WITH SUHAAG SIRtekoclasses.com/images/compnum001.pdf · NOTE : (i) Argument of a complex number is...

Post on 16-Nov-2020

2 views 0 download

Transcript of WITH SUHAAG SIRtekoclasses.com/images/compnum001.pdf · NOTE : (i) Argument of a complex number is...

Index1. Theory2. Short Revision3. Exercise (1 to 5)4. Assertion & Reason5. Que. from Compt. Exams

Subject : Mathematics

Topic: Complex Number

Student’s Name :______________________

Class :______________________

Roll No. :______________________

STUDY PACKAGE

fo/u fopkjr Hkh# tu] ugha vkjEHks dke] foifr ns[k NksM+s rqjar e/;e eu dj ';keAfo/u fopkjr Hkh# tu] ugha vkjEHks dke] foifr ns[k NksM+s rqjar e/;e eu dj ';keAfo/u fopkjr Hkh# tu] ugha vkjEHks dke] foifr ns[k NksM+s rqjar e/;e eu dj ';keAfo/u fopkjr Hkh# tu] ugha vkjEHks dke] foifr ns[k NksM+s rqjar e/;e eu dj ';keAfo/u fopkjr Hkh# tu] ugha vkjEHks dke] foifr ns[k NksM+s rqjar e/;e eu dj ';keAiq#"k flag ladYi dj] lgrs foifr vusd] ^cuk^ u NksM+s /;s; dks] j?kqcj jk[ks VsdAAiq#"k flag ladYi dj] lgrs foifr vusd] ^cuk^ u NksM+s /;s; dks] j?kqcj jk[ks VsdAAiq#"k flag ladYi dj] lgrs foifr vusd] ^cuk^ u NksM+s /;s; dks] j?kqcj jk[ks VsdAAiq#"k flag ladYi dj] lgrs foifr vusd] ^cuk^ u NksM+s /;s; dks] j?kqcj jk[ks VsdAAiq#"k flag ladYi dj] lgrs foifr vusd] ^cuk^ u NksM+s /;s; dks] j?kqcj jk[ks VsdAA

jfpr% ekuo /keZ iz.ksrkjfpr% ekuo /keZ iz.ksrkjfpr% ekuo /keZ iz.ksrkjfpr% ekuo /keZ iz.ksrkjfpr% ekuo /keZ iz.ksrkln~xq# Jh j.kNksM+nklth egkjktln~xq# Jh j.kNksM+nklth egkjktln~xq# Jh j.kNksM+nklth egkjktln~xq# Jh j.kNksM+nklth egkjktln~xq# Jh j.kNksM+nklth egkjkt

ENJOYMAMAMAMAMATHEMATHEMATHEMATHEMATHEMATICSTICSTICSTICSTICS

WITH

SUHAASUHAASUHAASUHAASUHAAG SIRG SIRG SIRG SIRG SIR

Head Office:Head Office:Head Office:Head Office:Head Office:243-B, III- Floor,

Near Hotel Arch Manor, Zone-IM.P. NAGAR, Main Road, Bhopal

:(0755) 32 00 000, 98930 58881

Free Study Package download from website : www.iitjeeiitjee.com, www.tekoclasses.com

R

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

2 of 3

8

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

om

1. The complex number systemThere is no real number x which satisfies the polynomial equation x2 + 1 = 0. To permit solutions of thisand similar equations, the set of complex numbers is introduced.We can consider a complex number as having the form a + bi where a and b are real number and i,which is called the imaginary unit, has the property that i2 = – 1.It is denoted by z i.e. z = a + ib. ‘a’ is called as real part of z which is denoted by (Re z) and ‘b’ is calledas imaginary part of z which is denoted by (Im z).Any complex number is :(i) Purely real, if b = 0 ; (ii) Purely imaginary, if a = 0(iii) Imaginary, if b ≠ 0.

NOTE : (a) The set R of real numbers is a proper subset of the Complex Numbers. Hence the completenumber system is N ⊂ W ⊂ I ⊂ Q ⊂ R ⊂ C.(b) Zero is purely real as well as purely imaginary but not imaginary.(c) i = −1 is called the imaginary unit.

Also i² = − 1; i3 = − i ; i4 = 1 etc.

(d) a b = a b only if atleast one of a or b is non - negative.(e) is z = a + ib, then a – ib is called complex conjugate of z and written as z = a – ib

Self Practice Problems1. Write the following as complex number

(i) 16− (ii) x , (x > 0)

(iii) –b + ac4− , (a, c> 0)

Ans. (i) 0 + i 16 (ii) x + 0i (iii) –b + i ac42. Write the following as complex number

(i) x (x < 0) (ii) roots of x2 – (2 cosθ)x + 1 = 02. Algebraic Operations:

Fundamental operations with complex numbersIn performing operations with complex numbers we can proceed as in the algebra of real numbers,replacing i2 by – 1 when it occurs.1. Addition (a + bi) + (c + di) = a + bi + c + di = (a + c) + (b + d) i2. Subtraction (a + bi) – c + di) = a + bi – c – di = (a – c) + (b – d) i3. Multiplication (a + bi) (c + di) = ac + adi + bci + bdi2 = (ac – bd) + (ad+ bc)i

4. Division dicbia

++

= dicbia

++

. dicbic

−−

= 222

2

idcbdibciadiac

−−+−

= 22 dci)adbc(bdac

−−++

= 22 dcbdac

++

+ idcadbc

22 +−

Inequalities in complex numbers are not defined. There is no validity if we say that complex number ispositive or negative.e.g. z > 0, 4 + 2i < 2 + 4 i are meaningless.In real numbers if a2 + b2 = 0 then a = 0 = b however in complex numbers,z1

2 + z22 = 0 does not imply z1 = z2 = 0.

Example : Find multiplicative inverse of 3 + 2i.Solution Let z be the multiplicative inverse of 3 + 2i. then

⇒ z . (3 + 2i) = 1

⇒ z = i231+ = ( ) ( )i23i23

i23−+

⇒ z = 133

– 132

i

− i

132

133

Ans.Self Practice Problem1. Simplify in+100 + in+50 + in+48 + in+46 , n ∈ Ι .

Ans. 0

3. Equality In Complex Number:Two complex numbers z1 = a1 + ib1 & z2 = a2 + ib2 are equal if and only if their real and imaginary partsare equal respectivelyi.e. z1 = z2 ⇒ Re(z1) = Re(z2) and Ιm (z1) = Ιm (z2).

Complex Numbers

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

3 of 3

8

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

omExample: Find the value of x and y for which (2 + 3i) x2 – (3 – 2i) y = 2x – 3y + 5i where x, y ∈ R.Solution (z + 3i)x2 – (3 – 2i)y = 2x – 3y + 5i

⇒ 2x2 – 3y = 2x – 3y⇒ x2 – x = 0⇒ x = 0, 1 and 3x2 + 2y = 5

⇒ if x = 0,y = 25

and if x = 1, y = 1

∴ x = 0, y = 25

and x = 1, y = 1

are two solutions of the given equation which can also be represented as

25,0 & (1, 1)

25,0 , (1, 1) Ans.

Example: Find the value of expression x4 – 4x3 + 3x2 – 2x + 1 when x = 1 + i is a factor of expression.Solution. x = 1 + i

⇒ x – 1 = i⇒ (x – 1)2 = –1⇒ x2 – 2x + 2 = 0Now x4 – 4x3 + 3x2 – 2x + 1

= (x2 – 2x + 2) (x2 – 3x – 3) – 4x + 7∴ when x = 1 + i i.e. x2 – 2x + 2 = 0

x4 – 4x3 + 3x2 – 2x + 1 = 0 – 4 (1 + i) + 7= –4 + 7 – 4i= 3 – 4i Ans.

Example: Solve for z if z2 + |z| = 0Solution. Let z= x + iy

⇒ (x + iy)2 + 22 yx + = 0

⇒ x2 – y2 + 22 yx + = 0 and 2xy = 0⇒ x = 0 or y = 0when x = 0 – y2 + | y | = 0⇒ y = 0, 1, –1⇒ z = 0, i, –iwhen y = 0 x2 + | x | = 0⇒ x = 0 ⇒ z = 0 Ans. z = 0, z = i, z = – i

Example: Find square root of 9 + 40iSolution. Let (x + iy)2 = 9 + 40i

∴ x2 – y2 = 9 ...............(i)and xy = 20 ...............(ii)squing (i) and adding with 4 times the square of (ii)we get x4 + y4 – 2x2 y2 + 4x2 y2 = 81 + 1600⇒ (x2 + y2)2 = 168⇒ x2 + y2 = 4 ...............(iii)from (i) + (iii) we get x2 = 25 ⇒ x = ± 5

and y = 16 ⇒ y = ± 4from equation (ii) we can see thatx & y are of same sign∴ x + iy = +(5 + 4i) or = (5 + 4i)∴ sq. roots of a + 40i = ± (5 + 4i) Ans. ± (5 + 4i)

Self Practice Problem

1. Solve for z : z = i z2 Ans. ± 23

– 21

i, 0, i

4. Representation Of A Complex Number:(a) Cartesian Form (Geometric Representation) :

Every complex number z = x + i y can be represented by a point on the Cartesian planeknown as complex plane (Argand diagram) by the ordered pair (x, y).

Length OP is called modulus of the complex number which is denoted by z & θ is called theargument or amplitude.

z = x y2 2+ & θ = tan−1yx (angle made by OP with positive x−axis)

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

4 of 3

8

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

omNOTE : (i) Argument of a complex number is a many valued function. If θ is the argument of a complex

number then 2 nπ + θ; n ∈ I will also be the argument of that complex number. Any two arguments ofa complex number differ by 2nπ.(ii) The unique value of θ such that − π < θ ≤ π is called the principal value of the argument.

Unless otherwise stated, amp z implies principal value of the argument.(iii) By specifying the modulus & argument a complex number is defined completely. For the complex

number 0 + 0 i the argument is not defined and this is the only complex number which is onlygiven by its modulus.

(b) Trignometric/Polar Representation :z = r (cos θ + i sin θ) where z = r; arg z = θ ; z = r (cos θ − i sin θ)

NOTE : cos θ + i sin θ is also written as CiS θ or ei θ.

Also cos x =2ee ixix −+ & sin x =

2ee ixix −− are known as Euler's identities.

(c) Euler's Representation :z = reiθ; z = r; arg z = θ; z = re− iθ

(d) Vectorial Representation :Every complex number can be considered as if it is the position vector of a point. If the point

P represents the complex number z then, OP→

= z & OP→

= z.Example: Express the complex number z = – 1 + 2 i in polar form.

Solution. z = –1 + i 2

| z | = ( )22 2)1( +− = 21+ = 3

Arg z = π – tan–1

12

= π – tan–1 2 = θ (say)

∴ z = 3 (cos θ + i sin θ ) where θ = π – tan–1 2Self Practice Problems

1. Find the principal argument and |z|

z = i2

)i9(1−

+−

Ans. – tan–1 1117

, 582

2. Find the |z| and principal argument of the complex number z = 6(cos 310º – i sin 310°)Ans. 6, 50°

5. Modulus of a Complex Number :If z = a + ib, then it's modulus is denoted and defined by |z| = 22 ba + . Infact |z| is the distanceof z from origin. Hence |z1 – z2| is the distance between the points represented by z1 and z2.

Properties of modulus

(i) |z1z2| = |z1| . |z2| (ii)2

1

zz

= 2

1

zz

(provided z2 ≠ 0)

(iii) |z1 + z2| ≤ |z1| + |z2| (iv) |z1 – z2| ≥ ||z1| – |z2||

(Equality in (iii) and (iv) holds if and only if origin, z1 and z2 are collinear with z1 and z2 on the same sideof origin).

Example: If |z – 5 – 7i| = 9, then find the greatest and least values of |z – 2 – 3i|.Solution. We have 9 = |z – (5 + 7i)| = distance between z and 5 + 7i.

Thus locus of z is the circle of radius 9 and centre at 5 + 7i. For such a z (on the circle), wehave to find its greatest and least distance as from 2 + 3i, which obviously 14 and 4.

Example: Find the minimum value of |1 + z| + |1 – z|.Solution |1 + z| + |1 – z| ≥ |1 + z + 1 – z| (triangle inequality)

⇒ |1 + z | + |1 – z| ≥ 2∴ minimum value of (|1 + z| + |1 – z|) = 2Geometrically |z + 1| + |1 – 2| = |z + 1| + |z – 1| which represents sum of distances of z from1 and – 1it can be seen easily that minimu (PA + PB) = AB = 2

Ans.

π+π n

81

4/1 e2

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

5 of 3

8

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

omExample: z

2z − = 1 then find the maximum and minimum value of |z|

Solution. z2z − = 1 z

2|z| − ≤ 22z − ≤ | z | + z

2−

Let | z | = r

⇒ r2r − ≤ 1 ≤ r +

r2

r + r2

≥ 1 ⇒ r ∈ R+ ..............(i)

and r2r − ≤ 1 ⇒ –1 ≤ r –

r2

≤ 1⇒ r ∈ (1, 2) ..............(ii)∴ from (i) and (ii) r ∈ (1, 2)Ans. r ∈ (1, 2)

Self Practice Problem

1. |z – 3| < 1 and |z – 4i| > M then find the positive real value of M for which these exist at least onecomplex number z satisfy both the equation.Ans. M ∈ (0, 6)

6. Agrument of a Complex Number :

Argument of a non-zero complex number P(z) is denoted and defined by arg(z) = angle which OPmakes with the positive direction of real axis.If OP = |z| = r and arg(z) = θ, then obviously z = r(cosθ + isinθ), called the polar form of z. In whatfollows, 'argument of z' would mean principal argument of z(i.e. argument lying in (– π, π] unless thecontext requires otherwise. Thus argument of a complex number z = a + ib = r(cosθ + isinθ) is the valueof θ satisfying rcosθ = a and rsinθ = b.

Thus the argument of z = θ, π – θ, – π + θ, – θ, θ = tan–1 a

b , according as z = a + ib lies in Ι, ΙΙ , ΙΙΙor ΙVth quadrant.

Properties of arguments(i) arg(z1z2) = arg(z1) + arg(z2) + 2mπ for some integer m.(ii) arg(z1/z2) = arg (z1) – arg(z2) + 2mπ for some integer m.(iii) arg (z2) = 2arg(z) + 2mπ for some integer m.(iv) arg(z) = 0 ⇔ z is real, for any complex number z ≠ 0(v) arg(z) = ± π/2 ⇔ z is purely imaginary, for any complex number z ≠ 0(vi) arg(z2 – z1) = angle of the line segment

P′Q′ || PQ, where P′ lies on real axis, with the real axis.

Example: Solve for z, which satisfy Arg (z – 3 – 2i) = 6π

and Arg (z – 3 – 4i) = 32π

.Solution From the figure, it is clear that there is no z, which satisfy both ray

Example: Sketch the region given by(i) Arg (z – 1 – i) ≥ π/3(ii) |z| = ≤ 5 & Arg (z – i – 1) > π/3

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

6 of 3

8

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

om

Solution (i) (ii)

Self Practice Problems

1. Sketch the region given by(i) |Arg (z – i – 2)| < π/4 (ii) Arg (z + 1 – i) ≤ π/6

2. Consider the region |z – 15i| ≤ 10. Find the point in the region which has(i) max |z| (ii) min |z|(iii) max arg (z) (iv) min arg (z)

7. Conjugate of a complex Number

Conjugate of a complex number z = a + b is denoted and defined by z = a – ib.In a complex number if we replace i by – i, we get conjugate of the complex number. z is the mirrorimage of z about real axis on Argand's Plane.

Properties of conjugate

(i) |z| = | z | (ii) z z = |z|2

(iii) )zz( 21 + = )z( 1 + )z( 2 (iv) )zz( 21 − = )z( 1 – )z( 2

(v) )zz( 21 = 1z 2z (vi)

2

1zz

= )z()z(

2

1 (z2 ≠ 0)

(vii) |z1 + z2|2 = (z1 + z2) )zz( 21 + = |z1|2 + |z2|2 + z1 2z + 1z z2

(viii) )z( 1 = z (ix) If w = f(z), then w = f( z )(x) arg(z) + arg( z ) = 0

Example: If 1z1z

+−

is purely imaginary, then prove that | z | = 1

Solution. Re

+−

1z1z

= 0

⇒1z1z

+−

+

+−

1z1z

= 0 ⇒1z1z

+−

+ 1z1z

+−

= 0

⇒ z z – z + z – 1 + z z – z + z – 1 = 0⇒ z z = 1 ⇒ | z |2 = 1⇒ | z | = 1 Hence proved

Self Practice Problem

1. If 21

21

zz2z2z

−−

is unmodulus and z2 is not unimodulus then find |z1|.

Ans. |z1| = 28. Rotation theorem(i) If P(z1) and Q(zz) are two complex numbers such that |z1| = |z2|, then z2 = z1 eiθ where θ = ∠ POQ(ii) If P(z1), Q(z2) and R(z3) are three complex numbers and ∠ PQR = θ, then

−−

21

23

zzzz

= 21

23

zzzz

−−

eiθ

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

7 of 3

8

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

om(iii) If P(z1), Q(z2), R(z3) and S(z4) are four complex numbers and ∠ STQ = θ, then

21

23

zzzz

−−

= 21

43

zzzz

−−

eiθ

Example: If arg

+−

iz1z

= 3π

then interrupter the locus.

Solution arg

+−

iz1z

= 3π

⇒ arg

−−−

z1z1

= 3π

Here arg

−−−

z1z1

represents the angle between lines joining –1 and z and 1 + z. As this angleis constant, the locus of z will be a of a circle segment. (angle in a segment is count). It can be

seen that locus is not the complete side as in the major are arg

−−−

z1z1

will be equal to – 32π

.Now try to geometrically find out radius and centre of this circle.

centre ≡

31,0 Radius ≡ 3

2Ans.

Example: If A(z + 3i) and B(3 + 4i) are two vertices of a square ABCD (take in anticlock wise order) thenfind C and D.

Solution. Let affix of C and D are z3 + z4 respectivelyConsidering ∠ DAB = 90º + AD = AB

we getAD

)i32(z4 +− =

AB)i32()i43( +−+

e 2i π

⇒ z4 – (2 + 3i) = (1 + i) i⇒ Z4 = 2 + 3i+ i – 1 = 1 + zi

and CB)i43(z3 +−

= AB

)i43()i3z( −−+e –

2i π

⇒ z3 = 3 + 4i – (1 + i) (–i)z3 = 3 + 4i + i – 1 = z + 5i

Self Practice Problems

1. z1, z2, z3, z4 are the vertices of a square taken in anticlockwise order then prove that2z2 = (1 + i) z1 + (1 – i) z3Ans. (1 + i) z1 + (1 – i)z3

2. Check that z1z2 and z3z4 are parallel or, notwhere, z1 = 1 + i z3 = 4 + 2i

z2 = 2 – i z4 = 1 – iAns. Hence, z1z2 and z3z4 are not parallel.

3. P is a point on the argand diagram on the circle with OP as diameter “two point Q and R are taken suchthat ∠ POQ = ∠ QORIf O is the origin and P, Q, R are represented by complex z1, z2, z3 respectively then show that

z22 cos 2θ = z1z3cos2θ

Ans. z1z3 cos2θ

9. Demoivre’s Theorem:Case ΙΙΙΙΙStatement :If n is any integer then(i) (cos θ + i sin θ )n = cos nθ + i sin nθ(ii) (cos θ1 + i sin θ1) (cos θ2) + i sin θ2) (cosθ3 + i sin θ2) (cos θ3 + i sin θ3) .....(cos θn + i sin θn)

= cos (θ1 + θ2 + θ3 + ......... θn) + i sin (θ1 + θ2 + θ3 + ....... + θn)Case ΙΙΙΙΙΙΙΙΙΙStatement : If p, q ∈ Z and q ≠ 0 then

(cos θ + i sin θ)p/q = cos

θ+πq

pk2 + i sin

θ+πq

pk2

where k = 0, 1, 2, 3, ......, q – 1

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

8 of 3

8

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

omNOTE : Continued product of the roots of a complex quantity should be determined using theory of equations.

10. Cube Root Of Unity :

(i) The cube roots of unity are 1, − +1 32

i , − −1 32

i .(ii) If ω is one of the imaginary cube roots of unity then 1 + ω + ω² = 0. In general 1 + ωr + ω2r = 0;

where r ∈ I but is not the multiple of 3.(iii) In polar form the cube roots of unity are :

cos 0 + i sin 0; cos23π

+ i sin23π

, cos43π

+ i sin 43π

(iv) The three cube roots of unity when plotted on the argand plane constitute the verties of anequilateral triangle.

(v) The following factorisation should be remembered :(a, b, c ∈ R & ω is the cube root of unity)a3 − b3 = (a − b) (a − ωb) (a − ω²b) ; x2 + x + 1 = (x − ω) (x − ω2) ;a3 + b3 = (a + b) (a + ωb) (a + ω2b) ; a2 + ab + b2 = (a – bw) (a – bw2)a3 + b3 + c3 − 3abc = (a + b + c) (a + ωb + ω²c) (a + ω²b + ωc)

Example: Find the value of ω192 + ω194

Solution. ω192 + ω194

= 1 + ω2 = – ωAns. – ω

Example: If 1, ω, ω2 are cube roots of unity prove(i) (1 – ω + ω2) (1 + ω – ω2) = 4(ii) (1 – ω + ω2)5 + (1 + ω – ω2)5 = 32(iii) (1 – ω) (1 – ω2) (1 – ω4) (1 – ω8) = 9(iv) (1 – ω + ω2) (1 – ω2 + ω4) (1 – ω4 + ω8) .......... to 2n factors = 22n

Solution. (i) (1 – ω + ω2) (1 + ω – ω2)= ( – 2ω) ( – 2ω2)= 4

Self Practice Problem

1. Find ∑=

ω+ω+10

0r

r2r )1(

Ans. 1211. nth Roots of Unity :

If 1, α1, α2, α3..... αn − 1 are the n, nth root of unity then :

(i) They are in G.P. with common ratio ei(2π/n) &

(ii) 1p + α 1p + α 2

p +.... +α np

−1 = 0 if p is not an integral multiple of n = n if p is an integral multiple of n

(iii) (1 − α1) (1 − α2)...... (1 − αn − 1) = n &(1 + α1) (1 + α2)....... (1 + αn − 1) = 0 if n is even and 1 if n is odd.

(iv) 1. α1. α2. α3......... αn − 1 = 1 or −1 according as n is odd or even.Example: Find the roots of the equation z6 + 64 = 0 where real part is positive.Solution. z6 = – 64

z6 = z6 . e+ i(2n + 1)π x ∈ z

⇒ z = z 6)1n2(i

eπ+

∴ z = 2 6i

, 2 2i

, z 2i

, z 65i

= 67i

, z 23i

, z 211i

∴ roots with +ve real part are = 6i

+ 611i

π−

6i

e2 Ans.

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

9 of 3

8

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

omExample: Find the value ∑

=

π−π6

1k 7k2cos

7k2sin

Solution. ∑=

π6

1k 7k2sin – ∑

=

π6

1k 7k2cos

= ∑=

π6

0k 7k2sin – ∑

=

π6

0k 7k2cos + 1

= ∑=

6

0k (Sum of imaginary part of seven seventh roots of unity)

– ∑=

6

0k (Sum of real part of seven seventh roots of unity) + 1

= 0 – 0 + 1 = 1i Ans.

Self Practice Problems

1. Resolve z7 – 1 into linear and quadratic factor with real coefficient.

Ans. (z – 1)

+π− 1z

72cos2z2

.

+π− 1z

74cos2z2

.

+π− 1z

76cos2z2

2. Find the value of cos 72π

+ cos 74π

+ cos 76π

.

Ans. – 21

12. The Sum Of The Following Series Should Be Remembered :

(i) cos θ + cos 2 θ + cos 3 θ +..... + cos n θ =( )( )

sin /sin /

nθθ

22 cos

n +

12 θ.

(ii) sin θ + sin 2 θ + sin 3 θ +..... + sin n θ =( )( )

sin /sin /

nθθ

22 sin

n +

12 θ.

NOTE : If θ = (2π/n) then the sum of the above series vanishes.

13. Logarithm Of A Complex Quantity :

(i) Loge (α + i β) = 12

Loge (α² + β²) + i 2 1n π βα

+

−tan where n ∈ Ι.

(ii) ii represents a set of positive real numbers given by en− +

22

π π

, n ∈ Ι.

Example: Find the value of

(i) log (1 + 3 i) Ans. log2 + i(2nπ + 3π

)(ii) log(–1) Ans. iπ(iii) zi Ans. cos(ln2) + i sin(ln2) = ei(ln2)

(iv) ii Ans. 2).1n4(

eπ+−

(v) |(1 + i)i | Ans. 4).1n8(

eπ+−

(vi) arg ((1 + i)i) Ans.21

n(2).

Solution. (i) log (1 + 3 i) = log

π+π n2

3i

e2

= log 2 + i

π+π n2

3(iii) 2i = ei n 2 = cos ( n 2) cos ( n 2) + i sin ( n 2) ]

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

10 of

38

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

omSelf Practice Problem

1. Find the real part of cos (1 + i)

Ans.ei2e1 2−

14. Geometrical Properties :Distance formula :If z1 and z2 are affixies of the two points ↓ P and Q respectively then distance between P + Q is givenby |z1 – z2|.Section formulaIf z1 and z2 are affixes of the two points P and Q respectively and point C devides the line joining P andQ internally in the ratio m : n then affix z of C is given by

z = nmnzmz 12

++

If C devides PQ in the ratio m : n externally then

z = nmnzmz 12

−−

(b) If a, b, c are three real numbers such that az1 + bz2 + cz3 = 0 ; where a + b + c = 0 and a,b,care not all simultaneously zero, then the complex numbers z1, z2 & z3 are collinear.

(1) If the vertices A, B, C of a ∆ represent the complex nos. z1, z2, z3 respectively anda, b, c are the length of sides then,

(i) Centroid of the ∆ ABC =z z z1 2 3

3+ +

:(ii) Orthocentre of the ∆ ABC =

( ) ( ) ( )CseccBsecbAseca

zCsecczBsecbzAseca 321++

++ or CtanBtanAtan

CtanzBtanzAtanz 321++++

(iii) Incentre of the ∆ ABC = (az1 + bz2 + cz3) ÷ (a + b + c).

(iv) Circumcentre of the ∆ ABC = :(Z1 sin 2A + Z2 sin 2B + Z3 sin 2C) ÷ (sin 2A + sin 2B + sin 2C).

(2) amp(z) = θ is a ray emanating from the origin inclined at an angle θ to the x− axis.(3) z − a = z − b is the perpendicular bisector of the line joining a to b.(4) The equation of a line joining z1 & z2 is given by, z = z1 + t (z1 − z2) where t is a real parameter.(5) z = z1 (1 + it) where t is a real parameter is a line through the point z1 & perpendicular to the

line joining z1 to the origin.(6) The equation of a line passing through z1 & z2 can be expressed in the determinant form as

z zz zz z

111

1 1

2 2

= 0. This is also the condition for three complex numbers to be collinear. The above

equation on manipulating, takes the form α αz z r+ + = 0 where r is real and α is a non zerocomplex constant.

NOTE : If we replace z by zeiθ and z by θi–ez then we get equation of a straight line which. Passes through thefoot of the perpendicular from origin to given straight line and makes an angle θ with the given straightlline.

(7) The equation of circle having centre z0 & radius ρ is : z − z0 = ρ or z z − z0 z − z0 z + z0 z0 − ρ² = 0 which is of the form

z z z z+ +α α + k = 0, k is real. Centre is − α & radius = αα − k .

Circle will be real if αα − k ≥ 0..

(8) The equation of the circle described on the line segment joining z1 & z2 as diameter is

arg z zz z

−−

2

1

= ± π2

or (z − z1) ( z − z 2) + (z − z2) ( z − z 1) = 0.

(9) Condition for four given points z1, z2, z3 & z4 to be concyclic is the numberz zz z

z zz z

3 1

3 2

4 2

4 1

−−

−−

. should be real. Hence the equation of a circle through 3 non collinear

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

11 of

38

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

ompoints z1, z2 & z3 can be taken as

( ) ( )( ) ( )z z z zz z z z

− −− −

2 3 1

1 3 2 is real

⇒ ( ) ( )( ) ( )z z z zz z z z

− −− −

2 3 1

1 3 2

=( ) ( )( ) ( )z z z zz z z z

− −− −

2 3 1

1 3 2.

(10) Arg

−−

2

1zzzz

= θ represent (i) a line segment if θ = π

(ii) Pair of ray if θ = 0 (iii) a part of circle, if 0 < θ < π.

(11) Area of triangle formed by the points z1, z2 & z3 is 1zz1zz1zz

i41

33

22

11

(12) Perpendicular distance of a point z0 from the line 0rzz =+α+α is ||2|rzz| 00

α+α+α

(13) (i) Complex slope of a line 0rzz =+α+α is ω = – αα

.

(ii) Complex slope of a line joining by the points z1 & z2 is ω = 21

21

zzzz

−−

(iii) Complex slope of a line making θ angle with real axis = e2iθ

(14) ω1 & ω2 are the compelx slopes of two lines.(i) If lines are parallel then ω1 = ω2(ii) If lines are perpendicular then ω1 + ω2 = 0

(15) If |z – z1| + |z – z2| = K > |z1 – z2| then locus of z is an ellipse whose focii are z1 & z2

(16) If |z – z0| = ||2rzz

α+α+α

then locus of z is parabola whose focus is z0 and directrix is the

line 0zα + 0zα + r = 0

(17) If 2

1zzzz

−−

= k ≠ 1, 0, then locus of z is circle.

(18) If z – z1 – z – z2 = K < z1 – z2 then locus of z is a hyperbola, whose focii arez1 & z2.

Match the following columns :Column - ΙΙΙΙΙ Column - ΙΙΙΙΙΙΙΙΙΙ

(i) If | z – 3+2i | – | z + i | = 0, (i) circlethen locus of z represents ..........

(ii) If arg

+−

1z1z

= 4π

, (ii) Straight linethen locus of z represents...

(iii) if | z – 8 – 2i | + | z – 5 – 6i | = 5 (iii) Ellipsethen locus of z represents .......

(iv) If arg

−++−

i52zi43z

= 65π

, (iv) Hyperbola

then locus of z represents .......

(v) If | z – 1 | + | z + i | = 10 (v) Major Arcthen locus of z represents ........

(vi) | z – 3 + i | – | z + 2 – i | = 1 (vi) Minor arcthen locus of z represents .....

(vii) | z – 3i | = 25 (vii) Perpendicular bisector of a line segment

(viii) arg

++−iz

i53z = π (viii) Line segment

Ans. ΙΙΙΙΙ (i) (ii) (iii) (iv) (v) (vi) (vii) (viii)ΙΙΙΙΙΙΙΙΙΙ (vii) (v) (viii) (vi) (iii) (iv) (i) (ii)

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

12 of

38

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

om15. (a) Reflection points for a straight line :

Two given points P & Q are the reflection points for a given straight line if the given line is theright bisector of the segment PQ. Note that the two points denoted by the complexnumbers z1 & z2 will be the reflection points for the straight line α αz z r+ + = 0 if and only if;α αz z r1 2 0+ + = , where r is real and α is non zero complex constant.

(b) Inverse points w.r.t. a circle :Two points P & Q are said to be inverse w.r.t. a circle with centre 'O' and radius ρ, if:(i) the point O, P, Q are collinear and P, Q are on the same side of O.(ii) OP. OQ = ρ2.

Note : that the two points z1 & z2 will be the inverse points w.r.t. the circle z z z z r+ + + =α α 0 if and onlyif z z z z r1 2 1 2 0+ + + =α α .

16. Ptolemy’s Theorem:It states that the product of the lengths of the diagonals of a convex quadrilateral inscribed in a circleis equal to the sum of the products of lengths of the two pairs of its opposite sides.i.e. z1 − z3 z2 − z4 = z1 − z2 z3 − z4 + z1 − z4 z2 − z3.

Example: If cos α + cos β + cos γ = 0 and also sin α + sin β + sin γ = 0, then prove that(i) cos 2α + cos2β + cos2γ = sin 2α + sin 2β + sin 2γ = 0(ii) sin 3α + sin 3β + sin 3γ = 3 sin (α + β + γ)(iii) cos 3α + cos 3β + cos 3γ = 3 cos (α + β + γ)

Solution. Let z1 = cos α + i sin α, z2 = cos β + i sin β,z3 = cosγ + i sin γ.

∴ z1 + z2 + z3 = (cos α + cos β + cos γ) + i (sin α + sin β + sin γ)= 0 + i . 0 = 0 (1)

(i) Also1z

1 = (cos α + i sin α)–1 = cos α – i sin α

2z1

= cos β – i sin β, 3z1

– cos γ – sin γ

∴1z

1 +

2z1

+ 3z1

= (cos α + cos β + cos γ) – i (sin α + sin β + sin γ) (2) = 0 – i . 0 = 0

Now z12 + z2

2 + z33 = (z1 + z2 + z3)2 – 2 (z1z2 + z2z3 + z3z1 )

= 0 – 2z1z2z3

++

213 z1

z1

z1

= 0 – 2z1 z2 z3. 0 = 0, using (1) and (2)or (cos α + i sin α)2 + (cos β + i sin β)2 + (cos γ + i sin γ)2 = 0or cos 2α + i sin 2α)2 + cos 2β + i sin 2β + cos 2γ + i sin 2γ = 0 + i.0Equation real and imaginary parts on both sides, cos 2α + cos 2β + cos 2γ = 0 andsin 2α + sin 2β + sin 2γ = 0

(ii) z13 + z2

3 + z33 = (z1 + z2)3 – 3z1z2(z1 + z2) + z3

3

= (–z3)3 – 3z1z2 (– z3) + z33, using (1)

= 3z1z2z3∴ (cos α + i sin α)3 + (cos β + i sin β)3 + (cos γ + i sin γ)3

= 3 (cos α + i sin α) (cos β + i sin β) (cos γ + i sin γ)or cos 3α + i sin 3α + cos 3β + i sin 3β + cos 3γ + i sin 3γ

= 3{cos(α + β + γ) + i sin (α + β + γ)Equation imaginary parts on both sides, sin 3α + sin 3β + sin 3γ = 3 sin (α + β + γ)

Alternative methodLet C ≡ cos α + cos β + cos γ = 0

S ≡ sin α + sin β + sin γ = 0C + iS = eiα + eiβ + eiγ = 0 (1)C – iS = e–iα + e–iβ + e–iγ = 0 (2)

From (1) ⇒ (e–iα)2 + (e–iβ)2 + (e–iγ)2 = (eiα) (eiβ) + (eiβ) (eiγ) + (eiγ) (eiα) ⇒ ei2α + ei2β + ei2γ = eiα eiβ eiγ (e–2γ + e–iα + eiβ) ⇒ ei(2α) + ei2β + ei2γ = 0 (from 2)

Comparing the real and imaginary parts wecos 2α + cos 2β + cos 2γ – sin 2α + sin 2β + sin 2γ = 0Also from (1) (eiα)3 + (eiβ)3 + (eiγ)3 = 3eiα eiβ eiγ

⇒ ei3α + ei3β + ei3γ = 3ei(α+β+γ)

Comparing the real and imaginary parts we obtain the results.

Example: If z1 and z2 are two complex numbers and c > 0, then prove that

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

13 of

38

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

om|z1 + z2|2 ≤ (I + C) |z1|2 + (I +C–1) |z2|2

Solution. We have to prove :|z1 + z2|2 ≤ (1 + c) |z1|2 + (1 + c–1) |z2|2

i.e. |z1|3 + |z2|2 + z1 z 2 + z 2z2 ≤ (1 + c) |z1|2 + (1 +c–1) |z2|3

or z1 z 2 + z 2z2 ≤ c|z1|2 + c–1|z2|2 or c|z1|2 + c1

|z2|2 – z1 z 2 – z 2 z2 ≥ 0

(using Re (z1 z 2) ≤ |z1 z 2|)

or2

21 |z|c1zc

− ≥ 0 which is always true.

Example: If θ, ∈ [π/6, π/3], i = 1, 2, 3, 4, 5, and z4 cos θ1 + z3 cos θ2 + z3 cos θ3. + z cos θ4 + cosθ5 = 32 ,

then show that |z| > 43

Solution. Given thatcosθ1 . z4 + cosθ2 . z3 + cosθ3 . z2 + cosθ4 . z + cosθ5 = 2√3

or |cosθ1 . z4 + cosθ2 . z3 + cosθ3 . z2 + cosθ4 . z + cosθ5| = 2√32√3 ≤ |cosθ1 . z4 | + |cosθ2 . z3 | + |cosθ3 . z2 | + cosθ4 . z| + |cosθ5 |

∵ θi ∈ [π/6, π/3]

∴21

≤ cosθi ≤ 23

32 ≤ 23

|z|4 + 23

|z|3 + 23

|z|2 + 23

|z| + 23

3 ≤ |z|4 + |z|3 + |z|2 + |z|3 < |z| + |z|2 + |z|3 + |z|4 +|z|5 + .........∞

3 < |z|1|z|

− 3 – e |z| < |z|

4|z| > 3 ∴ |z| > 43

Example: Two different non parallel lines cut the circle |z| = r in point a, b, c, d respectively. Prove that

these lines meet in the point z given by z = 1111

1111

dcbadcba

−−−−

−−−−

−−−+

Solution. Since point P, A, B are collinear

∴1bb1aa1zz

= 0 ⇒ z ( )ba − – z (a – b) + ( )baba − = 0 (i)

Similarlym, since points P, C, D are collinear∴ z ( )ba − (c – d) – z ( )dc − (a – b) = ( )dcdc − (a – b) – ( )baba − (c – d) (iii)

∵ zz = r2 = k (say) ∴ a = ak

, b = bk

, c = ck

etc.From equation (iii) we get

z

bk

ak

(c – d) – z

dk

ck

(a – b) =

ckd

dck

(a – b) –

abk

bak

(c – d)

∴ z = 1111

1111

dcbadcba

−−−−

−−−−

−−−+

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

14 of

38

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

om

ShorShorShorShorShort Rt Rt Rt Rt Reeeeevvvvvesionesionesionesionesion1. DEFINITION :

Complex numbers are definited as expressions of the form a + ib where a, b ∈ R & i = −1 . It isdenoted by z i.e. z = a + ib. ‘a’ is called as real part of z (Re z) and ‘b’ is called as imaginary part ofz (Im z).

EVERY COMPLEX NUMBER CAN BE REGARDED AS

Purely real Purely imaginary Imaginary if b = 0 if a = 0 if b ≠ 0

Note :(a) The set R of real numbers is a proper subset of the Complex Numbers. Hence the Complete Number

system is N ⊂ W ⊂ I ⊂ Q ⊂ R ⊂ C.(b) Zero is both purely real as well as purely imaginary but not imaginary.(c) i = −1 is called the imaginary unit. Also i² = − l ; i3 = −i ; i4 = 1 etc.(d) a b = a b only if atleast one of either a or b is non-negative.2. CONJUGATE COMPLEX :

If z = a + ib then its conjugate complex is obtained by changing the sign of its imaginary part &is denoted by z . i.e. z = a − ib.

Note that :(i) z + z = 2 Re(z) (ii) z − z = 2i Im(z) (iii) z z = a² + b² which is real(iv) If z lies in the 1st quadrant then z lies in the 4th quadrant and − z lies in the 2nd quadrant.3. ALGEBRAIC OPERATIONS :

The algebraic operations on complex numbers are similiar to those on real numbers treating i as apolynomial. Inequalities in complex numbers are not defined. There is no validity if we say that complexnumber is positive or negative.e.g. z > 0, 4 + 2i < 2 + 4 i are meaningless .However in real numbers if a2 + b2 = 0 then a = 0 = b but in complex numbers,z1

2 + z22 = 0 does not imply z1 = z2 = 0.

4. EQUALITY IN COMPLEX NUMBER :Two complex numbers z1 = a1 + ib1 & z2 = a2 + ib2 are equal if and only if their real & imaginaryparts coincide.

5. REPRESENTATION OF A COMPLEX NUMBER IN VARIOUS FORMS :(a) Cartesian Form (Geometric Representation) :

Every complex number z = x + i y can be represented by a point onthe cartesian plane known as complex plane (Argand diagram) by theordered pair (x, y).length OP is called modulus of the complex number denoted by z &θ is called the argument or amplitude .eg. z = x y2 2+ &

θ = tan−1 yx (angle made by OP with positive x−axis)

NOTE :(i) z is always non negative . Unlike real numbers z = z if zz if z

>− <

00

is not correct

(ii) Argument of a complex number is a many valued function . If θ is the argument of a complex numberthen 2 nπ + θ ; n ∈ I will also be the argument of that complex number. Any two arguments of acomplex number differ by 2nπ.

(iii) The unique value of θ such that – π < θ ≤ π is called the principal value of the argument.(iv) Unless otherwise stated, amp z implies principal value of the argument.(v) By specifying the modulus & argument a complex number is defined completely. For the complex number

0 + 0 i the argument is not defined and this is the only complex number which is given by its modulus.(vi) There exists a one-one correspondence between the points of the plane and the members of the set of

complex numbers.

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

15 of

38

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

om(b) Trignometric / Polar Representation :

z = r (cos θ + i sin θ) where | z | = r ; arg z = θ ; z = r (cos θ − i sin θ)Note: cos θ + i sin θ is also written as CiS θ.

Also cos x = 2ee ixix −+

& sin x = 2ee ixix −−

are known as Euler's identities.(c) Exponential Representation :

z = reiθ ; | z | = r ; arg z = θ ; z = re− iθ

6. IMPORTANT PROPERTIES OF CONJUGATE / MODULI / AMPLITUDE :If z , z1 , z2 ∈ C then ;

(a) z + z = 2 Re (z) ; z − z = 2 i Im (z) ; )z( = z ; 21 zz + = 1z + 2z ;

21 zz − = 1z − 2z ; 21zz = 1z . 2z

2

1zz

= 2

1zz

; z2 ≠ 0

(b) | z | ≥ 0 ; | z | ≥ Re (z) ; | z | ≥ Im (z) ; | z | = | z | = | – z | ; z z = 2|z| ;

| z1 z2 | = | z1 | . | z2 | ; 2

1

zz

= |z||z|

2

1 , z2 ≠ 0 , | zn | = | z |n ;

| z1 + z2 |2 + | z1 – z2 |2 = 2 ][ 22

21 |z||z| +

z1− z2 ≤ z1 + z2 ≤ z1 + z2 [ TRIANGLE INEQUALITY ](c) (i) amp (z1 . z2) = amp z1 + amp z2 + 2 kπ. k ∈ I

(ii) amp zz

1

2

= amp z1 − amp z2 + 2 kπ ; k ∈ I

(iii) amp(zn) = n amp(z) + 2kπ .where proper value of k must be chosen so that RHS lies in (− π , π ].

(7) VECTORIAL REPRESENTATION OF A COMPLEX :Every complex number can be considered as if it is the position vector of that point. If the point P

represents the complex number z then, →

OP = z & →

OP = z.NOTE :

(i) If →

OP = z = r ei θ then →

OQ = z1 = r ei (θ + φ) = z . e iφ. If →

OP and →

OQ areof unequal magnitude then φ

ΛΛ= ieOPOQ

(ii) If A, B, C & D are four points representing the complex numbersz1, z2 , z3 & z4 then

AB CD if 12

34zzzz

−−

is purely real ; AB ⊥ CD if 12

34

zzzz

−−

is purely imaginary ](iii) If z1, z2, z3 are the vertices of an equilateral triangle where z0 is its circumcentre then

(a) z 12 + z 2

2 + z 32 − z1 z2 − z2 z3 − z3 z1 = 0 (b) z 1

2 + z 22 + z 3

2 = 3 z 02

8. DEMOIVRE’S THEOREM : Statement : cos n θ + i sin n θ is the value or one of the valuesof (cos θ + i sin θ)n ¥ n ∈ Q. The theorem is very useful in determining the roots of any complexquantity Note : Continued product of the roots of a complex quantity should be determined

using theory of equations.

9. CUBE ROOT OF UNITY : (i) The cube roots of unity are 1 , 2

3i1+− , 2

3i1−−.

(ii) If w is one of the imaginary cube roots of unity then 1 + w + w² = 0. In general1 + wr + w2r = 0 ; where r ∈ I but is not the multiple of 3.

(iii) In polar form the cube roots of unity are :

cos 0 + i sin 0 ; cos3

2π + i sin

32π

, cos3

4π + i sin

34π

(iv) The three cube roots of unity when plotted on the argand plane constitute the verties of an equilateral triangle.(v) The following factorisation should be remembered :

(a, b, c ∈ R & ω is the cube root of unity)

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

16 of

38

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

oma3 − b3 = (a − b) (a − ωb) (a − ω²b) ; x2 + x + 1 = (x − ω) (x − ω2) ;a3 + b3 = (a + b) (a + ωb) (a + ω2b) ;a3 + b3 + c3 − 3abc = (a + b + c) (a + ωb + ω²c) (a + ω²b + ωc)

10. nth ROOTS OF UNITY :If 1 , α1 , α2 , α3 ..... αn − 1 are the n , nth root of unity then :(i) They are in G.P. with common ratio ei(2π/n) &(ii) 1p + α 1

p + α 2p + .... +α n

p−1 = 0 if p is not an integral multiple of n = n if p is an integral multiple of n

(iii) (1 − α1) (1 − α2) ...... (1 − αn − 1) = n &(1 + α1) (1 + α2) ....... (1 + αn − 1) = 0 if n is even and 1 if n is odd.

(iv) 1 . α1 . α2 . α3 ......... αn − 1 = 1 or −1 according as n is odd or even.11. THE SUM OF THE FOLLOWING SERIES SHOULD BE REMEMBERED :

(i) cos θ + cos 2 θ + cos 3 θ + ..... + cos n θ = ( )( )2sin

2nsinθθ

cos

+

21n

θ.

(ii) sin θ + sin 2 θ + sin 3 θ + ..... + sin n θ = ( )( )2sin

2nsinθθ

sin

+

21n

θ.Note : If θ = (2π/n) then the sum of the above series vanishes.

12. STRAIGHT LINES & CIRCLES IN TERMS OF COMPLEX NUMBERS :

(A) If z1 & z2 are two complex numbers then the complex number z = nm

mznz 21+

+ divides the joins of z1

& z2 in the ratio m : n.Note:(i) If a , b , c are three real numbers such that az1 + bz2 + cz3 = 0 ;

where a + b + c = 0 and a,b,c are not all simultaneously zero, then the complex numbers z1 , z2 & z3are collinear.(ii) If the vertices A, B, C of a ∆ represent the complex nos. z1, z2, z3 respectively, then :

(a) Centroid of the ∆ ABC = 3

zzz 321 ++ :

(b) Orthocentre of the ∆ ABC =( ) ( ) ( )

CseccBsecbAsecazCsecczBsecbzAseca 321

++++

OR CtanBtanAtan

CtanzBtanzAtanz 321

++++

(c) Incentre of the ∆ ABC = (az1 + bz2 + cz3) ÷ (a + b + c) .(d) Circumcentre of the ∆ ABC = :

(Z1 sin 2A + Z2 sin 2B + Z3 sin 2C) ÷ (sin 2A + sin 2B + sin 2C) .(B) amp(z) = θ is a ray emanating from the origin inclined at an angle θ to the x− axis.(C) z − a = z − b is the perpendicular bisector of the line joining a to b.(D) The equation of a line joining z1 & z2 is given by ;

z = z1 + t (z1 − z2) where t is a perameter.(E) z = z1 (1 + it) where t is a real parameter is a line through the point z1 & perpendicular to oz1.(F) The equation of a line passing through z1 & z2

can be expressed in the determinant form as

1zz1zz1zz

22

11 = 0. This is also the condition for three complex numbers to be collinear.

(G) Complex equation of a straight line through two given points z1 & z2 can be written as( ) ( ) ( )21212121 zzzzzzzzzz −+−−− = 0, which on manipulating takes the form as rzz +α+α = 0

where r is real and α is a non zero complex constant.(H) The equation of circle having centre z0 & radius ρ is :

z − z0 = ρ or z z − z0 z − 0z z +

0z z0 − ρ² = 0 which is of the form

rzzzz +α+α+ = 0 , r is real centre − α & radius r−αα .Circle will be real if 0r ≥−αα .

(I) The equation of the circle described on the line segment joining z1 & z2 as diameter is :

(i) arg1

2zzzz

−−

= ± 2π

or (z − z1) ( z − z 2)

+ (z − z2) ( z − z 1) = 0

(J) Condition for four given points z1 , z2 , z3 & z4 to be concyclic is, the number

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

17 of

38

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

om

14

24

23

13

zzzz

.zzzz

−−

−−

is real. Hence the equation of a circle through 3 non collinear points z1, z2 & z3 can be

taken as ( )( )( )( )231

132

zzzzzzzz

−−−−

is real ⇒ ( )( )( )( )231

132

zzzzzzzz

−−−−

= ( )( )( )( )231

132

zzzzzzzz

−−−−

13.(a) Reflection points for a straight line :Two given points P & Q are the reflection points for a given straight line if the given line is the rightbisector of the segment PQ. Note that the two points denoted by the complex numbers z1 & z2 will bethe reflection points for the straight line 0rzz =+α+α if and only if ; 0rzz 21 =+α+α , where r isreal and α is non zero complex constant.

(b) Inverse points w.r.t. a circle :Two points P & Q are said to be inverse w.r.t. a circle with centre 'O' and radius ρ, if :(i) the point O, P, Q are collinear and on the same side of O. (ii) OP . OQ = ρ2.Note that the two points z1 & z2 will be the inverse points w.r.t. the circle

0rzzzz =+α+α+ if and only if 0rzzzz 2121 =+α+α+ .14. PTOLEMY’S THEOREM : It states that the product of the lengths of the diagonals of a

convex quadrilateral inscribed in a circle is equal to the sum of the lengths of the two pairs ofits opposite sides. i.e. z1 − z3 z2 − z4 = z1 − z2 z3 − z4 + z1 − z4 z2 − z3 .

15. LOGARITHM OF A COMPLEX QUANTITY :

(i) Loge (α + i β) = 21

Loge (α² + β²) + i

αβ+π −1tann2 where n ∈ I.

(ii) ii represents a set of positive real numbers given by

π+π−

2n2

e , n ∈ I.VERY ELEMENTARY EXERCISE

Q.1 Simplify and express the result in the form of a + bi

(a) 2

i2i21

++ (b) −i (9 + 6 i) (2 − i)−1 (c)

23

1i2ii4

+− (d)

i52i23

i52i23

+−+

−+ (e) ( ) ( )

i2i2

i2i2 22

+−−

−+

Q.2 Given that x , y ∈ R, solve : (a) (x + 2y) + i (2x − 3y) = 5 − 4i (b) (x + iy) + (7 − 5i) = 9 + 4i(c) x² − y² − i (2x + y) = 2i (d) (2 + 3i) x² − (3 − 2i) y = 2x − 3y + 5i(e) 4x² + 3xy + (2xy − 3x²)i = 4y² − (x2/2) + (3xy − 2y²)i

Q.3 Find the square root of : (a) 9 + 40 i (b) −11 − 60 i (c) 50 iQ.4 (a) If f (x) = x4 + 9x3 + 35x2 − x + 4, find f ( – 5 + 4i)

(b) If g (x) = x4 − x3 + x2 + 3x − 5, find g(2 + 3i)Q.5 Among the complex numbers z satisfying the condition z i+ − =3 3 3 , find the number having the

least positive argument.Q.6 Solve the following equations over C and express the result in the form a + ib, a, b ∈ R.

(a) ix2 − 3x − 2i = 0 (b) 2 (1 + i) x2 − 4 (2 − i) x − 5 − 3 i = 0Q.7 Locate the points representing the complex number z on the Argand plane:

(a) z + 1 − 2i = 7 ; (b) z z− + +1 12 2 = 4 ; (c) zz

−+

33

= 3 ; (d) z − 3 = z − 6

Q.8 If a & b are real numbers between 0 & 1 such that the points z1 = a + i, z2 = 1 + bi & z3 = 0 form anequilateral triangle, then find the values of 'a' and 'b'.

Q.9 For what real values of x & y are the numbers − 3 + ix2 y & x2 + y + 4i conjugate complex?Q.10 Find the modulus, argument and the principal argument of the complex numbers.

(i) 6 (cos 310° − i sin 310°) (ii) −2 (cos 30° + i sin 30°) (iii) 24 1 2

++ +

ii i( )

Q.11 If (x + iy)1/3 = a + bi ; prove that 4 (a2 − b2) = xa

yb

+ .

Q.12(a) If a ibc id

++

= p + qi , prove that p2 + q2 = a bc d

2 2

2 2++

. (b) Let z1, z2, z3 be the complex numbers such that

z1 + z2 + z3 = z1z2 + z2z3 + z3z1 = 0. Prove that | z1 | = | z2 | = | z3 |.

Q.13 Let z be a complex number such that z ∈ c\R and 2

2

zz1zz1

+−++

∈ R, then prove that | z | =1.

Q.14 Prove the identity, ( ) ( )22

21

221

221 |z|1|z|1|zz||zz1| −−=−−−

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

18 of

38

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

omQ.15 For any two complex numbers, prove that z z z z1 2

21 2

2+ + − = 2 [ ]z z12

22+ . Also give the

geometrical interpretation of this identity.Q.16 (a) Find all non−zero complex numbers Z satisfying Z = i Z².

(b) If the complex numbers z1, z2, .................zn lie on the unit circle |z| = 1 then show that|z1 + z2 + ..............+zn| = |z1

–1+ z2–1+................+zn

–1| .Q.17 Find the Cartesian equation of the locus of 'z' in the complex plane satisfying, | z – 4 | + | z + 4 | = 16.Q.18 If ω is an imaginary cube root of unity then prove that :

(a) (1 + ω − ω²)3 − (1− ω + ω²)3 = 0 (b) (1 − ω + ω²)5 + (1+ ω − ω²)5 = 32(c) If ω is the cube root of unity, Find the value of, (1 + 5ω2 + ω4) (1 + 5ω4 + ω2) (5ω3 + ω + ω2).

Q.19 If ω is a cube root of unity, prove that ; (i) (1 + ω − ω2)3 − (1 − ω + ω2)3

(ii) a b cc a b

+ ++ +

ω ωω ω

2

2 = ω2 (iii) (1 − ω) (1 − ω2) (1 − ω4) (1 − ω8) = 9

Q.20 If x = a + b ; y = aω + bω2 ; z = aω2 + bω, show that(i) xyz = a3 + b3 (ii) x2 + y2 + z2 = 6ab (iii) x3 + y3 + z3 = 3 (a3 + b3)

Q.21 If (w ≠ 1) is a cube root of unity then 11wii

1w1i1wwi112

22

−−+−−−−−

++ =

(A) 0 (B) 1 (C) i (D) wQ.22(a) (1 + w)7 = A + Bw where w is the imaginary cube root of a unity and A, B ∈ R, find the ordered pair

(A, B). (b) The value of the expression ;

1. (2 − w) (2 − w²) + 2. (3 − w) (3 − w²) + ............. + (n − 1) . (n − w) (n − w²), where w is animaginary cube root of unity is ________.

Q.23 If n ∈ N, prove that (1 + i)n + (1 − i)n = 2 2 1n + . cos nπ4

.

Q.24 Show that the sum k

n

=∑

1

2

sin cos22 1

22 1

π πkn

i kn+

−+

simplifies to a pure imaginary number.

Q.25 If x = cos θ + i sin θ & 1 + 1 2− a = na, prove that 1 + a cos θ = an2

(1 + nx) 1 +

nx

.Q.26 The number t is real and not an integral multiple of π/2. The complex number x1 and x2 are the roots of

the equation, tan2(t) · x2 + tan (t) · x + 1 = 0

Show that (x1)n + (x2)n =

π

3n2cos2 cotn(t).

EXEREXEREXEREXEREXERCISE-1CISE-1CISE-1CISE-1CISE-1Q.1 Simplify and express the result in the form of a + bi :

(a) −i (9 + 6 i) (2 − i)−1 (b) 23

1i2ii4

+− (c)

i52i23

i52i23

+−+

−+

(d) ( ) ( )i2

i2i2i2 22

+−−

−+ (e) ii −+

Q.2 Find the modulus , argument and the principal argument of the complex numbers.

(i) z = 1 + cos

π

910 + i sin

π

910

(ii) (tan1 – i)2

(iii) z = i125i125i125i125

−−+−++ (iv)

52sin

52cos1i

1iπ+

π−

Q.3 Given that x, y ∈ R, solve :

(a) (x + 2y) + i (2x − 3y) = 5 − 4i (b) 1i8i65

i23y

i21x

−+=

++

+(c) x² − y² − i (2x + y) = 2i (d) (2 + 3i) x² − (3 − 2i) y = 2x − 3y + 5i(e) 4x² + 3xy + (2xy − 3x²)i = 4y² − (x2/2) + (3xy − 2y²)i

Q.4(a) Let Z is complex satisfying the equation, z2 – (3 + i)z + m + 2i = 0, where m ∈ R.

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

19 of

38

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

omSuppose the equation has a real root, then find the value of m.

(b) a, b, c are real numbers in the polynomial, P(Z) = 2Z4 + aZ3 + bZ2 + cZ + 3If two roots of the equation P(Z) = 0 are 2 and i, then find the value of 'a'.

Q.5(a) Find the real values of x & y for which z1 = 9y2 − 4 − 10 i x andz2 = 8y2 − 20 i are conjugate complex of each other.

(b) Find the value of x4 − x3 + x2 + 3x − 5 if x = 2 + 3i

Q.6 Solve the following for z : (a) z2 – (3 – 2 i)z = (5i – 5) (b) z + z = 2 + iQ.7(a) If i Z3 + Z2 − Z + i = 0, then show that | Z | = 1.

(b) Let z1 and z2 be two complex numbers such that 21

21

zz2z2z

−−

= 1 and | z2 | ≠ 1, find | z1 |.

(c) Let z1 = 10 + 6i & z2 = 4 + 6i. If z is any complex number such that the argument of, 2

1zzzz

−−

is 4π, then

prove that z − 7 − 9i = 3 2 .Q.8 Show that the product,

++

++

++

++

n2 222

2i11......

2i11

2i11

2i11 is equal to 1 1

22−

n (1+ i) where n ≥ 2 .

Q.9 Let a & b be complex numbers (which may be real) and let,Z = z3 + (a + b + 3i) z2 + (ab + 3 ia + 2 ib − 2) z + 2 abi − 2a.(i) Show that Z is divisible by, z + b + i. (ii) Find all complex numbers z for which Z = 0.(iii) Find all purely imaginary numbers a & b when z = 1 + i and Z is a real number.

Q.10 Interpret the following locii in z ∈ C.

(a) 1 < z − 2i < 3 (b) Re 42zii2z ≤

+

+ (z ≠ 2i)

(c) Arg (z + i) − Arg (z − i) = π/2 (d) Arg (z − a) = π/3 where a = 3 + 4i.Q.11 Prove that the complex numbers z1 and z2 and the origin form an isosceles triangle with vertical angle

2π/3 if 0zzzz 2122

21 =++ .

Q.12 P is a point on the Aragand diagram. On the circle with OP as diameter two points Q & R are taken suchthat ∠ POQ = ∠ QOR = θ. If ‘O’ is the origin & P, Q & R are represented by the complex numbersZ1 , Z2 & Z3 respectively, show that : Z2

2 . cos 2 θ = Z1 . Z3 cos² θ.

Q.13 Let z1, z2, z3 are three pair wise distinct complex numbers and t1, t2, t3 are non-negative real numberssuch that t1 + t2 + t3 = 1. Prove that the complex number z = t1z1 + t2z2 + t3z3 lies inside a triangle withvertices z1, z2, z3 or on its boundry.

Q.14 If a CiS α , b CiS β , c CiS γ represent three distinct collinear points in an Argand's plane, then provethe following :(i) Σ ab sin (α − β) = 0.(ii) (a CiS α) )cos(bc2cb 22 γ−β−+ ± (b CiS β) )cos(ac2ca 22 γ−α−+

∓ (c CiS γ) )cos(ab2ba 22 β−α−+ = 0.Q.15 Find all real values of the parameter a for which the equation

(a − 1)z4 − 4z2 + a + 2 = 0 has only pure imaginary roots.

Q.16 Let A ≡ z1 ; B ≡ z2; C ≡ z3 are three complex numbers denoting the vertices of an acute angled triangle.If the origin ‘O’ is the orthocentre of the triangle, then prove that

z1 z2 + z1 z2 = z2 z3 + z2 z3 = z3 z1 + z3 z1hence show that the ∆ ABC is a right angled triangle ⇔ z1 z2 + z1 z2 = z2 z3 + z2 z3 = z3 z1 + z3 z1 = 0

Q.17 If the complex number P(w) lies on the standard unit circle in an Argand's plane andz = (aw+ b)(w – c)–1 then, find the locus of z and interpret it. Given a, b, c are real.

Q.18(a) Without expanding the determinant at any stage , find RK∈ such that

i8iKi4ii16i8

i34i8i4

+−+−

++ has purely imaginary value.

(b) If A, B and C are the angles of a triangle

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

20 of

38

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

om

D = iC2iAiB

iAiB2iC

iBiCiA2

eeeeeeeee

where i = −1 then find the value of D.

Q.19 If w is an imaginary cube root of unity then prove that :(a) (1 − w + w2) (1 − w2 + w4) (1 − w4 + w8) ..... to 2n factors = 22n .(b) If w is a complex cube root of unity, find the value of

(1 + w) (1 + w2) (1 + w4) (1 + w8) ..... to n factors .

Q.20 Prove that n

cosisin1cosisin1

θ−θ+θ+θ+ = cos

θ−π n

2n

+ i sin

θ−π n

2n

. Hence deduce that5

5cosi

5sin1

π+π+ + i

5

5cosi

5sin1

π−π+ = 0

Q.21 If cos (α − β) + cos (β − γ) + cos (γ − α) = − 3/2 then prove that :(a) Σ cos 2α = 0 = Σ sin 2α (b) Σ sin (α + β) = 0 = Σ cos (α + β) (c) Σ sin2 α = Σ cos2 α = 3/2(d) Σ sin 3α = 3 sin (α + β + γ) (e) Σ cos 3α = 3 cos (α + β + γ)(f) cos3 (θ + α) + cos3 (θ + β) + cos3 (θ + γ) = 3 cos (θ + α) . cos (θ + β) . cos (θ + γ) where θ ∈ R.Q.22 Resolve Z5 + 1 into linear & quadratic factors with real coefficients. Deduce that : 4·sin π

10·cos π

5= 1.

Q.23 If x = 1+ i 3 ; y = 1 − i 3 & z = 2 , then prove that xp + yp = zp for every prime p > 3.Q.24 If the expression z5 – 32 can be factorised into linear and quadratic factors over real coefficients as

(z5 – 32) = (z – 2)(z2 – pz + 4)(z2 – qz + 4) then find the value of (p2 + 2p).Q.25(a) Let z = x + iy be a complex number, where x and y are real numbers. Let A and B be the sets defined by

A = {z | | z | ≤ 2} and B = {z | (1 – i)z + (1 + i) z ≥ 4}. Find the area of the region A ∩ B.

(b) For all real numbers x, let the mapping f (x) = i−x

1, where i = 1− . If there exist real number

a, b, c and d for which f (a), f (b), f (c) and f (d) form a square on the complex plane. Find the area ofthe square.

EXEREXEREXEREXEREXERCISE-2CISE-2CISE-2CISE-2CISE-2Q.1 If

p q rq r pr p q

= 0 ; where p , q , r are the moduli of non−zero complex numbers u, v, w respectively,

prove that, arg wv

= arg w uv u

−−

2

.

Q.2 The equation x3 = 9 + 46i where i = 1− has a solution of the form a + bi where a and b are integers.Find the value of (a3 + b3).

Q.3 Show that the locus formed by z in the equation z3 + iz = 1 never crosses the co-ordinate axes in the

Argand’s plane. Further show that |z| = −

+Im( )

Re( ) Im( )z

z z2 1Q.4 If ω is the fifth root of 2 and x = ω + ω2, prove that x5 = 10x2 + 10x + 6.Q.5 Prove that , with regard to the quadratic equation z2 + (p + ip′) z + q + iq′ = 0

where p , p′, q , q′ are all real.(i) if the equation has one real root then q ′2 − pp ′ q ′ + qp ′2 = 0 .(ii) if the equation has two equal roots then p2 − p′2 = 4q & pp ′ = 2q ′.

State whether these equal roots are real or complex.Q.6 If the equation (z + 1)7 + z7 = 0 has roots z1, z2, .... z7, find the value of

(a) ∑=

7

1rr )ZRe( and (b) ∑

=

7

1rr )ZIm(

Q.7 Find the roots of the equation Zn = (Z + 1)n and show that the points which represent them are collinearon the complex plane. Hence show that these roots are also the roots of the equation

22

Zn

msin2

π + Z

nmsin2

2

π + 1 = 0.

Q.8 Dividing f(z) by z − i, we get the remainder i and dividing it by z + i, we get the remainder

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

21 of

38

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

om1 + i. Find the remainder upon the division of f(z) by z² + 1.

Q.9 Let z1 & z2 be any two arbitrary complex numbers then prove that :

z1 + z2 ≥ ( )|z|

z|z|

z|z||z|

21

2

2

1

121 ++ .

Q.10 If Zr, r = 1, 2, 3, ......... 2m, m ε N are the roots of the equation

Z2m + Z2m-1 + Z2m-2 + ............. + Z + 1 = 0 then prove that ∑−=r

m

rZ1

2 11 = − m

Q.11 If (1 + x)n = C0 + C1x + C2x² + .... + Cn xn (n ∈ N), prove that :

(a) C0 + C4

+ C8 + .... = 1

22 2

41 2n n n− +

/ cos π (b) C1 + C5

+ C9 + .... = 12

2 24

1 2n n n− +

/ sin π

(c) C2 + C6

+ C10 + ..... = 1

22 2

41 2n n n− −

/ cos π (d) C3 + C7

+ C11 + .... = 1

22 2

41 2n n n− −

/ sin π

(e) C0 + C3 + C6 + C9 + ........ = 13

2 23

n n+

cos π

Q.12 Let z1 , z2 , z3 , z4 be the vertices A , B , C , D respectively of a square on the Argand diagramtaken in anticlockwise direction then prove that :(i) 2z2 = (1 + i) z1 + (1− i)z3 & (ii) 2z4 = (1− i) z1 + (1 + i) z3

Q.13 Show that all the roots of the equation 11

11

+−

= +

−i xi x

i ai a

n

a ∈ R are real and distinct.

Q.14 Prove that:

(a) cos x + nC1 cos 2x + nC2 cos 3x + ..... + nCn cos (n + 1) x = 2n . cosn x2

. cos n +

22

x

(b) sin x + nC1 sin 2x + nC2 sin 3x + ..... + nCn sin (n + 1) x = 2n . cosn x2

. sin n +

22

x

(c) cos 22 1

πn +

+ cos 4

2 1π

n +

+ cos 6

2 1π

n +

+ ..... + cos 2

2 1n

nπ+

= − 1

2 When n ∈ N.

Q.15 Show that all roots of the equation a0zn + a1z

n – 1 + ...... + an – 1z + an = n,

where | ai | ≤ 1, i = 0, 1, 2, .... , n lie outside the circle with centre at the origin and radius n1n −

.Q.16 The points A, B, C depict the complex numbers z1 , z2 , z3 respectively on a complex plane & the angle

B & C of the triangle ABC are each equal to )(21 α−π . Show that

(z2 − z3)² = 4 (z3 − z1) (z1 − z2) sin2 α2

.

Q.17 Show that the equation Ax a

Ax a

Ax a

n

n

12

1

22

2

2

−+

−+ +

−...... = k has no imaginary root, given that:

a1 , a2 , a3 .... an & A1, A2, A3 ..... An, k are all real numbers.

Q.18 Let a, b, c be distinct complex numbers such that b1a− = c1

b− = a1

c− = k. Find the value of k.

Q.19 Let α, β be fixed complex numbers and z is a variable complex number such that,z − α 2 + z − β 2 = k.

Find out the limits for 'k' such that the locus of z is a circle. Find also the centre and radius of the circle.Q.20 C is the complex number. f : C → R is defined by f (z) = | z3 – z + 2|. What is the maximum value of f on

the unit circle | z | = 1?

Q.21 Let f (x) = )xi2(coslogx3cos if x ≠ 0 and f (0) = K (where i = 1− ) is continuous at x = 0 then find

the value of K. Use of L Hospital’s rule or series expansion not allowed.

Q.22 If z1 , z2 are the roots of the equation az2 + bz + c = 0, with a, b, c > 0 ; 2b2 > 4ac > b2 ;z1 ∈ third quadrant ; z2 ∈ second quadrant in the argand's plane then, show that

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

22 of

38

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

om

arg

2

1

zz

= 2cos–1

2/12

ac4b

Q.23 Find the set of points on the argand plane for which the real part of the complex number(1 + i) z2 is positive where z = x + iy , x, y ∈ R and i = −1 .

Q.24 If a and b are positive integer such that N = (a + ib)3 – 107i is a positive integer. Find N.Q.25 If the biquadratic x4 + ax3 + bx2 + cx + d = 0 (a, b, c, d ∈ R) has 4 non real roots, two with sum

3 + 4i and the other two with product 13 + i. Find the value of 'b'.

EXEREXEREXEREXEREXERCISE-3CISE-3CISE-3CISE-3CISE-3Q.1 Evaluate: ( ) sin cos3 2 2

112111

10

1

32p q i q

q

p

p+ −

==∑∑ π π . [REE '97, 6]

Q.2(a) Let z1 and z2 be roots of the equation z2 + pz + q = 0 , where the co−efficients p and q may becomplex numbers. Let A and B represent z1 and z2 in the complex plane. If ∠ AOB = α ≠ 0 and

OA = OB, where O is the origin . Prove that p2 = 4 q cos2 α2

. [JEE '97 , 5]

(b) Prove that k

n

=

∑1

1

(n − k) cos2 k

= − n2

where n ≥ 3 is an integer . [JEE '97, 5]

Q.3(a) If ω is an imaginary cube root of unity, then (1 + ω − ω2)7 equals(A) 128ω (B) − 128ω (C) 128ω2 (D) − 128ω2

(b) The value of the sum ( )i in n

n+ +

=∑ 1

1

13 , where i = −1 , equals

(A) i (B) i − 1 (C) − i (D) 0 [JEE' 98, 2 + 2 ]Q.4 Find all the roots of the equation (3z − 1)4 + (z − 2)4 = 0 in the simplified form of a + ib.

[REE ’98, 6 ]

Q.5(a) If i = −1 , then 4 + 5 − +

12

32

334i

+ 3 − +

12

32

365i

is equal to :

(A) 1 − i 3 (B) − 1 + i 3 (C) i 3 (D) − i 3

(b) For complex numbers z & ω, prove that, z 2 ω − ω 2 z = z − ω if and only if, z = ω or z ω = 1 [JEE '99, 2 + 10 (out of 200)]

Q.6 If α = ei2

and f(x) = A0 + k =∑

1

20

Ak xk, then find the value of,

f(x) + f(α x) + ...... + f(α6x) independent of α . [REE '99, 6]

Q.7(a) If z1 , z2 , z3 are complex numbers such that z1 = z2 = z3 = 1 1 1

1 2 3z z z+ +

= 1, then

z1 + z2 + z3 is :(A) equal to 1 (B) less than 1 (C) greater than 3 (D) equal to 3

(b) If arg (z) < 0 , then arg (− z) − arg (z) =(A) π (B) − π (C) −

π2

(D) π2

[ JEE 2000 (Screening) 1 + 1 out of 35 ]

Q.8 Given , z = cos 2

2 1π

n + + i sin 2

2 1π

n + , 'n' a positive integer, find the equation whose roots are,α = z + z3 + ...... + z2n − 1 & β = z2 + z4 + ...... + z2n .

[ REE 2000 (Mains) 3 out of 100 ]

Q.9(a) The complex numbers z1, z2 and z3 satisfying z zz z

i1 3

2 3

1 32

−−

= − are the vertices of a triangle which is

(A) of area zero (B) right-angled isosceles(C) equilateral (D) obtuse – angled isosceles

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

23 of

38

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

om (b) Let z1 and z2 be nth roots of unity which subtend a right angle at the origin. Then n must be of the form

(A) 4k + 1 (B) 4k + 2 (C) 4k + 3 (D) 4k[ JEE 2001 (Scr) 1 + 1 out of 35 ]

Q.10 Find all those roots of the equation z12 – 56z6 – 512 = 0 whose imaginary part is positive.[ REE 2000, 3 out of 100 ]

Q.11(a) Let ω = − +12

32

i . Then the value of the determinant 1 1 11 11

2 2

2 4

− − ω ωω ω

is

(A) 3ω (B) 3ω (ω – 1) (C) 3ω2 (D) 3ω(1 – ω) (b) For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 – 3 – 4i| = 5, the minimum value of

|z1 – z2| is(A) 0 (B) 2 (C) 7 (D) 17

[JEE 2002 (Scr) 3+3] (c) Let a complex number α , α ≠ 1, be a root of the equation

zp+q – zp – zq + 1 = 0 where p, q are distinct primes.Show that either 1 + α + α2 + ...... + αp–1 = 0 or 1 + α + α2 + ...... + αq–1 = 0 , but not both together.

[JEE 2002, (5) ]

Q.12(a) If z1 and z2 are two complex numbers such that | z1 | < 1 < | z2 | then prove that 1zzzz1

21

21 <−

−.

(b) Prove that there exists no complex number z such that | z | < 31

and ∑=

n

1r

rr za = 1 where | ar | < 2.

[JEE-03, 2 + 2 out of 60]Q.13(a) ω is an imaginary cube root of unity. If (1 + ω2)m = (1 + ω4)m , then least positive integral value of m is

(A) 6 (B) 5 (C) 4 (D) 3[JEE 2004 (Scr)]

(b) Find centre and radius of the circle determined by all complex numbers z = x + i y satisfying k)z()z( =

β−α− ,

where 2121 i,i β+β=βα+α=α are fixed complex and k ≠ 1. [JEE 2004, 2 out of 60 ]

Q.14(a) The locus of z which lies in shaded region is best represented by(A) z : |z + 1| > 2, |arg(z + 1)| < π/4(B) z : |z - 1| > 2, |arg(z – 1)| < π/4(C) z : |z + 1| < 2, |arg(z + 1)| < π/2(D) z : |z - 1| < 2, |arg(z - 1)| < π/2

(b) If a, b, c are integers not all equal and w is a cube root of unity (w ≠ 1), then the minimum value of|a + bw + cw2| is

(A) 0 (B) 1 (C) 23

(D) 21

[JEE 2005 (Scr), 3 + 3] (c) If one of the vertices of the square circumscribing the circle |z – 1| = 2 is i32 + . Find the othervertices of square. [JEE 2005 (Mains), 4]

Q.15 If w = α + iβ where β ≠ 0 and z ≠ 1, satisfies the condition that z1zww

−−

is purely real, then the set ofvalues of z is(A) {z : | z | = 1} (B) {z : z = z ) (C) {z : z ≠ 1} (D) {z : | z | = 1, z ≠ 1}

[JEE 2006, 3]ANSWER KEY

VERY ELEMENTARY EXERCISEQ.1 (a)

2524

257 + i; (b)

512

521 − i; (c) 3 + 4i; (d)

298− + 0i; (e)

522 i

Q.2 (a) x =1, y = 2; (b) (2, 9); (c) (−2 , 2) or − −

23

23

, ; (d) (1 ,1) 0 52

,

(e) x = K, y = 32K , K∈ R

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

24 of

38

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

omQ.3 (a) ± (5 + 4i) ; (b) ± (5 − 6i) (c) ± 5(1 + i) Q.4 (a) −160 ; (b) − (77 +108 i)

Q.5 – 32

3 32

+ i Q.6 (a) − i , − 2i (b) 3 5

2− i

or − 12+ i

Q.7 (a) on a circle of radius 7 with centre (−1, 2) ; (b) on a unit circle with centre at origin(c) on a circle with centre (−15/4, 0) & radius 9/4 ; (d) a straight line

Q.8 a = b = 2 − 3 ; Q.9 x = 1, y = − 4 or x = − 1, y = − 4Q.10 (i) Modulus = 6 , Arg = 2 k π + 5

18π (K ∈ I) , Principal Arg = 5

18π (K ∈ I)

(ii) Modulus = 2 , Arg = 2 k π + 76π , Principal Arg = − 5

(iii) Modulus = 56

, Arg = 2 k π − tan−1 2 (K ∈ I) , Principal Arg = − tan−12

Q.16 (a) 32 2

− i , − −32 2

i , i ; Q.17 148y

64x 22

=+ ; Q.18 (c) 64 ; Q.21 A

Q.22 (a) (1, 1) ; (b) ( )n nn

+

−1

2

2

EXEREXEREXEREXEREXERCISE-1CISE-1CISE-1CISE-1CISE-1Q.1 (a) 21

5125

− i (b) 3 + 4 i (c) − 829

+ 0 i (d) 225

i (e) + i02 + or i20±

Q.2 (i) Principal Arg z = − 49π

; z = 2 cos49π

; Arg z = 2 k π − 49π

k ∈ I (ii) Modulus = sec21 , Arg = 2 n π + (2 – π ) , Principal Arg = (2 – π )

(iii) Principal value of Agr z = − π2 & z =

32 ; Principal value of Arg z =

π2 & z =

23

(iv) Modulus = 5

eccos2

1 π , Arg z = 20

11n2 π+π , Principal Arg = 20

11π

Q.3(a) x = 1, y = 2; (b) x = 1 & y = 2 ; (c) (−2 , 2) or − −

23

23

, ; (d) (1 ,1) 0 52

,

; (e) x =K, y = 32K K∈ R

Q.4 (a) 2, (b) – 11/2 Q.5 (a) [(− 2, 2) ; (− 2, − 2)] (b) − (77 +108 i)Q.6 (a) z = (2 + i) or (1 – 3i); (b) z = 3 4

4+ i

Q.7 (b) 2

Q.9 (ii) z = − (b + i) ; − 2 i , − a (iii)

+− ti,

5t3ti2

where t ∈ R −

35

Q.10 (a) The region between the co encentric circles with centre at (0 , 2) & radii 1 & 3 units

(b) region outside or on the circle with centre 21

+ 2i and radius 21

.(c) semi circle (in the 1st & 4th quadrant) x² + y² = 1 (d) a ray emanating from the point (3 + 4i) directed away from the origin & having equation 3 4 3 3 0x y− + − =

Q.15 [−3 , −2] Q.17 (1 – c2) | z |2 – 2(a + bc) (Re z) + a2 – b2 = 0Q.18 (a) K = 3 , (b) – 4 Q.19 (b) one if n is even ; − w² if n is oddQ.22 (Z + 1) (Z² − 2Z cos 36° + 1) (Z² − 2Z cos 108° + 1) Q.24 4Q.25 (a) π – 2 ; (b) 1/2

EXEREXEREXEREXEREXERCISE-2CISE-2CISE-2CISE-2CISE-2Q.2 35 Q.6 (a) –

27 , (b) zero Q.8 i z i

212

+ + Q.18 – ω or – ω2

Q.19 k > 12

2α β− Q.20 | f (z) | is maximum when z = ω, where ω is the cube root unity and | f (z) | = 13

Q.21 K = – 94

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

25 of

38

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

omQ.23 required set is constituted by the angles without their boundaries, whose sides are the straight lines

y = )12( − x and y + )12( + x = 0 containing the x − axisQ.24 198 Q.25 51

EXEREXEREXEREXEREXERCISE-3CISE-3CISE-3CISE-3CISE-3Q.1 48(1 − i) Q.3 (a) D (b) B

Q.4 Z = ( ) ( )29 20 2 15 25 2

82+ + ± +i

, ( ) ( )29 20 2 15 25 2

82− + ± −i

Q.5 (a) C

Q.6 7 A0 + 7 A7 x7 + 7 A14 x

14 Q.7 (a) A (b) A Q.8 z2 + z + sinsin

2

2n θθ = 0, where θ = 2

2 1π

n +

Q.9 (a) C, (b) D Q.10 +1 + i 3 , ( )± +3

2

i, 2 i Q.11 (a) B ; (b) B

Q.13 (a) D ; (b) Centre ≡ 1k

k2

2

−α−β

, Radius = ( )( )1k.||||.k|k|)1k(

1 2222222 −α−β−β−α

−Q.14 (a) A, (b) B, (c) z2 = – 3 i ; z3 = ( ) i31 +− ; z4 = ( ) i31 −+ Q.15 D

EXEREXEREXEREXEREXERCISE-4CISE-4CISE-4CISE-4CISE-4Part : (A) Only one correct option

1. If |z| = 1 and ω = 1z1z

+−

(where z ≠ –1), the Re(ω) is [IIT – 2003, 3]

(A) 0 (B) 2|1z|1+

− (C) 2|1z|1.

1zz

++ (D) 2|1z|2

+2. The locus of z which lies in shaded region (excluding the boundaries) is best represented by

[IIT – 2005, 3]

(A) z : |z + 1| > 2 and |arg (z + 1)| < π/4 (B) z : |z – 1| > 2 and |arg (z – 1)| < π/4(C) z : |z + 1| < 2 and |arg (z + 1)| < π/2 (D) z : |z – 1| < 2 and |arg (z + 1)| < π/2

3. If w = α, + iβ, where β ≠ 0 and z ≠ 1, satisfies the condition that

−−

z1zww

is purely real, then the set ofvalues of z is [IIT – 2006, (3, –1)](A) {z : |z| = 1} (B) {z : z = z } (C) {z : z ≠ 1} (D) {z : |z| = 1, z ≠1}

4. If ( 3 + i)100 = 299 (a + ib), then b is equal to

(A) 3 (B) 2 (C) 1 (D) none of these

5. If Re

+−

6zi8z

= 0, then z lies on the curve(A) x2 + y2 + 6x – 8y = 0 (B) 4x – 3y + 24 = 0 (C) 4ab (D) none of these

6. If n1, n2 are positive integers then : 1n)i1( + + 1n3 )i1( + + 2n5 )i1( − + 2n7 )i1( − is a real number if and only if(A) n1 = n2 + 1 (B) n1 + 1 = n2(C) n1 = n2 (D) n1, n2 are any two positive integers

7. The three vertices of a triangle are represented by the complex numbers, 0, z1 and z2. If the triangle isequilateral, then(A) z1

2 – z22 = z1z2 (B) z2

2 – z12 = z1 z2 (C) z1

2 + z22 = z1z2 (D) z1

2 + z22 + z1z2 = 0

8. If x2 – x + 1 = 0 then the value of 25

1nn

n

x1x∑

=

+ is

(A) 8 (B) 10 (C) 12 (D) none of these

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

26 of

38

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

om9. If α is nonreal and α = 5 1 then the value of |1| 122

2−− α−α+α+α+ is equal to

(A) 4 (B) 2 (C) 1 (D) none of these

10. If z = x + iy and z1/3 = a − ib then ( )xa

yb

k a b− = −2 2 where k =(A) 1 (B) 2 (C) 3 (D) 4

11. − +

+ − −

+ − +

+ − −

1 32

1 32

1 32

1 32

6 6 5 5i i i i is equal to :

(A) 1 (B) − 1 (C) 2 (D) none12. Expressed in the form r (cos θ + i sin θ), − 2 + 2i becomes :

(A) 2 24 4

cos sin−

+ −

π πi (B) 2 2 34

34

cos sinπ π

+

i

(C) 2 2 34

34

cos sin−

+ −

π πi (D) 24 4

cos sin−

+ −

π πi

13. The number of solutions of the equation in z, z z - (3 + i) z - (3 - i) z - 6 = 0 is :(A) 0 (B) 1 (C) 2 (D) infinite

14. If |z| = max {|z – 1|, |z + 1|} then

(A) |z + z | = 21

(B) z + z = 1 (C) |z + z | = 1 (D) none of these15. If P, P′ represent the complex number z1 and its additive inverse respectively then the complex equation of

the circle with PP′ as a diameter is

(A) 1z

z =

zz1 (B) z z + z1 1z = 0 (C) z 1z + z z1 = 0 (D) none of these

16. The points z1 = 3 + 3 i and z2 = 2 3 + 6 i are given on a complex plane. The complex number lyingon the bisector of the angle formed by the vectors z1 and z2 is :

(A) z =2

232

)323( +++ i (B) z = 5 + 5 i(C) z = − 1 − i (D) none

17. The expression 11

11

+−

− +

−ii

i ni n

ntantan

tantan

αα

αα

when simplified reduces to :

(A) zero (B) 2 sin n α (C) 2 cos n α (D) none18. All roots of the equation, (1 + z)6 + z6 = 0 :

(A) lie on a unit circle with centre at the origin (B)lie on a unit circle with centre at (− 1, 0)(C) lie on the vertices of a regular polygon with centre at the origin (D) are collinear

19. Points z1 & z2 are adjacent vertices of a regular octagon. The vertex z3 adjacent to z2 (z3 ≠ z1) isrepresented by :

(A) z2 +12

(1 ± i) (z1 + z2) (B) z2 +12

(1 ± i) (z1 − z2)

(C) z2 +12

(1 ± i) (z2 − z1) (D) none of these

20. If z = x + i y then the equation of a straight line Ax + By + C = 0 where A, B, C ∈ R, can be written onthe complex plane in the form a z a z C+ + 2 = 0 where 'a' is equal to :

(A) ( )A iB+

2(B)

A iB−2 (C) A + i B (D) none

21. The points of intersection of the two curves z − 3 = 2 and z = 2 in an argand plane are:

(A)12 ( )7 3± i (B)

12 ( )3 7± i (C)

32 ± i

72

(D)72 ± i

32

22. The equation of the radical axis of the two circles represented by the equations, z − 2 = 3 and z − 2 − 3 i = 4 on the complex plane is :(A) 3iz – 3i z – 2 = 0 (B) 3iz – 3i z + 2 = 0 (C) iz – i z + 1 = 0 (D) 2iz – 2i z + 3 = 0

23. Ifr

1p=Π eipθ = 1 where Π denotes the continued product, then the most general value of θ is :

(A) 2

1n

r rπ

( )−(B)

21

nr r

π( )+

(C) 4

1n

r rπ

( )−(D)

41

nr r

π( )+

24. The set of values of a ∈ R for which x2 + i(a – 1) x + 5 = 0 will have a pair of conjugate imaginary roots is(A) R (B) {1} (C) |a| a2 – 2a + 21 > 0} (D) none of these

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

27 of

38

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

om25. If |z1 – 1| < 1, |z2 – 2| < 2, |z3 – 3| < 3 then |z1 + z2 + z3|(A) is less than 6 (B) is more than 3

(C) is less than 12 (D) lies between 6 and 1226. If z1, z2, z3, ........., zn lie on the circle |z| = 2, then the value of

E = |z1 + z2 + ..... + zn| – 4 n21 z1.......

z1

z1 +++ is

(A) 0 (B) n (C) –n (D) none of thesePart : (B) May have more than one options correct27. If z1 lies on |z| = 1 and z2 lies on |z| = 2, then

(A) 3 ≤ |z1 – 2z2| ≤ 5 (B) 1 ≤ |z1 + z2| ≤ 3(C) |z1 – 3z2| ≥ 5 (D) |z1 – z2| ≥ 1

28. If z1, z2, z3, z4 are root of the equation a0z4 + z1z3 + z2z2 + z3z + z4 = 0, where a0, a1, a2, a3 and a4 are real,then(A) 1z , 2z , 3z , 4z are also roots of the equation (B) z1 is equal to at least one of 1z , 2z , 3z , 4z(C) – 1z ,– 2z , – 3z , – 4z are also roots of the equation (D) none of these

29. If a3 + b3 + 6 abc = 8 c3 & ω is a cube root of unity then :(A) a, c, b are in A.P. (B) a, c, b are in H.P.(C) a + bω − 2 cω2 = 0 (D) a + bω2 − 2 cω = 0

30. The points z1, z2, z3 on the complex plane are the vertices of an equilateral triangle if and only if :(A) Σ (z1 − z2) (z2 − z3) = 0 (B) z1

2 + z22 + z3

2 = 2 (z1 z2 + z2 z3 + z3 z1)(C) z1

2 + z22 + z3

2 = z1 z2 + z2 z3 + z3 z1 (D) 2 (z12 + z2

2 + z32) = z1 z2 + z2 z3 + z3 z1

31. If |z1 + z2| = |z1 – z2| then

(A) |amp z1 – amp z2| = 2π

(B) | amp z1 – amp2| = π

(C) 2

1

zz

is purely real (D) 2

1

zz

is purely imaginary

EXEREXEREXEREXEREXERCISE-5CISE-5CISE-5CISE-5CISE-51. Given that x, y ∈ R, solve : 4x² + 3xy + (2xy − 3x²)i = 4y² − (x2/2) + (3xy − 2y²)i

2. If α & β are any two complex numbers, prove that :

α α β α α β α β α β− − + + − = + + −2 2 2 2 .3. If α, β are the numbers between 0 and 1, such that the points z1 = α + i, z2 = 1 + βi and z3 = 0 form an

equilateral triangle, then find α and β.4. ABCD is a rhombus. Its diagonals AC and BD intersect at the point M and satisfy BD = 2AC. If the points D

and M represent the complex numbers 1 + i and 2 - i respectively, then find the complex number correspondingto A.

5. Show that the sum of the pth powers of nth roots of unity :(a) is zero, when p is not a multiple of n. (b) is equal to n, when p is a multiple of n.

6. If (1 + x)n = p0 + p1 x + p2 x2 + p3 x3 +......., then prove that :

(a) p0 − p2 + p4 −....... = 2n/2 cos n π4

(b) p1 − p3 + p5 −....... = 2n/2 sin n π4

7. Prove that, loge1

1 −

ei θ = loge

12 2

cosec θ

+ i

π θ2 2

8. If iii ....... ∞

= A + i B, principal values only being considered, prove that

(a) tan12

πA = BA

(b) A2 + B2 = e − π B

9. Prove that the roots of the equation, (x - 1)n = xn are12

1 +

i rr

cot π, where

r = 0, 1, 2,....... (n − 1) & n ∈ N.10. If cos (α − β) + cos (β − γ) + cos (γ − α) = − 3/2 then prove that :

(a) Σ cos 2α = 0 = Σ sin 2α (b) Σ sin (α + β) = 0 = Σ cos (α + β)(c) Σ sin 3α = 3 sin (α + β + γ) (d) Σ cos 3 α = 3 cos (α + β + γ)(e) Σ sin2 α = Σ cos2 α = 3/2(f) cos3 (θ + α) + cos3 (θ + β) + cos3 (θ + γ) = 3 cos (θ + α). cos (θ + β). cos (θ + γ)

where θ ∈ R.

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

28 of

38

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

om11. If α , β, γ are roots of x3 − 3 x2 + 3 x + 7 = 0 (and ω is imaginary cube root of unity), then find the value

ofαβ

−−

11

+βγ

−−

11

+γα

−−

11

.

12. Given that, |z − 1| = 1, where ' z ' is a point on the argand plane. Show that z

z− 2

= i tan (arg z).

13. P is a point on the Argand diagram. On the circle with OP as diameter two points Q & R are taken suchthat ∠ POQ = ∠ QOR = θ. If ‘O’ is the origin & P, Q & R are represented by the complex numbersZ1, Z2 & Z3 respectively, show that : Z2

2. cos 2 θ = Z1. Z3 cos² θ.

14. Find an expression for tan 7θ in terms of tan θ, using complex numbers. By consideringtan 7θ = 0, show that x = tan2 (3 π/7) satisfies the cubic equation x3 − 21x2 + 35x − 7 = 0.

15. If (1 + x)n = C0 + C1x + C2x² +.... + Cn xn (n ∈ N), prove that : C2 + C6

+ C10 +..... = 1

22 2

41 2n n n− −

/ cos π

16. Prove that : cos 22 1

πn +

+ cos 4

2 1π

n +

+ cos 6

2 1π

n +

+..... + cos

22 1

nn

π+

= − 1

2 When n ∈ N.

17. Show that all the roots of the equation a1z3 + a2z2 + a3z + a4 = 3, where |ai| ≤ 1, i = 1, 2, 3, 4 lie outside thecircle with centre origin and radius 2/3.

18. Prove that ∑−

=

−1n

1k

)kn( cos nk2 π

= – 2n

, where n ≥ 3 is an integer

19. Show that the equationA

x aA

x aA

x an

n

12

1

22

2

2

−+

−+ +

−...... = k has no imaginary root, given that :

a1, a2, a3.... an & A1, A2, A3..... An, k are all real numbers.20. Let z1, z2, z3 be three distinct complex numbers satisfying, ½z1-1½ = ½z2-1½ = ½z3-1½. Let A, B & C

be the points represented in the Argand plane corresponding to z1, z2 and z3 resp. Prove that z1 + z2 +z3 = 3 if and only if D ABC is an equilateral triangle.

21. Let α , β be fixed complex numbers and z is a variable complex number such that,

z − α 2 + z − β 2 = k.Find out the limits for 'k' such that the locus of z is a circle. Find also the centre and radius of thecircle.

22. If 1, α1, α2, α3,......., αn − 1 are the n, nth roots of unity, then prove that(1 − α1) (1 − α2) (1 − α3)........ (1 − αn − 1) = n.

Hence prove that sinπn

. sin2 πn

. sin3 πn

........ sin( )n

n− 1 π

=n

n2 1− .

23. Find the real values of the parameter ‘a’ for which at least one complex numberz = x + iy satisfies both the equality z − ai = a + 4 and the inequality z − 2 < 1.

24. Prove that, with regard to the quadratic equation z2 + (p + ip′) z + q + iq′ = 0; where p, p′ , q, q′ are allreal.(a) if the equation has one real root then q ′2 − pp ′ q ′ + qp ′2 = 0.(b) if the equation has two equal roots then p2 − p′2 = 4q & pp ′ = 2q ′ .

State whether these equal roots are real or complex.25. The points A, B, C depict the complex numbers z1, z2, z3 respectively on a complex plane & the angle

B & C of the triangle ABC are each equal to12

( )π α− . Show that

(z2 − z3)² = 4 (z3 − z1) (z1 − z2) sin2 α2

.

26. If z1, z2 & z3 are the affixes of three points A, B & C respectively and satisfy the condition|z1 – z2| = |z1| + |z2| and |(2 - i) z1 + iz3 | = |z1| + |(1 – i) z1 + iz3| then prove that ∆ ABC in a right angled.

27. If 1, α1, α2, α3, α4 be the roots of x5 − 1 = 0, then prove that

12

1

α−ω

α−ω .2

22

α−ω

α−ω .3

23

α−ω

α−ω .4

24

α−ω

α−ω = ω.

28. If one the vertices of the square circumscribing the circle |z – 1| = 2 is 2 + 3 i. Find the other vertices ofthe square. [IIT – 2005, 4]

TE

KT

EK

TE

KT

EK

TE

KO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

SO

CL

AS

SE

S,,,, ,

MA

MA

MA

MA

MA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

TH

S B

Y S

UH

AA

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

G S

IR P

H:

(07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

, (

07

55

)- 3

2 0

0 0

00

,

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

98

93

0 5

88

81

29 of

38

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE

Dow

nloa

d St

udy

Pack

age

Vie

ws o

f stu

dent

s ava

ilabl

e at

web

site:

ww

w.ii

tjeei

itjee

.com

, w

ww

.teko

clas

ses.c

om

EXEREXEREXEREXEREXERCISE-4CISE-4CISE-4CISE-4CISE-41. A 2. C 3. D 4. A

5. A 6. D 7. C 8. A

9. A 11. D 12. A 13. B

14. D 15. D 16. A 17. B

18. A 19. D 20. C 21. C

22. B 23. B 24. D 25. B

26. C 27. A 28. ABCD29. AB

30. ACD 31. AC 10. AD

EXEREXEREXEREXEREXERCISE-5CISE-5CISE-5CISE-5CISE-51. x = K, y =

32K

K ∈ R 3. 32,32 −−

4. 3 – 2i

or 1 – 23

i 11. 3 ω2

21. k > 12

2α β− 23. − −

2110

56

,

28. – i 3 , 1 – 3 + i, 1 + 3 – i