± û ½ 6$³2 ûB1 s û - Riken · 2007. 7. 9. · Metallic Crystals composed of Single-component...

20
H19 4 4 - “Principles of Bioinorganic Chemistry”, S. J. Lippard, J. M. Berg

Transcript of ± û ½ 6$³2 ûB1 s û - Riken · 2007. 7. 9. · Metallic Crystals composed of Single-component...

  • H19 4 4 -

    “Principles of Bioinorganic Chemistry”, S. J. Lippard, J. M. Berg

  • Heme Protein

    Ferredoxin

    Fe

    Cu

    Zn

    Plastocyanin

  • 0.6e

    he

    0.5e h

    (1) suitable molecular arrangement and frontier MOpermitting the formation of conduction band

    (2) carrier generation by using charge transfer betweenthe molecules forming conduction band and otherchemical species

    Requirements for design of mol. metals

    (TMTSF)2PF6 (TTF)(TCNQ)

    decreasing Tascending Tafter 24 hours at 360 C

    Metal-free phtalocyanine

    1.4

    -1

    -21.6 1.8

    1

    0

    1000/T

    log

    (R/ M

    W)

    Organic Semiconductors

    H. Akamatu and H. Inokuchi, J. Chem. Phys., 18, 810 (1950).

    ViolanthroneR288K = 2.3 x 1010 cm

    Ea = 0.39 eV

    Iso-ViolanthroneR288K = 5.7 x 109 cm

    Ea = 0.375 eV

    25 30 351/T (x104 degree-1)

    Log 1

    0

    8

    9

    10D. D. Eley, Nature, 162, 819 (1948).

    Violanthrone Iso-Violanthrone

    = 0 exp E/RT

  • First Single-component Molecular Metal Ni(tmdt)2

    S

    S

    S

    S

    SNi

    S

    S

    S

    S

    S

    S

    S

    Single-component Molecular Metals (Conductors)

    2. Au(tmdt)2

    3. Cu(dmdt)2 4. Zn(tmdt)2

    5. Co(dt)2

    1. Ni(tmdt)2

    S

    S

    S

    S

    SNi

    S

    S

    S

    S

    S

    S

    S

    S

    S

    S

    S

    SAu

    S

    S

    S

    S

    S

    S

    S

    S

    S

    S

    S

    SZn

    S

    S

    S

    S

    S

    S

    S

    S

    S

    S

    S

    SCu

    S

    S

    S

    S

    S

    S

    S

    Me

    MeMe

    Me

    S

    S

    S

    S

    SCo

    S

    S

    S

    S

    S

    S

    S

    2

  • Metallic Crystals composed of Single-component MoleculesH. Tanaka, Y. Okano, H. Kobayashi, W. Suzuki, A. Kobayashi,Science, 291, 285 (2001).

    0

    1.0

    2.0

    3.0

    (x 10-4)4.0

    0 100 200 300T (K)

    (emu·m

    ol -1)

    10-3

    10-2

    R (

    )

    Metallic down to 0.5 Krt = 400 S·cm-1

    [Ni(tmdt)2]S

    S

    S

    S

    SNi

    S

    S

    S

    S

    S

    S

    S

    The observation of dHvA oscillation(510 Tesla ~ 10% of the 1st Brillouin zone)

    a*

    [Ni(tmdt)2] b*

    H. Tanaka, M. Tokumoto (AIST), J. Brooks(NHMFL/FSU) 1st principles density functional calculation......E. Canadell et al.

    S

    S

    S

    S

    SNi

    S

    S

    S

    S

    S

    S

    S

    S. Ishibashi

    c*C*c*a*

    b*

    100 µm~ 0.5 µg 1 mm

  • Observed and calculated angular dependences of the dHvAfrequencies

    Hole(blue) and electron(red) Fermi surfaces

    Y. Okano

    H. Tanaka, M. Tokumoto, J. Brooks, et al. JACS, 2004, 126, 10518.

    Observation of 3D Fermi Surfaces in [Ni(tmdt)2]

    Torque magnetometry of [Ni(tmdt)2]

    Symmetry of frontier MOHOMO of TTF-donor

    HOMO

    LUMO

    l+ r

    b1u

    b2g

    HOMO of TTN

    nodal plane

    E

    l- r (+cdxz)

    Ni(dmdt)2l E 2kS

  • Parallel band

    Molecular Design of Metallic Crystal Based on

    Intramolecular Electron Transfer between HOMO and LUMO Bands

    Parallel band Crossing band

    HOMOHOMO

    LUMOLUMO

    WLWH

    WL

    WH

    e hE

    a) Small HOMO-LUMO gap

    b) Strong intermolecular interactions

    Small Fermi surfaces [(Semi)metal]

    Large Fermi surfaces (Metal)

    C=C….bonding S-C….antibonding

    Bond lengths of [Ni(tmdt)2]n-

    LUMO

    Comparison of bond lengths between [M(ligand)2]0 and [M(ligand)2]2-

    abdc

    egh

    fi

    -2 0-26-2513-17-18

    -2116

    i

    planar

    LUMO

    HOMO

    cf

    i

    abcdefghi

    2.287(1)1.738(3)1.341(4)1.766(3)1.756(3)1.342(5)1.758(3)1.748(3)1.330(5)

    2.282(1)1.683(4)1.414(9)1.743(4)1.738(4)1.361(7)1.737(4)1.762(4)1.353 (9)

    -5-5573-23-1820-211423

    n=2 n=

    Bond lengths of [Cu(dmdt)2]n-

    Tetrahedral

  • Ar =

    2

    4 612

    Ref. W. Suzuki, E. Fujiwara, A. Kobayashi, Y. Fujishiro, E. Nishibori, M. Takata, M. Sakata, H. Fujiwara, H. Kobayashi, J. Am. Chem. Soc., 125, 1486 (2003).

    [NiL[NiL22]]22-- [NiL[NiL22]]-- [NiL[NiL22]]00

    [AuL[AuL22]]-- [AuL[AuL22]]00

    --ee----ee--

    --ee--

    [M(tmdt)2] (M = Ni, Au) are isostructural to each other.

    [Au(tmdt)[Au(tmdt)22] (] (MM == AuAu3+3+))

    Crystal Structure of [Au(tmdt)Crystal Structure of [Au(tmdt)22]]

  • Bu4N[Au(tmdt)2]

    [Au(tmdt)2]

    Photon Factory, High Energy Accelator Research Organization

    H. Kondo & T. Ohta( The Univ. Tokyo)

    nBu4N[Au(tmdt)2]

    [Au(tmdt)2]

  • 0.51

    1.52

    2.53

    3.5

    010203040506070

    0 100 200 300

    1/T 1

    (sec

    -1)

    (2nd Mom

    ent) 1/2 (kHz)

    T (K)

    -2

    -1.5

    -1

    -0.5

    0 5 10 15 20

    log

    1000/T

    110 K

    -2

    -1.5

    -1

    -0.5

    0 5 10 15 20

    log

    1000/T

    110 K

    rt = 50 S·cm-1,Ea = 16 meV

    Compressed pellet sample

    Physical PPhysical Propertiesroperties of [Au(tmdt)of [Au(tmdt)22]]

    By: E. Fujiwara (Tokyo Univ.)By: H. Tanaka, S. Hara, M. Tokumoto (AIST)

    (SQUID)…powder sample

    Au(tmdt)2

    T > TN p = 4.0 x10-4 eum/mol

    T < TN = AF local moment + pAF local moment = 3 AFpowder

    =3.0 x10-4 emu /mol at TN…mag. moment= 0.30 B

    (g=2.0, S=1/2)

    p (T

  • (LDA result) Local Density Approximation and ab initio plane-wave norm-conserved pseudopotential method

    as electron surface

    from 84th band

    as hole surface

    a*

    b*

    c*a*

    b*

    c*

    a*

    b*

    c*a*

    b*

    c*

    Fermi surface of Au(tmdt)2 S. Ishibashi (AIST) K. Terakura (Hokkaido Univ.)

    for Au(tmdt)2kkqkqkkq d

    EEEfEf

    BZnn

    nn 1)(0

    0.0 0.2 0.40.6

    0.81.0 0.0

    0.20.4

    0.60.8

    1.0

    0(q

    )

    q b(/b

    *)

    qa (/a*)

    0.0 0.2 0.40.6

    0.81.0 0.0

    0.20.4

    0.60.8

    1.0

    (q)

    q c(/c

    *)

    qa (/a*)

    S. Ishibashi (AIST) K. Terakura (Hokkaido Univ.)

  • Lattice Parameter Variety of TemperatureLattice Parameter Variety of Temperature

    PowderPowder

    By: D. Kawaguti, S. Aoyagi, E. Nishibori, M. Sakata (Nagoya Uinv.) By: M. Maeyama (Rigaku)

    MICROMax007/VariMax/Saturn

    Single CrystalSingle Crystal

    300 K 200 K

    130 K 90 K

    1.359

    S

    2.306

    91.64Au

    1.758

    3.308 1.355

    S

    2.318

    91.10Au

    1.736

    3.309

    1.363

    S

    2.320

    91.10Au

    1.754

    3.313 1.364

    S

    2.317

    91.60Au

    1.754

    3.323

    Crystal Structure of Au(tmdt)Crystal Structure of Au(tmdt)22 at Low Temperatureat Low Temperature

  • NewNew ESRESR of [Au(tmdt)of [Au(tmdt)22]]B. Zhou (Univ. Tokyo, Nihon Univ.)

  • [Cu(dmdt)2]High room temperature conductivity

    ( rt = 3 S·cm-1, Ea = ~40 meV)Curie-Weiss like magnetic susceptibility

    (C = 0.33 emu·K·mol-1, = -4.2 K)

    H. Tanaka, H. Kobayashi, A. Kobayashi, J. Amer. Chem. Soc. 124, 10002 (2002)

    S

    S

    S

    S

    SCu

    S

    S

    S

    S

    S

    S

    S

    Me

    MeMe

    Me

    Magnetic conductorconsists of single-component molecule

    Crystal size 0.05 x 0.05 x 0.02 mm3Rigaku MERCURY CCD system

    C16H12S12Cu monoclinic C 2/ca = 24.27(1) Åb = 8.250(6) = 91.38(1)c = 11.500(8) V = 2299(2) Å3 Z = 4R = 0.065

    Molecular arrangement of [Cu(dmdt)Molecular arrangement of [Cu(dmdt)22]]

    Cu….tetrahedral coordinationThe dihedral angle between the ligand planes is 80.3

    Projection of ligand layer along the molecular long axis

  • [Cu(dmdt)2]

    C= 0.327 emu K mol-1-4.18 K 84% S =1/2 spin

    g = 2.035 (ESR)

    Molecular Structure of [Zn(tmdt)2] and [Cu(dmdt)2]

    Crystal Data for [Zn(tmdt)2]Monoclinic, C2/ca = 25.3284(2) Åb = 8.06737(6) Åc = 11.35959(8) Å

    = 92.711(1)°Z = 4V = 2318.54(5) Å3Rwp, RI = 0.021, 0.058

    [Zn(tmdt)2]Dihedral angle around Zn: 89.63

    [Cu(dmdt)2]Dihedral angle around Cu: 80.29

    a bc

    d e

    f

    g hi

    [Zn(tmdt)2] [Cu(dmdt)2]

    a (Å) 2.326 2.276b (Å) 1.767 1.692c (Å) 1.368 1.414d (Å) 1.757 1.745e (Å) 1.755 1.745f (Å) 1.353 1.341g (Å) 1.718 1.741h (Å) 1.728 1.754i (Å) 1.334 1.323

    ( ) 94.21 92.87

    K. Yamamoto et al. (Univ. of Tokyo)

  • Band Calculation and Properties of [Zn(tmdt)2]

    0 2 4 6 8 10DOS (arb. units)

    Ene

    rgy

    (eV

    )

    -0.2

    0.2

    X Y Z

    Compressed pellet

    100 200 300

    0

    -0.2

    0.2

    F

    Ene

    rgy

    (eV

    )

    104

    1

    rt = 1.6 x 10-2 S·cm-1Ea = 146 meV

    Semiconducting behavior

    0

    F

    Temperature (K)

    Nor

    mal

    ized

    resi

    stiv

    ity

    103

    102

    101

    Y. Okano(IMS)

    Magnetic Properties of [Zn(tmdt)2]

    0 100 200 300

    s (a.

    u.) s T

    (a. u.)

    T (K)

    10203040506070

    2.0002.0022.0042.0062.0082.010

    0 100 200 300

    Hpp g

    T (K)

    T (K)0 100 200 300

    0.5

    0.4

    0.3

    0.2

    0.1

    0

    T(e

    mu·

    K·m

    ol-1

    )

    [Zn(tmdt)2]p = 1.3 x 10-4 emu·K·mol-1 at T > 230 K

    [Cu(dmdt)2]p = 3.8 x 10-4 emu·K·mol-1 at T > 100 K

    [Zn(tmdt)2]

    [Cu(dmdt)2]

    SQUID ESR

    10 kOe

  • Structure Determination of [Co(dt)2]

    Y. Fujishiro, E. Nishibori, M. Takata and M. Sakata (Nagoya Univ.)

    SPring 8 BL02B2: Powder X-ray diffraction

    Rwp = 5.3%

    RI = 8.2%

    S

    S

    S

    S

    SCo

    S

    S

    S

    S

    S

    S

    S

    S

    S

    S

    S

    SCo

    S

    S

    S

    S

    S

    S

    S

    4601points(2 4o-50o, 0.01ostep)

    SPring-8 BL02B2

    Molecular Structure of [Co(dt)2]

    Co1

    Co1

    S1

    S2

    S3

    S4

    S5

    S6S7

    S8

    S9

    S10

    C11

    S12

    Co1

    Co1S1*

    S1

    Co1···Co1*: 3.275 Å

    Dimerized structure with intermonomer Co-S bridgeThere are many S···S contacts in the dimer

    6.6

    1.3

    6.6

    12.4

    8.1

    12.3

    11.5

    7.5

    5.8

    5.0

    2.2

    3.374 Å3.352 Å3.669 Å

    3.479 Å3.479 Å3.246 Å

    3.352 Å

    3.374 Å3.669 Å

    3.479 Å3.246 Å

    Crystal data for [Co(dt)2]TriclinicSpace group: P-1a = 11.7185(3) Åb = 10.9513(2) Åc = 7.7336(1) Å

    = 79.737(2)= 96.474(2)= 113.973(2)

    V = 891.45(7) Å3Z = 2Rwp = 5.3 % RI = 8.2 %

    S

    S

    S

    S

    SCo

    S

    S

    S

    S

    S

    S

    S

    S

    S

    S

    S

    SCo

    S

    S

    S

    S

    S

    S

    S

    Co-S 2.425 Å Co-S-Co 90.516o2.1862.1662.1722.179

    E. Fujiwara et al. (Univ. of Tokyo)

  • Crystal Structure of [Co(dt)2]

    0bc

    a 0

    b

    c

    a3.448 Å

    3.431 Å3.647 Å

    3.489 Å

    3.504 Å3.489 Å

    3.647 Å

    3.431 Å

    3.448 Å

    3.485 Å

    3.318 Å

    3.318 Å

    Crystal Data for [Co(dt)2]TriclinicSpace group: P-1a = 11.7185(3) Åb = 10.9513(2) Åc = 7.7336(1) Å

    = 79.737(2)= 96.474(2)= 113.973(2)

    V = 891.45(7) Å3Z = 2Rwp = 5.3 % RI = 8.2 %

    Physical Properties of [Co(dt)2]

    100 200 30000

    5

    10

    15

    /rt

    0.1 1 10 1000.1

    1

    10

    100

    MAGNETIC SUSCEPTIBILITYdown to 1.9 K

    Polycrystalrt = 3.5 x 10-4 emu·mol-1

    100 200 3000Temperature (K)

    100 200 3000

    5 kOe

    (em

    u·m

    ol-1

    )

    0

    0.5

    1.0

    (x 10-2)1.5

    0

    0.1

    0.2

    T(e

    mu·

    K·m

    ol-1

    )

    C= 0.03emu·K·mol-11.6 % 3/2 spins ( = -1.3 K)

    Temperature (K)

    CONDUCTIVITY down to 0.55 KCompressed pellet sample

    rt = 19 S·cm-1 , 0.55K/ rt 1/10

    0.3

  • Fermi Surfaces of [Co(dt)2]

    S

    S

    S

    S

    SCo

    S

    S

    S

    S

    S

    S

    S

    S

    S

    S

    S

    SCo

    S

    S

    S

    S

    S

    S

    S

    Summary

    Ni(tmdt)2 First Single-component Molecular Metal

    Au(tmdt)2 Metallic from 300 K to 4 KAntiferromagnetic Phase Transition at 110 K

    Cu(dmdt)2 Highly Conducting Paramagnetic MoleculeSemimetal or Zero-gap Semiconductor

    Zn(tmdt)2 Nonmagnetic, Semimetal

    [Co(dt)2]2 Dimeric Molecule, Pauli-paramagnetic Metal

  • Syntheses and characterizationB. Zhou (Nihon Univ.)E. Fujiwara, B. Zhou, S. Shimamura, W. Suzuki, K. Yamamoto (Univ. of

    Tokyo) H. Kobayashi, Y. Okano, H. Fujiwara, H. Cui, K. Takahashi (IMS)H. Tanaka(AIST)Synchrotron radiation powder diffractionY. Fujishiro, E. Nishibori, M. Sakata (Nagoya Univ.)M. Takata (SPring-8)1H-NMRK. Miyagawa, Y. Hara, K. Kanoda (Univ. of Tokyo)1st principle band structure calculationS. Ishibashi (AIST), K. Terakura(Hokkaido Univ., JAIST)H. Tanaka, S. Hara, M. Tokumoto (AIST)Magnetic quantum oscillationsH. Tanaka. M. Tokumoto(AIST)J. S. Brooks, D. Graf, E.S. Choi (NHMFL, Florida State Univ.)S. Yasuzuka(NIMS)XPS and NEXAFSH. Kondo, T. Ohta (Univ. of Tokyo)

    Acknowledgments