© 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview,...

56
© 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction What is Sustainability and Sustainable Development? What Are the Main Sustainability Challenges That Society Faces Today? Why is the Design and Construction of the Built Environment so Important to Achieving Goals of Sustainability? Information Models Enable Sustainable Design Simulations What is a Model? A Brief History of Architectural and Engineering Modeling Applying Building Information Modeling (BIM) to Sustainable Design The Interaction of Science and Law in the Modeling of Sustainable Design The Emergence and Evolution of a Sustainable Building Code Modeling Carbon Neutral Buildings

Transcript of © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview,...

Page 1: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Autodesk Sustainable Design Curriculum

Lesson One - Sustainable Design: Overview, History, and Introduction

What is Sustainability and Sustainable Development? What Are the Main Sustainability Challenges That Society Faces Today? Why is the Design and Construction of the Built Environment so Important to

Achieving Goals of Sustainability? Information Models Enable Sustainable Design Simulations What is a Model? A Brief History of Architectural and Engineering Modeling Applying Building Information Modeling (BIM) to Sustainable Design The Interaction of Science and Law in the Modeling of Sustainable Design The Emergence and Evolution of a Sustainable Building Code Modeling Carbon Neutral Buildings

Page 2: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Sustainability

Meeting the needs of the present while improving the ability of future generations to meet their own needs.

Page 3: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Minimize operating energy Utilize renewable energy Select and design site

Reduce water use Reclaim gray water Manage Hydraulics

and Hydrology (H&H)

Implement low impact development

Seek renewable sources Minimize embodied measures

Site work

Structure, envelope, and finishes

Furnishings and equipment

Lighting and equipment

Heating, cooling, and ventilation

Occupant processes

Potable supply for occupants

Non-potable supply for processes

Storm water runoff

Sustainable Design

Energy

Water

Materials

Page 4: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Sustainability: Graphical Models

Left: image by Iacchus, Sunray, WikiMedia Commons, Creative Commons Attribution ShareAlike 2.0 License, http://creativecommons.org/licenses/by/2.0/Right: Image by Johann Dréo, WikiMedia Commons, Creative Commons Attribution ShareAlike 2.0 License, http://creativecommons.org/licenses/by/2.0/

Page 5: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Sustainability: Graphical Models

Sustainability Pattern Map, 2009, courtesy ConservationEconomy.net, Ecotrust

Page 6: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

What are the main sustainability challenges that society faces today? Mitigating Global Warming and Associated Climate Change While

Meeting the Increasing Needs for Energy

Reversing the Loss of Biodiversity

Maintaining and Improving Access to Fresh Water

Maintaining and Improving Access to Healthy and Affordable Food through Sustainable Agriculture

Maintaining and Expanding Critical Infrastructure that Mitigates Environmental Impacts on Human Health and Improves the Quality of Human Life

Page 7: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

What are the main sustainability challenges that society faces today?Mitigating Global Warming and Associated Climate Change While

Meeting the Increasing Needs for Energy

Left image: Solar Two, a 10-megawatt central receiver power tower that operated in Daggett, CA., Photo by the US Department of Energy’s Office of Energy Efficiency and Renewable EnergyRight image: 4 Times Square, a 48-story New York City skyscraper at the corner of Broadway and 42nd St, featuring a photovoltaic skin. Image Credit:: Kiss + Cathcart – Architects, courtesy of the US Department of Energy’s Office of Energy Efficiency and Renewable Energy

Page 8: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

How will global warming possibly affect CA and DC?7 m Sea Level Rise in CA and DC

SF Bay Area

Port of OaklandWashington, DC

Lincoln Memorial

Image courtesy of Google Maps

Page 9: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

What are the main sustainability challenges that society faces today?Reversing Loss of Biodiversity

Healthy Coral Reef Image courtesy of NOAA CCMA Biogeography Team. National Oceanic and

Atmospheric Administration U.S. Department of Commerce

Bleached Coral, image Courtesy NASA/JPL-Caltech

Page 10: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

What are the main sustainability challenges that society faces today?Maintaining and Expanding Access to Fresh Water

Aerial map of Miramar Water Treatment Plant Project with contract phase overlays, by L. Robin, 2009, courtesy The City of San Diego, California

Page 11: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

What are the main sustainability challenges that society faces today?Maintaining and Improving Access to Healthy and Affordable Food

through Sustainable Agriculture

Granary, Potter County, Pennsylvania, early 20th century, image courtesy Commonwealth of Pennsylvania, Office of Administration, Human Resources

Nubian Granary, image courtesy of Institute of Anthropology and Archaeology The Academy of Humanities, Poland

Stainless Steel Grain Silo, 2008, Iowa, courtesy. FACE, The National Institute for Occupational Health and Safety, CDC

Page 12: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

What are the main sustainability challenges that society faces today?Maintaining and Expanding Critical Infrastructure that Mitigates

Environmental Impacts on Human Health and Improves the Quality of Human Life Sustainable Design Can Improve Public HealthThe US Centers For Disease Control has identified five main public health aspects of the built environment for designers to consider:

• How land-use design strategies that reduce reliance on the automobile can lead to improvements of air quality and respiratory health;

• How the design of the built environment can promote physical activity;• How the design of the built environment can reduce the number of pedestrian

injuries and deaths, particularly among children;• How the choices communities make about the built environment can improve

mobility and the quality of life for their elderly and disabled residents; • The ways that various land-use decisions affect community water quality,

sanitation, and the incidence of disease outbreaks.

Page 13: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

What are the main sustainability challenges that society faces today?Maintaining and Expanding Critical Infrastructure that Mitigates

Environmental Impacts on Human Health and Improves the Quality of Human Life

Preventing Sick Building Syndrome (SBS)SBS is a combination of ailments usually associated with an individual's place of work or residence.

Most of SBS is related to poor indoor air quality, which can be frequently traced to flaws in the design, maintenance or operation of heating, ventilation, and air conditioning (HVAC) systems.

The most notable examples of SBS are the results of mold, microbial, and chemical contaminations.

Other contributing factors of SBS often relate to the design of the built environment, and may include:

• Substandard or inappropriate lighting (including the absence of or only limited access to natural sunlight)

• Bad acoustics or infrasound pollution • Badly designed furnishings, furniture, and equipment (e.g. computer monitors, photocopiers,

etc.) • Inattention to ergonomic issues

Page 14: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Why is the design and construction of the built environment so important to achieving goals of sustainability?

In the US, buildings account for: • 65.2% of total US primary energy use• 30% of total US Greenhouse Gas emissions• 40% of global raw materials use (3B Tons/Yr)• 12% of fresh water use• 136M Tons/Yr of waste (approx 2.8lbs/person/day)

The root causes of our current economic, social and environmental problems stem directly from the philosophy that has historically driven the methods and means of development, especially our choice of energy sources.

Current development practices in most areas of the world frequently use large amounts of fossil fuel to transform undeveloped areas, or previously developed areas and their surrounding agricultural and forest landscapes, into sprawling, paved-over suburban hardscapes that are dependent on automobiles for their viability.

Page 15: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Why Is the Design and Construction of the Built Environment so Important to Achieving Goals of Sustainability?

The practice of sustainable design of the built environment reverses destructive trends by:

• emphasizing a human-scaled, walkable approach to development;

• emphasizing energy efficiency;• using renewable energy sources whenever possible;• supporting and leveraging ecosystem services at every step

of the process, from design through fabrication and construction of energy, water, communications, and transportation infrastructures to the habitation of buildings, cities and whole landscapes.

Page 16: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Information Models EnableSustainable Design Simulations

Educational Campus Building Energy Use Simulation

Educational Campus Building Daylighting Simulation

Lake Ecology Simulation

Page 17: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Sustainable Design Simulations Run on Information Models and Databases XML and IFCs have emerged as sustainable design information modeling

standards.

Page 18: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Sustainable Design Simulations Run on Information Models and Databases

A wide variety of graphical information modeling formats can be used.

An information model of a door, using the International Framework for Dictionaries (IFD) modeling framework

(From “Ifd:IFD in a Nutshell” dev.ifd-library.org By Lars Bjørkhaug and Håvard Bell SINTEF Building and infrastructure) http://dev.ifd-library.org/images/8/8d/Ontology.png

A diagram of a recorded performance of a violin concerto, using the ABC model language.

(from “Business Unusual:How "Event-Awareness" May Breathe Life Into the Catalog?”, 2000, Carl Lagoze, Bicentennial Conference on Bibliographic Control for the New Millennium, Library of Congress, Cornell University, Department of Computer Science)

Page 19: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Sustainable Design Simulations Run on Information Models and Databases

Information models and databases can be normalized.

Page 20: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

What is a model?

A model is a representation of something else.

A model is useful if it is able to: Explain past observations. Predict future observations. Help control future events. Deliver value at a relatively low cost, especially in combination with

other models. Be easily proven to be false or inaccurate. Present simplicity, or even aesthetic appeal.

Page 21: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Copernicus and the heliocentric model of the solar system

"Astronomer Copernicus, or Conversation with God" by Jan Matejko, 1872, Krakуw, Poland, The Jagiellonian University Museum

Image of heliocentric model from Nicolaus Copernicus' “De revolutionibus orbium coelestium”, c. 1543

What is a model?

Page 22: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

What is a model? The Copernican modeling toolkit A Motivating Problem, Imagination & Time

Logic, Arithmetic and Trigonometry

A Laboratory (his own Observatory) and access to a Good Library

Facility with more than one language – he read Greek and wrote in Latin and German

Drawing Skills and Tools

Physical Models

Finances (to build his own observatory)

Supportive Colleagues and Friends

Image: “Portraits of Copernicus” http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay/Copernicus.html

Page 23: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Who are the sustainable designers and how do they model their designs?

Architect = I visualize. I draw and sculpt. I make physical models.

I will calculate if I must, but I would rather draw or sculpt.

Engineer = I analyze. I calculate. I make mathematical models.

I will draw if I must, but I would rather analyze and calculate.Image: NASA Goddard Space Flight Center Photo credit: Chris Gunn

Page 24: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Architectural Modeling Tools

Analog drawing tools

pencils, pens, and erasures tracing paper rulers French curves, right-angle ruler compass shape templates

Page 25: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Architectural Scale Modeling

Analog Architectural modeling tools

paper cardboard balsawood cork foam-core plastic lots of glue pre-made entourage

Page 26: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

A Brief History of Architectural and Engineering Modeling Architects and engineers have historically used many different techniques to model their designs. The drawing (plan, section, elevation, and three-dimensional perspective rendering) is the most established of the modeling methods.

Three-dimensional modeling is a human cultural practice that is probably nearly as old as human language, and it was actively used by ancient Egyptian architects and engineers.

Ancient Egyptian culture achieved the mathematical modeling skills needed to successfully engineer the practical feats of building massive stone temples and pyramids and constructing a series of levees along the left bank of the Nile River for more than 600 miles.

The Rhind Papyrus (above, circa 1650 B.C.) demonstrates knowledge of solving first order linear equations and summing arithmetic and geometric series. The Moscow Mathematical Papyrus (circa 2000 B.C.) includes formulae for the surface area of a hemisphere and the volume of a truncated pyramid.

Page 27: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

A Brief History of Architectural and Engineering Modeling

Archeological evidence suggests that during the classical Greek era, architects did not model entire buildings in miniature, but primarily only the sculptural details.

Roman civilization’s advances in scientific knowledge and technology revived the practice of creating scale models.

The prominent first-century BC Roman architect, Vitruvius, discusses the addition of engineering knowledge to the Roman architect’s toolkit, as well as the need for skill with engineering mathematics, in his architectural treatise “The Ten Books of Architecture.”

Page 28: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

A Brief History of Architectural and Engineering Modeling There is general agreement that the architectural scale model, as currently understood by architects, was primarily a Renaissance invention.

The most important Renaissance advocate of the scale model was the Italian architect Leon Battista Alberti (1404-1472).

Alberti’s advocacy of architectural modeling was predicated on his convictions that:

mathematics was the common ground of art and the sciences,

"all steps of learning should be sought from nature," and

architects should include local knowledge and local building practices in the design process.

Statue of Leon Battista Alberti, at the Uffizi Gallery, Florence, Italy. Photographed by Frieda, Wikimedia Commons. Creative Commons Attribution ShareAlike 3.0 License, http://creativecommons.org/licenses/by-sa/3.0/

Page 29: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Architectural Modeling in the Modern Era

The Bauhaus school that emerged in Germany in the 1920’s allied itself with the powerful new forces of industry, and by applying the practice of creating scale models as part of product design, heralded a revival of architectural modeling.

Today, professional model makers create accurate architectural scale models for architects and engineers who want to assess the likely appearance or performance of a particular design at an early stage of development, without incurring the expense associated with a full-sized prototype.

Architects will create less accurate models during the early stages of design to sketch out three-dimensional design ideas and to address massing, general circulation, and aesthetic issues.

Page 30: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

What Is the Purpose of the Architectural Model?Traditional architectural scale models can answer the following five important design questions, in decreasing order of accuracy:

What will the building look like, both alone and in relation to its surroundings?

How will the sun and artificial lights illuminate and cast shadows on, in, and around the interior and exterior of the building?

How will wind flow over, through, and around the building?

How will contractors construct the building?

Will the building stand up?

Page 31: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Architectural Modeling in the Modern Era When designers need to measure even the most rudimentary performance metrics, for instance when allocating building floor space, the model must be highly accurate.

Ultimately, physical architectural scale models cannot be used to accurately simulate the behavior of the increasingly complex range of materials and functions that modern building designers must consider.

As a result, architects must replace these paper, cardboard, and balsa wood physical scale models with more analytically useful but less visible and tangible mathematical models.

Advances in computer hardware and software have made it increasingly cost-effective for architects and engineers to use digital analysis and visualization models to do the presentation and analysis work previously done with physical and purely mathematical models.

Page 32: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Applying Building Information Modeling (BIM) to Sustainable Design

Building Information Modeling (BIM) refers to the creation and use of coordinated, internally consistent, computable information about a building project during design and construction.

BIM solutions have three primary characteristics:

They create and operate on digital databases for collaboration. They manage change throughout those databases so that a change to any

part of the database is coordinated in all other parts. They capture and preserve information for reuse by additional industry-

specific applications.

Page 33: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

BIM is a Catalyst for Efficient and Effective Sustainable Design

The most advanced design technology available.

Makes information available for analysis earlier in design process.

Supports an improved collaborative process.

Reduces the effort of increasingly complex building design.

Facilitates a holistic design approach.

Enables accurate simulations of building design performance.

BUILDINGINFORMATION

MODELING ARCHITECTS

STRUCTURALENGINEERS

MEP SYSTEMSENGINEERS

BUILDERS

OWNERS

Page 34: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

BIM Is a Catalyst for Collaborative Sustainable Design

BUILDINGINFORMATION

MODELING ARCHITECTS

STRUCTURALENGINEERS

MEP SYSTEMSENGINEERS

BUILDERS

OWNERS

CIVIL ENGINEERS

FACILITY MANAGERS

EARTH SCIENTISTS

BUILDING & MATERIAL

SCIENTISTS

MANUFACTURERS

ACOUSTICAL & LIGHTING

ENGINEERS

PHYSIOLOGISTS & MEDICAL

SCIENCTISTS

PSYCHOLOGISTS & COGNITIVE

SCIENCTISTS

OPERATIONS RESEARCH &

MANAGEMENT SCIENTISTS

Page 35: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Applying Building Information Modeling (BIM) to Sustainable Design

Mathematics for Sustainable Design Analysis, Prediction, Simulation, Certification, and Validation

Without the use of mathematics, digital Building Information Modeling tools would only serve designers as 3D sketch pads.

The true power of BIM for Sustainable Design rests in its ability to help designers accurately measure, analyze, visualize, predict, simulate, certify, and validate the performance, cost, and construction method of a building with respect to mathematical models of real-world phenomena.

Page 36: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

The Interaction of Science and Law in the Modeling of Sustainable Design The sustainable design movement of the 21st century is an outgrowth of the modern environmental movement.

Although this movement began in the 1960s, it has its roots in the attempts of 19th-century epidemiologists to understand and expose the costs of public health and environmental negligence in rapidly growing urban areas in Europe and North America.

left image: Dr. John Snow (1813-1858), British physician. He is considered to be one of the fathers of epidemiology, because of his work in tracing the source of a cholera outbreak in Soho, England, in 1854.

right image: The original map drawn by Dr. John Snow, showing cases of cholera in the London epidemics of 1854, clustered around the locations of water pumps.

Page 37: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

The Interaction of Science and Law in the Modeling of Sustainable Design

One of the most influential pioneers in this area was Rachel Carson, an American marine biologist and nature writer whose scientific research led to the publication of her bestselling 1962 book Silent Spring, which ultimately spurred a reversal in national pesticide policy.

The scientific rigor of Carson’s argument that chemical pesticides have detrimental effects on the environment inspired the grassroots environmental movement, and led to the creation of the US Environmental Protection Agency in 1970.

Top image: Rachel Carson, author of Silent Spring. Official photo as a US Fish & Wildlife Service employee. c. 1940

Bottom image: Logo of the US Environmental Protection Agency (EPA)

Page 38: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

The Interaction of Science and Law in the Modeling of Sustainable Design: Air Quality Laws and Models

The US Clean Air Act sets limits on certain air pollutants, including limits on maximum acceptable levels in the air anywhere in the United States.

Regulators use atmospheric dispersion modeling to estimate or to predict the downwind concentration of air pollutants emitted from sources such as industrial plants and vehicular traffic.

Diagram of AERMOD’s Treatment of the Inhomogeneous Boundary Layer, from “AERMOD: DESCRIPTION OF MODEL FORMULATION, 2004 US EPA” http://www.epa.gov/scram001/7thconf/aermod/aermod_mfd.pdf

Page 39: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

The Interaction of Science and Law in the Modeling of Sustainable Design: Water Quality Laws and Models

The US Clean Water Act (a.k.a. the Federal Water Pollution Control Act) and the US Safe Drinking Water Act (SWDA) are the main federal laws that protect water quality for Americans.

The United States Environmental Protection Agency (EPA) uses a Storm Water Management Model (SWMM), a dynamic rainfall-runoff simulation model, to simulate and predict single-event or long-term (continuous) runoff quantity and quality from primarily urban areas.

Top image: screen shot of the EPA SWMM 5 Graphical User Interface

Bottom image: Autodesk HLS Storm and Sanitary System Data Model

Page 40: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Applying Building Information Modeling (BIM) to Sustainable Design Mathematics for Sustainable Design Analysis, Prediction, Simulation, Certification, and Validation: Multi-Criteria Decision Analysis (MCDA)

MCDA is a discipline from the field of applied mathematics that is used to support decision makers who are faced with making numerous and conflicting evaluations while balancing the different objectives and interests of different stakeholders. (Seppala et al., 2002) It is particularly well suited to the challenge of sustainable design.

Optimization Models Optimization models employ numerical scores to communicate the merit of one option in

comparison to others on a single scale. Goal, Aspiration, or Reference Level Models

Goal, aspiration, or reference level models are used to establish desirable or satisfactory levels for each criterion. This type of model seeks to discover options that are closest to achieving these goals, but not always surpassing them.

This type of model is most useful when not all of the relevant goals of the project can be met at once.

Outranking models Outranking models compare the performance of two or more alternatives at a time, in terms of

each criterion, to identify the extent to which a preference for one over the other can be asserted.

Page 41: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

The Emergence and Evolution of a Sustainable Building Code

Traditional Models of Regional Sustainable Design: Vernacular Architecture

For the majority of human history, designers and builders working within the constraints of traditional building practices have relied on preexisting structures to serve as full-scale working models on which to base their designs for new buildings.

Each region has a distinct, traditional approach to designing and constructing buildings that both provide shelter and express a unique regional aesthetic and sense of place.

Many vernacular architectural features that appear to have simply an aesthetic appeal are often, in fact, environmentally sensitive and highly functional in their ability to effectively provide a safe, comfortable, and durable built environment.

Page 42: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

The Emergence and Evolution of a Sustainable Building Code

Model Building Codes These codes are developed by standards organizations comprised of

industry representatives from both the public and private sectors.

This method enables all concerned parties to pool financial and intellectual resources to produce codes that remain current and technically sound.

New Building Materials and Technologies Accelerate the Development of New Building Codes to Address Sustainability

The Industrial Revolution introduced factory-produced building materials such as steel and glass, as well as electric illumination, mechanical heating and cooling equipment, and the abundant and cheap petrochemicals and electrical energy needed to run them.

These new materials required new approaches to building design, which made many vernacular architectural traditions nearly obsolete, and required the creation of a new, technical and legally documented building code.

Page 43: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

The Emergence and Evolution of a Sustainable Building Code

A Model Building Code for Sustainable Design

A new Model Building Code is emerging, and, like its antecedents, it is based on empirical evidence, but this time it includes data from a century of industrial building practices and scientifically validated approaches.

The new “green” model building codes set a significantly higher minimum standard for human health, productivity, well being, and environmental quality.

One of the primary drivers of this new emerging “green” building code is the challenge of reducing humanity’s contribution to the phenomenon of global warming.

The most widely adopted response to this challenge is to create buildings that are “carbon neutral.”

Page 44: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Carbon Neutral Design - A DefinitionEnergy consumption can be treated as a proxy for carbon emissions .A carbon neutral design reduces a building’s consumption of energy by an amount equal to the portion of consumed energy that is provided by hydrocarbon fossil fuels.

Carbon Dioxide (CO2) molecule

Methane (CH4) molecule

Carbon neutral design intentionally reduces emissions of two of the most abundant greenhouse gases: Carbon Dioxide (CO2) and Methane (CH4)

This reduction is achieved by using any combination of: Energy efficiency Onsite renewable energy Onsite low-carbon biofuels Purchased renewable energy credits

Page 45: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Carbon Footprint Varies - Regional Electricity Fuel Mix

0

20

40

60

80

100

120

Current 50% 0%

S. California Fuel Mix (CO2: 805 lbs./MWh)

% Renewable

% Nuclear

% Fossil

0

10

20

30

40

50

60

70

80

90

100

Current 50% 0%

Ohio Fuel Mix (CO2: 1844 lbs./MWh)

% Renewable

% Nuclear

% Fossil

0

20

40

60

80

100

Current 50% 0%

Arizona Fuel Mix (CO2: 1175 lbs. /MWh)

% Renewable

% Nuclear

% Fossil

0

20

40

60

80

100

Current 50% 0%

Nevada Fuel Mix (CO2: 1552 lbs/MWh)

% Renewable

% Nuclear

% Fossil

Page 46: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

A Carbon Neutral Building – Simple Example

0

20

40

60

80

100

120

Current 50% 0%

S. California Fuel Mix (CO2: 805 lbs./MWh)

% Renewable

% Nuclear

% Fossil

40% non-carbon{

Requires a Very Efficient Building

60% reduction in grid electricity {

Grid ElectricityOnsite Renewable Generation

Biofuel DieselGenerator or Boiler

Page 47: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

What Is Net-Zero Energy?

Generation

Consumption= Zero

This graphic shows net-zero on a daily basis.Most current definitions of net-zero aim to achieveNet-zero on an annual basis.

Page 48: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Is Net-Zero Energy Carbon Neutral? Maybe, maybe not. The grid energy consumed is typically CO2 emitting. The grid could also be primarily non- CO2 — think of a region that is

supplied primarily by hydro power.

Generation

Consumption

= Zero

Grid Electricity

Page 49: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Can I buy my way into a carbon neutral building?

Options

1. Onsite PV renewable is relatively expensive (~$8,000/kW of installed capacity) for commercial buildings before rebates/incentives.

2. Wind power for electricity is less expensive where available.

3. Efficiency is almost always less expensive than installed renewable energy systems. Design an efficient building and power the remainder with renewable energy.

4. Certificates• Renewable Energy Certificates http://www.green-e.org/• Some uncertainty re: new offsets or “gaming” system.• Can purchase wind, solar, hydro, or combination to fund new development.• Certificates cost approx. $0.01 – 0.02/kWh. At 10 kWh/sf/yr, adds approx.

$0.10 - $0.20/sf/yr to operating costs for an efficient building.

5. Carbon trading: Success probably dependent on a “cap and trade” system.

Page 50: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Carbon Trading

Chicago Climate Exchangehttp://www.chicagoclimateexchange.com 1. Relatively new, low volume, immature market2. Disagreement over whether or not the carbon

offsets are “real” and “new”3. Volatile market … up 400%, then down 50% in

one year

Page 51: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Process Change is Essential for Effective Sustainable Design

Page 52: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Iterate to Improve Design and Reduce Energy Use

Page 53: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Residential vs. Commercial Buildings: A Brief Primer

0%

5%

10%

15%

20%

25%

30%

35%

% o

f T

ota

l Bu

ildin

g E

ner

gy

Use

Spa

ce H

eatin

g

Ligh

ting

Spa

ce C

oolin

g

Wat

er H

eatin

g

Ref

riger

atio

n

Ele

ctro

nics

Coo

king

Ven

tilat

ion

Com

pute

rs

Oth

er

Comparison of Energy End Use

Residential

Commercial

Source: 2005 Buildings Energy Data Book, 2003 data

The graph illustrated compares the percentage of energy end use for residential buildings in the U.S. compared to commercial buildings in the U.S. As you can see, in residential buildings the largest percentage of energy is devoted to space heating—nearly 35%; however in commercial buildings space heating comprises only about 16% of the total building energy end-use.

This tells us that measures that reduce heating loads (passive solar design, increased levels of insulation, windows with a lower u-value) play a larger role in designing carbon-neutral houses than in designing carbon neutral commercial buildings.

Page 54: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

The Design Process Overview – Steps to Carbon Neutral Design

1. Set Savings Target

2. Optimize Site and Building Form and Openings

3. Minimize Internal and External Loads

4. Select HVAC System

5. Onsite Renewables

6. Commissioning

7. Purchase Green Power and Carbon Credits

Page 55: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Summary

In this lesson, you reviewed the concept of sustainability and the major sustainability challenges that society faces today.

You considered why the design and construction of the built environment is so important to achieving the goals of sustainability, and the history of how information modeling has dramatically extended the effectiveness of architects, engineers, and builders.

You considered how Building Information Modeling (BIM) tools and methodologies that were originally used to increase the efficiency of the design process have proven to be extraordinarily well-suited to the collaborative, interdisciplinary, and scientifically complex challenge of sustainable design.

Finally, you considered how Building Information Modeling (BIM) tools and methodologies can enable designers to accurately analyze, predict, simulate, certify, and validate the performance of their designs with respect to laws, scientific models,and market forces that define the goals of sustainable design.

Page 56: © 2009 Autodesk Autodesk Sustainable Design Curriculum Lesson One - Sustainable Design: Overview, History, and Introduction  What is Sustainability and.

© 2009 Autodesk

Autodesk, Green Building Studio and Revit are registered trademarks or trademarks of Autodesk, Inc. and/or its subsidiaries and/or affiliates, in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product offerings and specifications at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document.

© 2009 Autodesk, Inc. All rights reserved.