�1� (�)h �# 3�2��)� ��+��$��=`; b� 3�NTU qf�� ����� kf��)�� ��� R�� ���� �pH �+�1� �� �����s��38�� .b� 3�NTU qf (�)h �# pH �$�`�� +�1�

� NTU q/e���-�� 3��2 .�)V =`�; � �#�* 32��)� ��+��$�sdb� 3� 3F�#NTU qf��38�� .T&8 [C>r! (�)h pH +�1�

"�# ���D���.� � �H+2�$� b� 3� =`; (1/ NTUcf ��� ������ mf���)�� �R��������������� � pH ����� �������� s����� 3���8������2� ����

01020304050607080

0 5 10 15 20 25 30 35 40 45 50

(mg/L) ;�((� ���(� &�

(NTU

);�,��$M������

��.� � �H+2�$� 32��)� ��+��$� �)V

/01)�I2�A� "�# ���D� O)��� 0�1��)h �� �#�.�'� B*�6�� b� 3� �-��

��.� � �H+2�$�32��)� ��+��$� �)V ��� � b� 3� �� �� "$�" 0 ������ NTU cfff

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

(mg/L) ;�((� ���(� &�

(NTU

);�,��$M���

���

��.� � �H+2�$� 32��)� ��+��$� �)V

/01*�I2�A� � 0�1��)h �� �#�.�'� B*�6�� b� 3� �-��"�# ���D� O)��

��.� � �H+2�$� �� 32��)� ��+��$� �)V � � b� 3� �� �� "$�" 0 ������ NTU qff

�������� ���� ���� � �

Page 7: ˆ˝- $!% 9 5 ˝˚ :˝; ˛˚’= )*+ % ˝!˙. ˆ -

30

0

10

20

30

40

0 5 10 15 20 25 30 35 40 45 50

(mg/L);�((� ���(� &�

(NTU

);�,��$M������

��.� � �H+2�$� 32��)� ��+��$� �)V

/01]�I2�A�"�# ���D� O)��� 0�1��)h �� �#�.�'� B*�6�� b� 3� �-�� ��.� � �H+2�$� �� 32��)� ��+��$� �)V � � b� 3� �� �� "$�" 0 ������ NTU qf

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40 45 50

(mg/L);�((� ���(� &�

(NTU

);�,��$M���

���

���.� � �H+2�$� 32��)� ��+��$� �)V

/01v�I2�A�"�# ���D� O)��� 0�1��)h �� �#�.�'� B*�6�� b� 3� �-��

��.� � �H+2�$� �� 32��)� ��+��$� �)V � � b� 3� �� �� "$�" 0 ������ NTU cf

� B�9�9 b� 3� NTUcf � NTUq/e���-�� 3��2 .���D�� "�#��.� � �H+2�$� �-��� �� �#�* qqb� 3�� 3�F�# NTUcf �� 38�� . (�)hpH �)V +�1� b� 3�� =`�; �# 3�2��)� ��+��$�

NTUcf �� ����� kf�)�� R��� ��� �s����+��$�� ��)V 3�8�� =`; � �#�* 32��)�sdb� 3� 3F�# NTUcf �� 38��.

[C> T&8s!"�# ���D� ���.� � ��H+2�$� �9 g��� ��3�"� ��QpH ��"$�" #��# �� 0���- pH �� %�M���� ���c/f���� �-���� 3��-#!�#�9�$F �)V � �-��� G��� 32��)� ��+��$�pH �� ����] %�M��� ��

q/f##�� �� .T&8m!9g� �� 0��31H" %��� ��Q �����"�# ���D� �2 ��H+2�$���.� � �� %�<" 3-# .0��3�1H" %���� �2�M��� ���!���� ����D�� �2

��.� � �H+2�$� �� �-�� ��3"� %�M�� � 3��2 .�0�$> �2���1� ��

����b� 3� �# �2 NTUqf pH �� ����� r0��3�1H" %��� �# k� � ��+�1� (��)h �#kf���)�� R���� ������� ����� �����D��� �2sd

� 3F�# 3��� ('# .0��3�1H" %���� �#cq�# � � %���- (��)h b� 3� NTUqf � NTUc/s���� �� (��2 �-�� ����D�� �2

sm # #$��� 3��F�# 0��3��1H" %����� �mf�# � � %����- (���)h b� 3� NTUqf � NTUk/cf(��2 �-�� B��9�9 ��2� � � !

"�# ���D� ��.� � �H+2�$� e/rd���� 3F�# �(�8�# �2 .���+,�- 0��31H" %��� �#lf�# � � %�M��� %��- �� � b� 3�� (��)h

NTUqf � NTUq/cm(��2 �-�� !��� %�<" � 3�-#!���� ��2���D� �H+2�$� "�# �b� 3� =`; �# ��.� rm�� 3F�# 38��.

[C> 0�1)&8e�9r2��" X�2��3�� ('# :

� � ��������� ���� ����

Page 8: ˆ˝- $!% 9 5 ˝˚ :˝; ˛˚’= )*+ % ˝!˙. ˆ -

31

7.6

7.7

7.8

7.9

8

8.1

8.2

0 5 10 15 20 25 30 35 40 45 50

(mg/L) ;�((� ���(� &�

pH!��G,

��.� � �H+2�$� 32��)� ��+��$� �)V pH � �

/01y�"�# ���D� �3++�3A6+� (�)h ��Qg9��.� � �H+2�$�32��)� ��+��$� �)V

�� �� "$�" 0 � ��pH �� ����� � � c s

ca��� �"�# ���D� �3++� 3A6+� �2$� ���.� � �H+2� =L�Y ��� �)V ��Qg9 (�9 32��)� ��+��$� pH��" 38��pH ��3�"� %�M��� ��

����� �2�M���� G���������� %� �2 ��� ##���� ���2� 3��A6+� 0���2�M� ���3++� �� �6�C> 0�- 38�� .ka"�# ���D� ���.� � ��H+2�$� [�C> T&�8e!(��)h �#cf���)�� R����������)V ��� (CI��" ����� �)� ��+��$��� (���)h �# 3��2��mf�)�� R���b� 3� =`; � �#�* ��� �NTUcfff��38��.mab� 3�� �-��� �� !���� ��"�# ���D�� �2 ���.� � ��H+2�$�

�� �-�� 3��2 .�0�$> �� %� +�1� (�)h �cf�)�� R�� �� ���� ��mf�)�� R������2�M�� ��� �3��2.��)V ���� �# 3�2��)� ��+��$��

�19� 3���� ��2�V 0�#��# 0��1� �2.ea�� %�<" 0���� M��"� X2��" ���� ��H"��� � 3-#�3�A6+� �2

0�19� 3������ =`�����; �# 3�����2��)� ��+��$������ ������)V �3�����++� )NTU cfff qff!qf!cf(e/dk%� �����6� =�����"� 3��F�# s/r±�� 38�� .���� ��H"�����"�# ���D�� �2 ���.� � ��H+2�$� �#

0�19� 3��� =`��;)NTU cfff qff!qf!cf(k/sm 3��F�# %� ���6� =���"�s/kf±�� 38��): 3/c(.

0���� %$��� X2��"tTA�I� !^�+6� �� =L��Y� ��2� ��# %�<�"�� 3-#)0.001<Pvalue (.�2� �+62��� ��� ����)V �2 ��+��$��

�"�# ���D��� 3�2��)�����.� � ���H+2�$� �$��� 0�19� 3��� =`�; �# 0��# ��+6� =L�Y� ���� ��8�# #$�/ ��2^�)V 3�2��)] ��+��$��

('� ��<��.

qa[C> T&8s!"�# ���D� ��.� � �H+2�$� �-��� G��� pH "$�" �2�1" ��" �� 0�- ##����9�$F �# �)V � �� 32��)� ��+��$�

�� ���] �-�� G��� J'$�� �$>q/f�#pH"$�" �2�1" �� 0��-�� ##��.

la�31H" %��� �2�M�� ���� �-��� G���� 0���"�# ���D�� �2��.� � �H+2�$��� ##�� .0���� %$���Anova)0.000=Pvalue (

�3+-# %�<" ��� ���- (�'�.����V b��6�S� [�C> c:��' �# kffc �)V 0��# �# M�" 32��)� ��+��$�kq��"�' /�# �� JA� #��� b3��e�9q��� ��� ��� �.; �� #$Y � � �2 32��"]km[.

ra0������ M����"� X2����" (Pvalue = 0.000) Anova %�<��" ��)V �3++� 3A6+� � ('� �2� �3+-# �-��� G���� 3�2��)� ��+��$��

pH �� ##�� .+,�-��-�] �pH ��] �-�] G��� 2��$� ^)V ^�+����)]2^� 3##��): 3/�.(

sa�� %�<" b�6�S� b� 3�� =`; �# B�h �I�"�&� � 3-# �# ���D� J'$9 " ��.� � �H+2�$�!��+Y ��S' �`/ ���� 0���'

��j ��� �"� TV �� 0� 38�� .('� �2� �H"��� M�" �$� 6�S� X2��" ��$U�� (�)h �-�� �� �!����" #�$� (�)h ���.� � ��H+2�$� M��"

B��h �I��"�&� �� (�'� ��2� �3�+-# %�<�" ('� ���2 �2�M��!��� ���� 0���' ��+Y ��S' �`/ �8��3�� ���; �# ��I��"�&�

�)V B�h ��j ��� �"� TV 32��)� ��+��$� �� 0� 38��.

1 Peter

�� _����D� 32��)] ��+��$� ^)V �# b� 3] =`; 3F�# ��H"��� I2�A� ��.� � �H+2�$� ��$�� d��>,� B$F,�$� �����)N( ;�((g ���(� 6�,

�/� t/u� u� 32��)] ��+��$� ^)V �/�� �/�� u� ���D���.� � �H+2�$�

�������� ���� ���� � �

Page 9: ˆ˝- $!% 9 5 ˝˚ :˝; ˛˚’= )*+ % ˝!˙. ˆ -

32

�� ����Qg9 pH32��)] ��+��$� ^)V �3++] 3A6+� J'$9 b� 3] =`; \ � �� �7�����g dV z��G, ���g

)NTU(z.N ?E.O $($��"�

����.g pH�$"� �$"� ���g

)NTU(dc q/e kf c/s qf ss l kf c/r qf sc m/d kf c/l qf rm k/cm kf c/q qf

da"�# R�� $)�� �- (<� +2M- ��.� � �H+2�$� K��C2�A9 k�W# 3�2��)� ��+��$�� ��)V R$�� 3�$9 +2M- �� I2�A� �# ('�)��-

K���C2�A9 R���� $��)��c�W# (#��# R�W 0��<���� ��+2M- .����� �� ����� �3�8 ������'� ���D�� �� �#�.��'� ��8�31� ���.� � ��H+2�$� 0���#

'� 0���� b�� �(.��$�+/ [>�+� �# (Y�# �2� 38� � /$9 �� (�Y�# ��2� (<�� �2�M��� #�$�� �# 0��<�� 6�S� � ���" !%��2�

�� "�# �� �#�.�'� %�&�� �9 38�� 0��1�� �.D�9 (1/ (Y�# �2� 0�- #�2� b� 3� �� �A>�+� �2��' � [>�+�)��$-� (##�� �-��� .[C>

#����y$� b���6�S�c:���' �# kffe��'� ���� ��' 3���$9 J��'$�� Z� ̂ �� (�Y�# �2 :$D�� �� !(Y�# �- 0��� "�# R��$)�� %�$�9mf

#�� �.D9 �� �� B6&� ���)(�)hcff^)�� R������ �.(� L�6� (<� �2� iS' ���&- ?2 �- �� !38�� ��� ' (Y�# �- )F�� ���

�� %��Y�# �2� %�$9cfe×mf#$��" �.D9 �� �� B6&� ��� ]ke[.���2�V �#^��� #�1+<���V %\# � �� \ � ���� [���A�9 ���2� ��] ##�����.D9 ##�� R�N"� b$)2�V Z��A� �# %�1.F� �� "�Y.

1 Folkard

)�R ��� 1-Kebreab, A. G. (2004). “Moringa seed and pumice as alternative natural materials for drinking water treatment.” KTH Land and Water Resources Engineering Univ., TRITA.LWR PhD THESIS 1013.

B�;�C �*$D3�,.)EFGH(.”�" '� =@�* �� � ���3��& I& ;@ J83�+&� K8�;� ,-.&�8LDAF.“<����% ���� 9@ /3�� ��L�C

�M#3 <���% =��?��@ ���%*N� ���OC ��!0 =�>?��@.

3- Muyibi, M.S., and Akif, M.S.(2003). “Treatment of surface water with Moringa oleifera seed extract and alum-acomparative study using a pilot scale water treatment plant.” J. Env. Studies, 60(6) , 617-626. 4- Okuda, T., and Bass, A.U. (1999). “Improvement of exteraction method of coagulation active component from Moringa oleifera seed.” Wat. Res., 33 (15) , 3373 -3378. 5- Katayon, S., Megat Mohd Noor, M.J., Asma, M., Abdul Ghani, L.A., Thamer, A.M., Azni, I., Ahmad, J. Khor, B.C., and Suleyman, A.M. (2006). “Effects of storage condition of Moringa oleifera seeds on its performance in coagulation. ” Bio. Technology, 97(13), 1455-1460.

P��1Q0��.�.��=@�' ��3'��.'.)EFGF(./R�� S�. ;@ ��� ;�?9 ;@ �#$� ��%& /*D �����% =�>?��@ )�;�? �� ���% �TB�

EUU.

7- Zhang, J., Zhang, F., Luo, Y., and Yang, H.(2006). “A preliminary study on cactus as coagulant in water treatment.” Process Biochemistry, 41(3), 730-733. 8- Diaz, A, Rincon, N., Escorichuela, A., and Fernandez, N. (1999). “A preliminary evaluation of turbidity removal by natural coagulants indigeneous to Venezuela.” Process Biochemistery, 35, 391-395.

T���L�*Q3��.)EFVW(.�L�;�@ ����X ��%3�� Y8��"���N�R3 Y8��" )�;�? �� � ���% FWF�FWH .

���� � ������ ���� ����

Page 10: ˆ˝- $!% 9 5 ˝˚ :˝; ˛˚’= )*+ % ˝!˙. ˆ -

33

10- Anselme, N., and Narasish, K.S. (1998). “Quality of water treated by coagulation using Moringa oleifera seeds.” Wat. Res., 32 (3), 781-791.

EE��!9��I.)EFVP(.” �L�;�@ ����X '� =@�* �� /�" ;@ �RZ[ ��� <+�� �+� �!C ���80&�!C � �%�& /\L�53� I& /*D �8L

;�9 �Q� '� �0�8D3 <+�� �+�&� �L �@�D ]�.“�M�#3 <����% ���8%3 ��;� ���8�;�9 /3�� ��L�C ����OC ���!0 =�>?���@

��%*N�.

12- Martin, L. (2004). “The Moringa tree.” Echo technical note, <www.xc.org/echo/the moringa>, (Nov. 11, 2006). 13- Lilliehook, H. (2005). “Use of sand filtration on river water floculater with Moringa oleifera.”Master thesis, Lulea University, Department of civil and environmental engineering. 14-Muyibi, S.A., and Euion, L.M. (1995). “Moringa oleifera seeds for softening hard water.” J. Water Res., 29 (4), 1099-1105. 15-Lipipun, V. (2003). “Efficacy of thai medicinal plant extracts against herps simplex virus type1 infection in vitro and in vivo.” Antiviral Research, 60(3), 175-180. 16-Caceres, A. (1991). “Pharmacologicl properties of Moringa oleifera preliminary screening for antimicrobial activity.” J. Ethnopharmacol, 33, 213-220.

17- Warhurst, A.M., Mc Connachie, G.L. and Pollard, S.J.T. (1999). “The production of activited carbon for water treatment in Malawi from the waste seed husks of Moringa oleifera.” Wat. Sci. Technology, 34, 177-184. 18- Okuda, T., Bass, A.U., Nishijima, W., and Okada, M. (2001). “Isolation and characterization of coagulant extracted from Moringa oleifera seed by salt olution.”Wat. Res., 35 (2), 405-410.

ET����% /*D �L�1� <9�� .)EFGH(.I^_�" � I& /*D ;@ �L��!9 J83�+& �!C '� =@�* �� �`�a �3�%�.

20- Shanawaz, S., Yeomin, Y., Gray, A., and Jaekyng, Y. (2004). “Determining effectiveness of conventional and coagulants through effective characterization schemes.” J. Chemosphere , 57, 1115-1122. 21- Mccurdy, K., Carlson, K., and Gregory, D.(2004). “Floc morphology and cyclic shearing recovery comparison of alum and polyaluminium chloride coagulants.” Wat. Res., 38, 486-494.

BB����b =�] ��.)EFGU. (���3��& I& /*D ;@ �L��!9 J83�+& �!C @�;�9���%*�N� I& /��a /*D �@�;�9 �1!0 )�55# �

��� );�'� )�;�? �� �FU�HU.

23- Peter, G., and Fisher, S. (2001). “Using polyaluminium coagulants in water treatment.” Proc., Water Industry Operators Association, Australia. 24- Folkard, G.K., and Sutherland, J. (2004). “Water clarification using Moringa oleifera seed coagulant.” <http://www.lboro.ac.uk/well/resources/technical-briefs. pdf>, (Nov., 11, 2006).

�������� ���� ���� � �