Title ラット食道の蠕動運動を制御する神経回路に関する研究(...

Post on 08-Mar-2021

1 views 0 download

Transcript of Title ラット食道の蠕動運動を制御する神経回路に関する研究(...

Title ラット食道の蠕動運動を制御する神経回路に関する研究( 本文(Fulltext) )

Author(s) 嶋, 剛士

Report No.(DoctoralDegree) 博士(獣医学) 甲第450号

Issue Date 2016-03-14

Type 博士論文

Version ETD

URL http://hdl.handle.net/20.500.12099/54523

※この資料の著作権は、各資料の著者・学協会・出版社等に帰属します。

2

3

4

7

1 in vivo

15

19

27

2

30

31

38

3

42

44

53

56

59

60

3

SD standard deviation

L-NAME NG-nitro-L-arginine methyl ester

TRPV1 transient receptor potential cation channel, subfamily V, member 1

NO nitric oxide

4

Furness, 2006; Hansen, 2003; Leonard et al., 2006; Olsson and Holmgren,

2011

Furness, 2006;

Hansen, 2003; Leonard et al., 2006; Olsson and Holmgren, 2011

Furness, 2006; Hansen, 2003; Leonard et

al., 2006; Olsson and Holmgren, 2011

Ciccocioppo et al.,

1994; Onori et al., 2003; Shiina et al., 2005; Smith and Robertson, 1998; Suzuki et

al., 1994; Waterman and Costa, 1994

-

Andrew, 1956; Clouse and Diamant,

2006; Cunningham and Sawchenko, 1990; Goyal and Chaudhury, 2008; Jean, 2001;

Lu and Bieger, 1998; Neuhuber et al., 2006

Shiina et al., 2013

5

Neuhuber et al., 2006; Wörl and Neuhuber, 2005

Boudaka et al., 2007; Boudaka et al., 2009; Izumi et al., 2003; Shiina

et al., 2006; Shiina et al., 2012

transient receptor potential

cation channel, subfamily V, member 1 TRPV1

Holzer, 1988; Holzer, 1991; Holzer, 2004; Geppetti and

Trevisani, 2004; Tominaga and Tominaga, 2005

Boudaka et al.,

2007; Boudaka et al., 2009; Izumi et al., 2003; Shiina et al., 2012; Shiina et al.,

2006

in vivo

in vivo

in vitro

6

7

14 17 Wistar 400-600 g

10 12 Sprague-Dawley 300-350 g SLC

22 ± 2 12 12 7 00

19 00 LABO MR Stock

MF

α-

α- 10% 2-Hydroxypropyl- -cyclodextrin

0.9% NaCl

NaCl 118.4 mM, KCl 4.7 mM, CaCl2 2.5 mM, MgSO4 1.2 mM, NaHCO3 25 mM,

KH2PO4 1.2 mM, 11.7 mM

D- NG-nitro-L-arginine methyl ester L-NAME

N-acetyl-1-tryptophan 3,5-bis (trifuluorometyl) benzyl ester L-732,138

Sigma-Aldrich (St Louis )

8

in vivo

α-

α- 50 mg/kg

α- 40 mg/kg

5 7 mg/kg/h

α- 20 25 mg/kg/h

40 mg/kg

7 14 mg/kg

1.2 g/kg

In vivo

Homeothermic Blanket Systems (Harvard Holliston

) 36 37˚C

1 mm

2.4 mm 1.5 mm 5 mm

9

AD Instruments Bella Vista NEW

Power Lab System AD Instruments

30

15

(mmHg)

200 mg/kg

10

Rodent

Ventilator Model 683 Harvard Bioscience, Boston,

Capsaicin

Tsuda et al., 2000; Yamashita et al., 2008

10% 10% Tween80

50mg/kg 2

8 9 0.01%

in vitro

1.0 cm

11

35 10 mL

95% O2 5% CO2

T7-8-240 ORIENTEC

AC STRAIN

AMPLIFIER AS1202 NEC Power Lab AD

Instruments 1.0

g 30

Model

SEN-3201

10 500 µ

1 80 V

100 µ 80 V 1 20 Hz 5 5

D- L NAME L-732,138

500 1000

12

standard deviation SD

Dunnet’s

P 0.05

13

In vivo

(mmHg)

14

35 95% O2 5% CO2 10 mL

Power Lab

15

in vivo

Neuhuber et al., 2006; Wörl and Neuhuber, 2005

Furness, 2006; Clouse and Diamant, 2006

Andrew, 1956; Clouse and Diamant, 2006;

Cunningham and Sawchenko, 1990; Goyal and Chaudhury, 2008; Jean, 2001; Lu

and Bieger, 1998; Neuhuber et al., 2006

Boudaka et al., 2007; Boudaka et al., 2009; Izumi et al.,

2003; Shiina et al., 2006; Shiina et al., 2012

NO

Boudaka et al., 2007; Boudaka et al., 2009; Izumi et al., 2003;

Shiina et al., 2006; Shiina et al., 2012 NO

16

Izumi et al., 2003; Shiina et al., 2006

co-innervation

Neuhuber et al., 2006; Wörl and Neuhuber, 2005

Holzer,

1988; Holzer, 2004; Geppetti and Trevisani, 2004; Sasamura and Kuraishi, 1999;

Szallasi and Blumberg, 1999; Szolcsanyi and Bartho, 2001; Tominaga and

Tominaga, 2005

in vivo

in vivo

Lu and Bieger, 1998

Sengupta, 2001

Lu and Bieger, 1998; Sang and Goyal, 2001

Satchell, 1984

17

(Bogeski et al., 2005; Shimizu et al., 2006)

in vivo

18

in vitro

NO

NO

19

0 mmHg

4 mmHg

- n = 4

n = 4 8 mmHg

-

8 mmHg

8 mmHg

20

2 mmHg

4 mmHg

4 mmHg 8 mmHg

4

mmHg 8 mmHg

21

in vivo

mmHg mL mmHg

0 1 mmHg 4 mmHg

22

In vivo

4 mmHg

23

8 mmHg

mmHg mL mmHg

24

2 4 8 mmHg in vivo

mmHg mL mmHg

c

25

2 4 8 mmHg in vivo

a b µL c

mmHg SD (n = 6) P <

0.05

26

8 mmHg

a b

c d 2

4 8 mmHg in vivo

a mmHg b

SD (n = 6) P

< 0.05

27

in vivo

in vivo

Clouse and Diamant,

2006

Lu and Bieger, 1998

Clouse and Diamant, 2006; Bieger and Neuhuber 2006;

Lu and Bieger, 1998 NMDA GABA

Broussard et al., 1996;

Broussard et al., 1994

28

Hashimo and Bieger, 1989; Wang and Bieger,

1991 NMDA

GABA

in vivo

4 mmHg

6 mmHg

Satchell, 1984; Yu et al., 2005

Loomis et al., 1997

2 4 8 mmHg

in vivo

29

in vivo

30

in vivo

TRPV1

; Izumi et al., 2003; Shiina et al., 2006

In vivo

31

in vivo

4 mmHg

2 mmHg

32

3

2

mmHg

33

8 mmHg

mmHg mL mmHg

34

2 4 8 mmHg

in vivo

a

µL mmHg

SD n = 6 n = 5 P < 0.05

35

0 8 mmHg

SD

n = 3 n = 3

36

a 8 mmHg

2 4 8 mmHg

in vivo

b mmHg

SD n = 6

n = 5 P < 0.05

37

in vivo mmHg

0 2 4 mmHg

4 mmHg 2

mmHg

38

in vivo

Spencer et al., 2008; Yu et al., 2005

Intraganglionic laminar endings

IGLE Berthoud et al., 1997a; Phillips and Powley, 2000; Sengupta,

2000; Zagorodnyuk and Brookes, 2000

Berthoud et al., 1997b; Patterson et al., 2003

39

Andrew, 1956; Clouse

and Diamant, 2006; Cunningham and Sawchenko, 1990; Goyal and Chaudhury,

2008; Jean, 2001; Lu and Bieger, 1998; Neuhuber et al., 2006

Spencer et al., 2008; Yu et

al., 2005

Banik and Brennan, 2009; Rong et al., 2004

NO NO

Page et al., 2009

NO

Shiina et al., 2013; Shiina et al., 2006 NO

n-NOS

2 Masliukov et al., 2015

40

n-NOS

NO

NO

Berthoud et al., 1997b; Shiina et al., 2006

in vivo

in vivo

41

42

in vivo

in vivo

Banik

and Brennan, 2009; Rong et al., 2004 NO

43

NO ; Boudaka et al., 2007; Izumi et al., 2003; Shiina et al.,

2013; Shiina et al., 2012; Shiina et al., 2006

NO

in vitro

44

In vitro

30 µM

NO

L-NAME 200 µM NK1 L-732,138

2 µM

4.27 ± 0.87 g (n = 5) 4.24 ±

45

0.96 g (n = 3)

d-

d-

d-

b c d

46

100 µ 80 V

30 µM

SD n = 3 n = 3 P < 0.05

47

NO

NK1

100 µ

80 V

30 µM NO L-NAME 200 µM

NK1 L-732,138 2 µM30 µM

48

a

100 µ

80 V

100%

SD n = 4 n = 4

49

10 100 µ 80 V

100%

SD n = 4

n = 4

50

100 µ

80 V 5 1~50 Hz

51

D-

a

D- 0.5 5 µM

100 µ 80 V

D- 0.5 5 µM

100% SD

n = 4 n = 4

52

a

100 µ 80 V c d,

’ ’ ’ SD

n = 5 n = 3

53

d-

54

d-

Jonsson et al., 2009 d-

Ca2+ Nogueira and Hogan, 2010

c

Aizawa et al., 2011; De Groat et al., 1982; Yu et al., 2009

in vitro

55

56

in vitro

Boudaka et al., 2007; Boudaka et al., 2009; Izumi et al., 2003; Shiina et al., 2012;

Shiina et al., 2006

NO

NO

NO

Neuhuber et al., 2006; Wörl and Neuhuber 2005 in vivo

Neuhuber et al., 2006;

Wörl and Neuhuber 2005

Furness, 2006; Hansen, 2003;

57

Leonard et al., 2006; Olsson and Holmgren, 2011

Furness,

2006; Hansen, 2003; Leonard et al., 2006; Olsson and Holmgren, 2011

Boudaka et al., 2007; Boudaka et al., 2009; Izumi et al., 2003; Shiina et al., 2012;

Shiina et al., 2006

in vivo

Boudaka et al., 2007; Boudaka et al., 2009; Izumi et al.,

2003; Shiina et al., 2012; Shiina et al., 2006 in vivo

in vitro in vivo

in vivo in vitro

58

in vivo

> 30 mmHg

Spencer et al., 2008; Yu et al., 2005

8 mmHg

59

60

Aizawa, N., Igawa, Y., Nishizawa, O. and Wyndaele, J.J. (2011). Effects of nitric

oxide on the primary bladder afferent activities of the rat with and without

intravesical acrolein treatment. Eur. Urol. 59, 264~271.

Andrew, B.L. (1956). The nervous control of the cervical oesophagus of the rat

during swallowing. J. Physiol. 134, 729~740.

Banik, R.K. and Brennan, T.J. (2009). Trpv1 mediates spontaneous firing and heat

sensitization of cutaneous primary afferents after plantar incision. Pain 141, 41~51.

Berthoud, H.R., Patterson, L.M., Neumann, F. and Neuhuber, W.L. (1997a).

Distribution and structure of vagal afferent intraganglionic laminar endings

(IGLEs) in the rat gastrointestinal tract. Anat. Embryol. (Berl). 195, 183~191.

Berthoud, H.R., Patterson, L.M., Willing, A.E., Mueller, K. and Neuhuber, W.L.

(1997b). Capsaicin-resistant vagal afferent fibers in the rat gastrointestinal tract:

anatomical identification and functional integrity. Brain Res. 746, 195~206.

Bieger, D. and Neuhuber, W.L. (2006). Neural circuits and mediators regulating

swallowing in the brainstem. GI Motility online: doi:10.1038/gimo1074.

Boudaka, A., Wörl, J., Shiina, T., Neuhuber, W.L., Kobayashi, H., Shimizu, Y. and

Takewaki, T. (2007). Involvement of TRPV1-dependent and -independent

components in the regulation of vagally induced contractions in the mouse

61

esophagus. Eur. J. Pharmacol. 556, 157~165.

Boudaka, A., Wörl, J., Shiina, T., Shimizu, Y., Takewaki, T. and Neuhuber, W. L.

(2009). Galanin modulates vagally induced contractions in the mouse oesophagus.

Neurogastroenterol. Motil. 21, 180~188.

Bogeski, G., Shafton, A.D., Kitchener, P.D., Ferens, D.M. and Furness, J.B. (2005).

A quantitative approach to recording peristaltic activity from segments of rat small

intestine in vivo. Neurogastroenterol. Motil. 17, 262~272.

Broussard, D.L., Li, X. and Altschuler, S.M. (1996). Localization of GABAA alpha 1

mRNA subunit in the brainstem nuclei controlling esophageal peristalsis. Brain Res.

Mol. Brain Res. 40, 143~147.

Broussard, D.L., Wiedner, E.B., Li, X. and Altschuler, S.M. (1994). NMDAR1 mRNA

expression in the brainstem circuit controlling esophageal peristalsis. Brain Res.

Mol. Brain Res. 27, 329~332.

Ciccocioppo, R., Onori, L., Messori, E., Candura, S.M., Coccini, T. and Tonini, M.

(1994). Role of nitric oxide-dependent and -independent mechanisms in peristalsis

and accommodation in the rabbit distal colon. J. Pharmacol. Exp. Ther. 270,

929~937.

Clouse, R.E. and Diamant, N.E. (2006). Motor Function of the Esophagus. In:

Johnson, L.R. (Ed.), Physiology of the gastrointestinal tract, 4th ed. pp. 913~926.

Elsevier Academic Press, Burlington.

62

Cunningham, E.T. Jr. and Sawchenko, P.E. (1990). Central neural control of

esophageal motility: a review. Dysphagia 5, 35~51.

De Groat, W.C., Booth, A.M., Milne, R.J. and Roppolo, J.R. (1982). Parasympathetic

preganglionic neurons in the sacral spinal cord. J. Auton. Nerv. Syst. 5, 23~43.

Furness, J.B. (2006). The Enteric Nervous System. Blackwell Publishing, Oxford.

Geppetti, P. and Trevisani, M. (2004). Activation and sensitisation of the vanilloid

receptor: role in gastrointestinal inflammation and function. Br. J. Pharmacol. 141,

1313~1320.

Goyal, R.K. and Chaudhury, A. (2008). Physiology of normal esophageal motility. J.

Clin. Gastroenterol. 42, 610~619.

Hansen, M. B. (2003). Neurohumoral control of gastrointestinal motility. Physiol.

Res. 52, 1~30.

Hashim, M.A. and Bieger, D. (1989). Excitatory amino acid receptor-mediated

activation of solitarial deglutitive loci. Neuropharmacology 28, 913~921.

Holzer, P. (1988). Local effector functions of capsaicin-sensitive sensory nerve

endings: involvement of tachykinins, calcitonin gene-related peptide and other

neuropeptides. Neuroscience 24, 739~768.

63

Holzer, P. (1991). Capsaicin: cellular targets, mechanisms of action, and selectivity

for thin sensory neurons. Pharmacol. Rev. 43, 143~201.

Holzer, P. (2004). TRPV1 and the gut: from a tasty receptor for a painful vanilloid to

a key player in hyperalgesia. Eur. J. Pharmacol. 500, 231~241.

Izumi, N., Matsuyama, H., Ko, M., Shimizu, Y. and Takewaki, T. (2003). Role of

intrinsic nitrergic neurones on vagally mediated striated muscle contractions in the

hamster oesophagus. J. Physiol. 551, 287~294.

Jean, A. (2001). Brain stem control of swallowing: neuronal network and cellular

mechanisms. Physiol. Reviews 81, 929~969.

Jonsson Fagerlund, M., Dabrowski, M. and Eriksson, L.I. (2009). Pharmacological

characteristics of the inhibition of nondepolarizing neuromuscular blocking agents

at human adult muscle nicotinic acetylcholine receptor. Anesthesiology 110,

1244~1252.

Leonard, R.J., Kim, E.B., Fayez, K.G., Juanita, L.M., Hamid, M.S. and Jackie, D.W.

(2006). Physiology of the gastrointestinal tract. Volume 1. Fourth editon. In : Jackie,

D.W. Integrative functions of the enteric nervous system, 4th ed., pp. 670~672.

Academic Press, Burlington.

Loomis, C.W., Yao, D. and Bieger, D. (1997). Characterization of an

esophagocardiovascular reflex in the rat. Am. J. Physiol. 272, R1783~1791.

64

Lu, W.Y. and Bieger, D. (1998). Vagovagal reflex motility patterns of the rat

esophagus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 274, R1425~1435.

Masliukov, P.M, Moiseev, K.Y., Korzina, M.B. and Porseva, V.V. (2015).

Development of nNOS-positive neurons in the rat sensory ganglia after capsaicin

treatment. Brain res. 1618 212~221

Neuhuber, W.L., Raab, M., Berthoud, H.R. and Wörl, J. (2006). Innervation of the

mammalian esophagus. Advances in Anatomy, Embryology, and Cell Biology 185,

1~73.

Nogueira, L. and Hogan, M.C. (2010). Phenol increases intracellular [Ca2+] during

twitch contractions in intact Xenopus skeletal myofibers. J. Appl. Physiol. (1985).

109, 1384~1393.

Olsson, C. and Holmgren, S. (2011). Autonomic control of gut motility: A

comparative view. Auton. Neurosci. : Basic & Clinical 165, 80~101.

Onori, L., Aggio, A., Taddei, G., Loreto, M.F., Ciccocioppo, R., Vicini, R., Tonini, M.,

2003. Peristalsis regulation by tachykinin NK1 receptors in the rabbit isolated

distal colon. Am. J. Physiol. 285, G325-331.

Page, A.J., O'Donnell, T.A., Cooper, N.J., Young, R.L. and Blackshaw, L.A. (2009).

Nitric oxide as an endogenous peripheral modulator of visceral sensory neuronal

function. J. Neurosci. 29, 7246~7255.

65

Patterson, L.M., Zheng, H., Ward, S.M. and Berthoud, H.R. (2003). Vanilloid

receptor (VR1) expression in vagal afferent neurons innervating the

gastrointestinal tract. Cell Tissue Res. 311, 277~287.

Phillips, R.J. and Powley, T.L. (2000). Tension and stretch receptors in

gastrointestinal smooth muscle: re-evaluating vagal mechanoreceptor

electrophysiology. Brain Res. Brain Res. Rev. 34, 1-26.

Rong, W., Hillsley, K., Davis, J.B., Hicks, G., Winchester, W.J. and Grundy, D.

(2004). Jejunal afferent nerve sensitivity in wild-type and TRPV1 knockout mice. J.

Physiol. 560, 867~881.

Sang, Q. and Goyal, R.K. (2001). Swallowing reflex and brain stem neurons

activated by superior laryngeal nerve stimulation in the mouse. Am. J. Physiol.

Gastrointest. Liver Physiol. 280, G191~200.

Sasamura, T. and Kuraishi, Y. (1999). Peripheral and central actions of capsaicin

and VR1 receptor. Jap. J. Pharmacol. 80, 275~280.

Satchell, PM. (1984). Canine oesophageal mechanoreceptors. J. Physiol. 346,

287~300.

Sengupta, J.N. (2000). An overview of esophageal sensory receptors. Am. J. Med.

108 Suppl 4a, 87S~89S.

Sengupta, J.N. (2001). Electrophysiological recording from neurons controlling

66

sensory and motor functions of the esophagus. Am. J. Med. 111 Suppl 8A,

169S-173S.

Shiina, T., Shima, T., Suzuki, Y. and Shimizu, Y. (2013). Inhibitory actions of a local

neural reflex on propulsive activity of the esophageal striated muscle portion in rats.

Res. Vet. Sci. 94, 331~335.

Shiina, T., Shima, T., Suzuki, Y., Wörl, J. and Shimizu, Y. (2012). Neural regulation

of esophageal striated muscle in the house musk shrew (Suncus murinus). Auton.

Neurosci. 168, 25~31.

Shiina, T., Shimizu, Y., Boudaka, A., Wörl, J. and Takewaki, T. (2006). Tachykinins

are involved in local reflex modulation of vagally mediated striated muscle

contractions in the rat esophagus via tachykinin NK1 receptors. Neuroscience 139,

495~503.

Shiina, T., Shimizu, Y., Suzuki, Y., Nikami, H. and Takewaki, T. (2005).

Measurement of the propelled liquid by isolated hamster ileum as a parameter to

evaluate peristalsis. Eur. J. Pharmacol. 517, 120~126.

Shimizu, Y., Chang, E.C., Shafton, A.D., Ferens, D.M., Sanger, G.J., Witherington,

J. and Furness, J.B. (2006). Evidence that stimulation of ghrelin receptors in the

spinal cord initiates propulsive activity in the colon of the rat. J. Physiol. 576,

329~338.

Smith, T.K. and Robertson, W.J. (1998). Synchronous movements of the

67

longitudinal and circular muscle during peristalsis in the isolated guinea-pig distal

colon. J. Physiol. 506, 563~577.

Spencer, N.J., Kerrin, A., Singer, C.A., Hennig, G.W., Gerthoffer, W.T. and

McDonnell, O. (2008). Identification of capsaicin-sensitive rectal mechanoreceptors

activated by rectal distension in mice. Neuroscience 153, 518~534.

Suzuki, N., Mizuno, K. and Gomi, Y. (1994). Role of nitric oxide in the peristalsis in

the isolated guinea-pig ileum. Eur. J. Pharmacol. 25, 221~227.

Szallasi, A. and Blumberg, P.M. (1999). Vanilloid (Capsaicin) receptors and

mechanisms. Pharmacol. Rev. 51, 159~212.

Szolcsanyi, J. and Bartho, L. (2001). Capsaicin-sensitive afferents and their role in

gastroprotection: an update. J. Physiol. Paris. 95, 181~188.

Tominaga, M. and Tominaga, T. (2005). Structure and function of TRPV1. Pflügers

Archiv : Eur. J. Physiol. 451, 143~150.

Tsuda, M., Koizumi, S., Kita, A., Shigemoto, Y., Ueno, S. and Inoue, K. (2000).

Mechanical allodynia caused by intraplantar injection of P2X receptor agonist in

rats: involvement of heteromeric P2X2/3 receptor signaling in capsaicin-insensitive

primary afferent neurons. J. Neurosci. 20, RC90.

Wang, Y.T. and Bieger, D. (1991). Role of solitarial GABAergic mechanisms in

control of swallowing. Am. J. Physiol. 261, R639~646.

68

Waterman, S.A. and Costa, M. (1994). The role of enteric inhibitory motoneurons in

peristalsis in the isolated guinea-pig small intestine. J. Physiol. 477, 459-468

Wörl, J. and Neuhuber, W.L. (2005). Enteric co-innervation of motor endplates in

the esophagus: state of the art ten years after. Histochem. Cell Biol. 123, 117~130.

Yamashita, H., Wang, Z., Wang, Y., Furuyama, T., Kontani, Y., Sato, Y. and Mori, N.

(2008). Impaired basal thermal homeostasis in rats lacking capsaicin-sensitive

peripheral small sensory neurons. J. Biochem. 143, 385~393.

Yu, S., Gao, G., Peterson, B.Z. and Ouyang, A. (2009). TRPA1 in mast cell

activation-induced long-lasting mechanical hypersensitivity of vagal afferent

C-fibers in guinea pig esophagus. Am. J. Physiol. Gastrointest. Liver Physiol. 297,

G34~42.

Yu, S., Undem, B.J. and Kollarik, M. (2005). Vagal afferent nerves with nociceptive

properties in guinea-pig oesophagus. J. Physiol. 563, 831~842.

Zagorodnyuk, V.P. and Brookes, S.J. (2000). Transduction sites of vagal

mechanoreceptors in the guinea pig esophagus. J. Neurosci. 20, 6249~6255.