Welcome again! - ETH Z · 2019. 8. 13. · Welcome again! 1 Martin Frimmer (mfrimmer@ethz.ch)...

Post on 20-Aug-2020

1 views 0 download

Transcript of Welcome again! - ETH Z · 2019. 8. 13. · Welcome again! 1 Martin Frimmer (mfrimmer@ethz.ch)...

Welcome again!

www.photonics.ethz.ch 1

Martin Frimmer (mfrimmer@ethz.ch)Photonics LaboratoryHPP M24

Nano-optics studies light-matter interactions on the sub-wavelength scale. The goal of this course is to quantitatively understand the fundamental concepts of nano-optics, including

• Superresolution microscopy

• Quantum light sources

• Optical antennas

• Optical forces

• …

Administrative details: Lab/Research Projects

• First name/ last name?

• Check website for group assignments

• Find your team-mates

• Determine a spokesperson to contact your supervisor

www.photonics.ethz.ch 2

Why nano-optics?

• The energy scale of our interest corresponds to about 1 µm wavelength

• The length scales of scientific and technological interest are approaching the atomic scale Read Feynman’s talk “There is plenty of room at the bottom.”

We need to control electromagnetic fields and their interaction with matter at sub-λ scales.

www.photonics.ethz.ch 3

10 eV1 eV100 meV

kT Ry

ionizing

Thermal noise

LIFE

1 nm 1 m

Size mismatch

On the menu today

• Motivation: Why nano-optics?

• Repetition: electromagnetism

• Optical imaging:

• Focusing by a lens

• Angular spectrum

• Paraxial approximation

• Gaussian beams

• Method of stationary phase

• The diffraction limit

• Fluorophores

• Example: Fluorescence microscopy

• Example: STED microscopy

• Example: Localization microscopy

• Example: Scanning probe microscopy

www.photonics.ethz.ch 4

How does focusing by a lens work?

www.photonics.ethz.ch 5

Boundless.com

What does the field distribution here look like?

How does focusing by a lens work?

www.photonics.ethz.ch 6

Boundless.com

How does focusing by a lens work?

www.photonics.ethz.ch 7

x

q1 = ± 80°

k k

Intensity

How does focusing by a lens work?

www.photonics.ethz.ch 8

x

q1 = 0°, ±15°, ±30°, ±45°,

±60°, ±75°+apodization

Intensity

Angular spectrum

www.photonics.ethz.ch 9

MATH :

Physics :

Together:

Angular spectrum

www.photonics.ethz.ch 10

Physics :

Together:

Paraxial approximation

www.photonics.ethz.ch 11

mit

Fields propagate predominantly in z-direction !

Gaussian beams

www.photonics.ethz.ch 12

Gaussian Beams

www.photonics.ethz.ch 13

Waist Radius

Wavefront Radius

Phase Correction

Rayleigh Range

Note that we started with ONLY the field distribution in the plane z=0!

Gaussian Beams

www.photonics.ethz.ch 14

A better description of focused fields

www.photonics.ethz.ch 15

Boundless.com

Can we measure this field distribution?

Mapping the field distribution in the focus

www.photonics.ethz.ch 16

fluorescence rate ~ excitation ratex

y

contrast ~ | m .E(x,y;zo)| 2

Detector has no spatial resolution

Fluorescent molecules – Jablonski diagram

www.photonics.ethz.ch 17

Mapping the field distribution in the focus

www.photonics.ethz.ch 18

fluorescence rate ~ excitation ratex

y

contrast ~ | m .E(x,y;zo)| 2

Map of focal intensity distribution

Detector has no spatial resolution

Mapping the field distribution in the focus

www.photonics.ethz.ch 19

fluorescence rate ~ excitation ratex

y

contrast ~ | m .E(x,y;zo)| 2

Map of focal field distribution

Detector has no spatial resolution

Can we calculate this field distribution?

Far-field

www.photonics.ethz.ch 20

Example

www.photonics.ethz.ch 21

2 Lx

2 Ly

Angular spectrum in terms of far-field

www.photonics.ethz.ch 22

For kz ~ k: Fourier Optics !

From method of stationary phase:

Boundless.com

Back to the lens

• We can calculate the field near a focus if we just know the far-field

www.photonics.ethz.ch 23

So what does a lens do?

www.photonics.ethz.ch 24

Ray Continuity

(energy conservation)

So what does a lens do?

www.photonics.ethz.ch 25

Ray Continuity

(energy conservation)

Sine Condition

(aplanatic system)

So what does a lens do?

www.photonics.ethz.ch 26

Ray Continuity

(energy conservation)

Sine Condition

(aplanatic system)

What about this term?

Project plane on sphere

www.photonics.ethz.ch 27

So what does a lens do?

www.photonics.ethz.ch 28

Ray Continuity

(energy conservation)

Sine Condition

(aplanatic system)

Field after lens

www.photonics.ethz.ch 29

Angular spectrum representation

www.photonics.ethz.ch 30

Change coordinates

Coordinates on reference sphereCoordinates in focal region NA

Simplest case: Focusing of (0,0)-Gaussian beam

www.photonics.ethz.ch 31

:

Gaussian Beam sent into lens

Let’s skip some lengthy coordinate transformations and integrations…

Integrate over

www.photonics.ethz.ch 32

The solution… is a bit lengthy

www.photonics.ethz.ch 33

Apodization function:

Strongly focused Gaussian beam

www.photonics.ethz.ch 34

Strongly focused Gaussian beam

www.photonics.ethz.ch 35

Weakly focused beam

• Assume strongly overfilled back-aperture

• Assume small NA

www.photonics.ethz.ch 36

Focal plane (z=0):

Not Gaussian !

:

Why is this a jinc?

Mapping the field distribution in the focus

www.photonics.ethz.ch 37

fluorescence rate ~ excitation ratex

y

contrast ~ | m .E(x,y;zo)| 2

Map of focal intensity distribution

Detector has no spatial resolution

Single molecule detection

www.photonics.ethz.ch 38

What does the image of a point-source look like

www.photonics.ethz.ch 39

Source Plane Image Plane

Point-spread function

www.photonics.ethz.ch 40

On the menu today

• Motivation: Why nano-optics?

• Repetition: electromagnetism

• Optical imaging:

• Focusing by a lens

• Angular spectrum

• Paraxial approximation

• Gaussian beams

• Method of stationary phase

• The diffraction limit

• Fluorophores

• Example: Fluorescence microscopy

• Example: STED microscopy

• Example: Localization microscopy

• Example: Scanning probe microscopy

www.photonics.ethz.ch 41

Point-spread function

www.photonics.ethz.ch 42

Angular spectrum

www.photonics.ethz.ch 43

Farfield of dipole :

Paraxial approximation

www.photonics.ethz.ch 44

Point-spread function

www.photonics.ethz.ch 45

Point-spread function

www.photonics.ethz.ch 46

On the menu today

• Motivation: Why nano-optics?

• Repetition: electromagnetism

• Optical imaging:

• Focusing by a lens

• Angular spectrum

• Paraxial approximation

• Gaussian beams

• Method of stationary phase

• The diffraction limit

• Fluorophores

• Example: Fluorescence microscopy

• Example: STED microscopy

• Example: Localization microscopy

• Example: Scanning probe microscopy

www.photonics.ethz.ch 47

Classical resolution limit

www.photonics.ethz.ch 48E. Abbe, Arch. Mikrosk. Anat. 9, 413 (1873).

Source Plane Image Plane

4 4

Abbe’s Resolution Limit

www.photonics.ethz.ch 49E. Abbe, Arch. Mikrosk. Anat. 9, 413 (1873).