UHLAN 21 - Small Arms Defense...

Post on 25-Jan-2021

0 views 0 download

Transcript of UHLAN 21 - Small Arms Defense...

  • 104 SADEFENSEJOURNAL.COM SADEFENSEJOURNAL.COM 105

    UHLAN 21THE POLISH FUTURE SOLDIER PROJECT

    Designing “Future Soldiers” space-age suits of armor with TV and other creature comforts has been a popular fad since 1950s, but only in the last decade have such projects signifi-cantly moved from concept into the main-stream. Latest advances in microelectron-ics, mechanics and ergonomics, coupled with shifting the emphasize from the tanks and missiles back towards individual sol-dier as a result of the end of the Cold War and in accordance with the ‘asymmetric warfare’ doctrine, brought about Future Soldier projects popping up everywhere. Historically, the first of the New Breed space-age-soldier-coming-to-a-forest-near-you programs to lead the pack was

    the U.S. Land Warrior, originating in the early 1990s, only to die and then restarted from scratch as the Future Force Warrior in 2007. The basic elements and require-ments didn’t changed much since then: the resulting suit of electronics was deemed to integrate the individual small arms with high-tech equipment, provide the infantry soldier with advanced “communications, command and control” (C3) or even “com-munications, command, control, computers & intelligence” (C4I) systems at grass-root level – all that within the effort to look at the individual infantry soldier as a complete unit rather than just as a tiny cogwheel of a larger force. Since the 1990s one more ele-ment was added: armor, both soft and hard plates, protecting the soldier from enemy

    fire, integrated into load bearing vests. By 2008, when the Future Soldier Fairs began in Prague, Czech Republic, everybody had an FS project of their own. The list is already overwhelming and seems to swell with every Google search. Today there are at least 19 such programs going on, on four continents. In Europe there are German IdZ, French Féline, Spanish COM-FUT, Italian Soldato Futuro, British FIST, Swedish MARKUS, Swiss IMESS, Norwe-gian NORMANS, Czech V21, and Polish Ty-tan/Uhlan 21. In the Americas, aside from U.S. FFW, there are Canadian ISSP, Mexi-can Xiuhcoatl, Chilean Aguila and Brazil-ian COBRA. Australia has Land 125, and in Asia, there are Indian F-INSAS, Japanese V-Operation, ACMS of Singapore and who-

    by LESZEK ERENFEICHT

    only-knows-what in China – for the upstart regional superpower sure has something of their own. And the counter keeps ticking...

    BUMAR’S LANCER Polish Future Soldier project start-ed first in 2006, with CNPEP Radwar of Warsaw, called the Uhlan 21, and gener-ally based upon know-how of the French electronics giant SAGEM, partnering with Radwar, which was a big name but rather in air defense radar business – not particu-larly a ‘B3’ (beans, boots and bullets) spe-cialist, catering to the individual warrior. The first generation Uhlan was first pre-sented at the aforementioned Prague Fu-ture Soldier Fair in 2008, and since then has significantly advanced. This was pos-sible when Radwar’s initiative was taken over and expanded by the Bumar Group,

    which took the issue very seriously – to the extent of creating a whole new core busi-ness division around it. In 2009, a Uhlan 21 consortium was created for developing the Future Soldier system for the Polish Army, which meanwhile became official, and christened with a cover name ISW Tytan. ISW stands for Indywidualny Sys-tem Walki, or Individual Combat System. According to a tradition dating from late 1970s, all Polish soldier-level projects have their cryptonyms derived from elements of the Mendeleyev periodic table. Tytan means titanium, Ti, a metal with atomic number of 22. The Uhlan 21 consortium consists of the originator, Radwar, as well as small arms (Fabryka Broni Lucznik-Radom and OBR SM Tarnow), optoelec-tronics (PCO SA), grenade-launcher and 40mm ammunition (ZM Dezamet SA),

    and small arms ammunition manufactur-ers (ZM Mesko SA), ballistic protection and combat clothing provider (PSO Mask-pol SA), as well as non-Bumar entities, like Polish communication systems leaders Radmor SA and WB Electronics, Military Technical University, Military Aviation Medicine Institute, and Military Hygiene

    and Epidemiology Institute. The name Uhlan comes from tradi-tional Polish cavalry – the lancers – pat-terned after the Tartars, whom Polish forces fought in the 16 and 17th Centuries on the Polish-Turkish frontier lands, deep into today’s Ukraine. In their language ‘ughuan’ meant ‘the Brave’ and so were

  • 106 SADEFENSEJOURNAL.COM SADEFENSEJOURNAL.COM 107

    their daredevil deeds on the battlefield. The uhlans, light cavalry fighting with sabre, lance, pistol and swift maneuver, revolutionized the 17th Century European military doctrine, administering a coup de grace to the concept of heavy cavalry tracing its heritage all the way back to me-dieval knights in shining armor. Father of the U.S. Cavalry, Casimir Pulaski, was an uhlan, and his tactics written for his

    American trainees had a typical daring and dash to it. Yet their real moment of glory came during the Napoleonic Wars, when ‘los infernos picadores de Polonia’ decided the outcome of many encounters in l’Empereur’s favor, especially in the Peninsular War. Soon copycats sprang out throughout Europe, and Polish-inspired uniform parts like “ulanka” (cavalry jack-et) or “czapka” (square-topped cap) were

    en vogue, becoming de rigueur parts of the colorful 19th Century military fashion. This is a deeply meaningful name, then, for a Polish project meant to revolutionize the country’s military. The Future Soldier program is an in-terdisciplinary effort, touching on all as-pects of soldiers’ life and fighting. It entails a thorough modernization of hardware, careful selection of professional soldiers, upturning the heretofore organization and training, as well as command and logistics. The Tytan is only a part of it, but an im-portant, if not a crucial one. It calls for a wholly renewed outlook on the soldier, the ability to assist his mental and physical abilities with modern hard- and software, by placing him as a part of the net-centric battlefield. This is an attempt at the ‘sol-dier-centric’ approach to the combat. The Future Soldier’s equipment is meant to be a coherent ergonomic system, meant to assist the warrior and his mission. The modern equipment is not only a new set of flashy gadgets slapped-on to a half a century old rifle – it is rather a whole new approach to the well-being and efficiency of a soldier. This means also soldier-friendly clothes, ballistic and NBC protection, novel small arms with intelligent munitions, sur-veillance and reconnaissance capabilities, and the whole new suit of command and control gear complete with a hand-held computer to integrate it all. The real chal-lenge is to make it perform to do all of that – and then to make it as much as possible locally-manufactured and decently priced, while still cutting a profit. The Phase 1 of the Uhlan 21/ISW Ty-tan development came to conclusion on November 31, 2010. More than 100 sci-entists, technicians and experts, military and civilian, from various government in-stitutions and private industry, as well as academic circles, have already took part in the Phase 1. Their expertise and prac-tical knowledge ranged from medicine, to ordnance, munitions, uniform, protective suits, communications, reconnaissance and command, all entwined with the new technologies, IT – the ‘nerd stuff.’ The re-sults are already going beyond what was planned at the beginning.

    RADON FROM RADOM So far, the most publicized of the Uh-lan 21 components is the new Polish battle rifle, called first the MSBS-5.56 for Modu-lowy System Broni Strzeleckiej or Modular Small Arms System, 5.56mm being the cal-

    OPPOSITE, ABOVE: Uhlan 21 up close (Michal Sitarski):1. NV or NV/thermal fusion goggles or monocular (both by PCO) worn on helmet.2. New ballistic helmet (Maskpol) with enhanced goggle-mount and earphone/hearing protector space.3. PCO’s day-and-night NV or NV/thermal fusion rifle sight (PCO).4. Velociraptor (Maskpol) – a new, integrated low profile plate carrier vest with modular pouches.5. New field uniform (Maskpol) with breathable, fire retardant (Polartec Power Dry shell, cotton ripstop sleeves) combat shirt and pants, fitted with integral protective knee and elbow pads.6. Radon 5.56mm rifle in Battle Rifle classic configuration (WAT/Fabryka Broni Lucznik-Radom).7. The Integrator wrist control panel (WB Electronics).8. Personal radio (Radmor, WB-Electronics).9. The Integrator computer – main unit (WB-Electronics).

    12

    3 4

    56

    7

    5

    8

    9

  • 108 SADEFENSEJOURNAL.COM SADEFENSEJOURNAL.COM 109

    iber. The official cryptonym for the MSBS is now ‘Radon’ (Rn, a radioactive gas with atomic number of 86). This rifle is an at-tempt at leaving the Kalashnikov legacy behind once and for all, giving the soldiers a tangible proof of the new beginning. Be-sides, the AK platform already hit a stone wall development-wise with the current-issue Polish M96 Beryl rifle. A totally new battle rifle was required, for the very archi-tecture of the AK platform does not meet the requirements of the modern battle-field. The top-mounted receiver cover pre-cludes mounting any decently anchored rail interface, able to provide long enough stable bases for tandem-mounted optical and electronic sighting devices, so popular and useful nowadays. These could be – at best – semi rigid, prone to un-zero itself during use, as the history of the complicat-ed and troublesome Beryl top rail provides enough proof. The AK is also significantly anti-ergonomic, its right-side cocking handle is obsolete and awkward to use – especially with all the gadgets mounted

    on the top rail. The barrel can’t be made quick-changeable – so you can have it ei-ther long or chopped, but you need two separate weapons to accommodate them. It is virtually impossible to make it ambi-dextrous as well, and despite being cham-bered for the 5.56mm round, like Beryl, the magazine is not interchangeable with the STANAG weapons. What was needed was a fully modern, novel platform with monolithic rail, which is not only modular and ambidextrous, but also capable of getting user-defined and us-er-level-configurable to a hitherto unheard of extent. The user was to be able not only to put on a barrel of a different length or weight, but his freedom went to the extent of changing the basic layout of the rifle between the two possible configurations: classic ‘lock, stock and barrel’ gun, and a bull-pup. Having considered that, the Mili-tary Technology University (WAT) of War-saw in co-operation with the Fabryka Broni Lucznik-Radom of Radom designed, man-ufactured and tested two technology dem-

    onstrators of the new 5.56mm basic com-bat rifle, one in classical layout, the other in butt-less (bull-pup) configuration. Objec-tive ‘Radon’ in both configurations would be a whole system comprising of: Battle Rifle, Automatic Carbine (CQB weapon), bipod mounted Designated Marksman Rifle (DMR), Grenade Launching Rifle (fit-ted with under-barrel GLM) and an Infan-try Automatic Rifle (a hi-cap magazine-fed support weapon). All of these are to offer 80-90% parts interchangeability. The main component of a thus con-figured system would be a common up-per receiver, which is to be mated with different barrel modules, lower receiver modules, and buttstock or buttplate (bull-pup) modules. The upper receiver in both TDs and final production model is to be made of light alloy – lighter and cheaper to manufacture than the previously used stamped sheet-metal receivers. The re-ceiver is fitted with attachment points for all of the interchangeable modules, as well as ejection ports, and bolt carrier hold-open mechanism. Both ports and hold-open levers are fully-ambidextrous, by being doubled and fitted to both sides of the receiver, to enable equally ergonomic operation by both left- and right-handed shooters or suiting the tactical situation (e.g. shooting to the left/right of the bar-

    ABOVE: The shortest and the longest: 2nd Gen Battle Rifle classic configuration length compared to the Automatic Carbine in bullpup trim. (Leszek Erenfeicht) RIGHT: Modest beginnings – 1st Gen technology demonstrators of the MSBS rifle in classic and buttless trim. Still blocky, still sketchy, but already showing potential. (Leszek Erenfeicht) OPPOSITE: Future Soldier with all Uhlan 21 gimmicks and gadgets inside one of the Polish Army’s Rosomak APCs – still comfortably with all those objects on him. (Michal Sitarski)

  • 110 SADEFENSEJOURNAL.COM SADEFENSEJOURNAL.COM 111

    ricade with minimum exposure). A polymer lower receiver module has a magazine interface for the STANAG 4179-compatible magazine and the fire-control group giving the shooter a choice of semiautomatic and fully automatic fire or safety (or FIRE and SAFE in semiauto-matic variant). The FCG has safety/fire-selector levers on both sides of the lower receiver for fully ambidextrous operation. The magazine catch is also ambidextrous and ergonomically positioned. The lower receiver module governs the configuration of the weapon, and comes in two different types: one with classical folding butt con-figuration and the other in butt-less (or bull-pup) one. Permanent re-configura-tion from right-hand to left-hand opera-tion is limited to relocating a cover from one of the two ejection ports to another

    and relocating (actually turning by 180°) the bolt. All of that can be performed at user level without the use of tools other than perhaps an Allen wrench. The MSBS-5.56 is to offer the user a choice of different interchangeable barrel modules, complete with muzzle device, gas chamber, piston and locking chamber. Individual barrel modules differ in length and thermal capacity or contour (e.g. the IAR or DMR barrels). The buttstock or buttplate module interacts with the choice of the lower receiver. If the classical con-figuration lower is chosen, a buttstock is attached, with a choice of folding tele-scoping or fixed telescoping stocks, both with an adjustable cheek piece capability. The bullpup lower can only accommodate the buttplate module, as governed by the weapon’s ‘canard’ configuration.

    The modular rifle fires the NATO-standard 5.56x45 intermediate round, fed from various plastic or metal magazines. Additionally, it can be fed from a large-capacity drum magazine, dedicated to the IAR support weapon. In the future, a simi-lar 7.62x51 NATO sibling system is being considered. Modular rifles’ TDs have undergone a rigorous two-years testing program, aimed at achieving total reliability in various op-erational environments. As these demon-strators are still more of the test appliances rather, than weapons ready for issue, ef-forts are being made at enhancing their er-gonomics and aesthetics. It seems that the current program is capable of spawning a finalized design within a couple of years. Now a new generation of the prototypes, with much enhanced, ‘Low-Drag-High-

    Speed’ looks, are being readied for their share of testing. So far only Battle Rifle prototypes were actually manufactured and tested, these to become models for all the other variants. A new under-barrel GLM is also being designed for the MSBS/Radon in grenade-launcher rifle role.

    THE BATTLEFIELD NERD The electronics of the Polish Future Soldier system – or the C4I(R) circuit – would be governed by a wrist- or vest-mounted palmtop-size highly integrated computer, called the Integrator. The In-tegrator would be the heart and brain of all the electronic systems, a soldier’s in-terface with the machine, enabling him to user-define what sort of data he wants to be displayed non-stop, which he would like to access, while enabling easy, intui-

    tive navigation with large, user-defined and glove-friendly keys. Wireless two-way data transmission through the In-tegrator enables the warrior to take part in a ‘larger picture:’ display maps, over-laid with tactical situation, get a peek at the BFT and check if the guy who briefly appeared there to the left, behind those trees, is a friend or foe, have a look through the cameras of the airborne as-set overhead if there is no one lurking on the opposite side of this concrete fence to shoot at him if he scales it, see through the rifle-mounted sight without having to stick his head from behind the cover, etc. At the same time it enables the command to maintain a hold of a soldier – control his ammunition expenditure to optimize the logistics, stream a video from his rifle sight, NV goggles or other means of ob-servation, as well as read-outs from his NBC and other sensors, pinpoint his posi-tion on the map and do a remote medical check-up if he doesn’t answer the radio. The Integrator also serves as a personal comms center, enabling voice and short text connection. All of the hardware and software needed to run the Integra-tor are already available, and most are locally-manufactured. Phase 2 would try to get rid of the cables and integrate the Integrator with a transmitter, eliminating the need for a separate radio. So far, the ISW encompasses the highly advanced Radmor R35010 hand-held radio both as a means of tactical communication and data transmitter. Of course, getting hold of such a gad-get would be a real treat to any enemy scout, so there’s also a hidden panic but-ton – here called the ‘P.O.W. Button’ – in-stantly deleting all software and data, and disabling the Integrator, with an option of activating it remotely.

    WHAT THE FUTURE HOLDS No one knows where the development of the Uhlan/Tytan system as well as the whole Future Soldier program would lead, but so far the results are very encouraging. This was but a Phase 1, initial reconnais-sance into what can be achieved – now is the time for real work and implementation of the system. How long would it take, and what would be the scale of the actual imple-mentation, no one seems to know, but the beginning is already made.

    OPPOSITE: Wrist-mounted Integrator control panel enables the Soldier to control much more than his own equipment. (Michal Sitarski) ABOVE: Mock up of the 2nd Gen Battle Rifle in bullpup configuration. (Leszek Erenfeicht)