Time Series Basics Fin250f: Lecture 8.1 Spring 2010 Reading: Brooks, chapter 5.1-5.7.

Post on 17-Jan-2016

214 views 0 download

Transcript of Time Series Basics Fin250f: Lecture 8.1 Spring 2010 Reading: Brooks, chapter 5.1-5.7.

Time Series Basics

Fin250f: Lecture 8.1

Spring 2010

Reading: Brooks, chapter 5.1-5.7

Outline

Linear stochastic processes Autoregressive process Moving average process Lag operator Model identification

PACF/ACF Information Criteria

Stochastic Processes

Yt(y1, y2 , y3,K yT )

E(Yt | yt−1,yt−2 ,K ) =E(Yt |t−1)

Time Series Definitions

Strictly stationaryCovariance stationaryUncorrelated White noise

Strictly Stationary

All distributional features are independent of time

F(yt , yt−1,K yt−m)E(Yt |yt−1,…,yt−m) independent of time

Weak or Covariance Stationary

Variances and covariances independent of time

E(yt ) =μE(yt −μ)(yt −μ)=σ 2 <∞E(yt −μ)(yt+ j −μ)=γ j

Autocorrelation

White Noise

E(yt ) =μE(yt −μ)(yt −μ)=σ 2 <∞E(yt −μ)(yt+ j −μ)=0 j > 0

White Noise in Words

Weakly stationaryAll autocovariances are zeroNot necessarily independent

Time Series Estimates

γ̂ j =1

T − j(

t=1

T−j

∑ yt −μ)(yt+ j −μ)

τ̂ j =γ̂ j

γ̂0

White noise:τ̂ j ~N(0,1 /T )

Ljung-Box Statistic

Q* =T(T + 2)τ̂ k

2

T −kk=1

m

∑Q* ~χm

2

Linear Stochastic Processes

Linear modelsTime series dependenceCommon econometric frameworksEngineering background

Autoregressive Process, Order 1:AR(1)

AR(1) Properties

E(yt ) =μ +φE(yt−1) =μ +φE(yt)

E(yt) =μ

1−φEt(yt+1) =μ +φyt

More AR(1) Propertiesμ =0

yt = φyt−1 + utE(yt

2 ) = E(φyt−1 + ut )(φyt−1 + ut )

E(yt2 ) = E(φ2yt−1

2 ) + 2E(utφyt−1) +σ u2

E(yt2 ) = E(φ2yt

2 ) +σ u2

E(yt2 ) =

σ u2

(1−φ2 )= var(yt )

More AR(1) propertiesμ =0

yt = φyt−1 + utE(ytyt−1) = E(φyt−1 + ut )(yt−1)

γ 1 = E(ytyt−1) = φσ y2

τ 1 =E(ytyt−1)

σ y2 = φ

τ j = φ j

AR(1): Zero mean form

yt+1 =μ +φyt +ut+1

E(yt+1) =μ

1−φ=Ú

(yt+1 −Ú)=φ(yt −Ú)+ut+1

AR(m) (Order m)

yt =μ + φjyt−jj=1

m

∑ +ut

Moving Average Process of Order 1, MA(1)

yt =μ +θut−1 +ut

MA(1) Properties

yt =μ +θut−1 +ut

E(yt) =μEt(yt+1) =μ +θut

E(yt −μ)2 =E(θut−1 +ut)(θut−1 +ut)

var(yt) =(1+θ 2 )σu2

γ1 =E(yt −μ)(yt−1 −μ)=E(θut−1 +ut)(θut−2 +ut−1) =θσu2

τ1 =cor(yt,yt−1) =θ

(1+θ 2 )τ j =0 j ≥2

MA(m)

yt =μ + θ jut−j +utj=1

q

∑var(yt) =(1+θ1

2 +…+θq2 )σu

2

cov(yt,yt−j ) =(θ j +θ j+1θ1 +…+θqθq−j )σu2

cov(yt,yt−j ) =0 j > q

Stationarity

Process not explodingFor AR(1)All finite MA's are stationaryMore complex beyond AR(1)

|φ|<1

AR(1)->MA(infinity)yt =φyt−1 +ut

yt−1 =φyt−2 +ut−1

yt =φ(φyt−2 +ut−1) +ut

yt =φ2yt−2 +φut−1 +ut

yt =φmyt−m+ φ jut−j

j=0

m

∑ , |φ |<1

yt = φ jut−jj=0

Lag Operator (L)

Lyt =yt−1

Lkyt =yt−k

Lkμ =μ

Using the Lag Operator (Mean adjusted form)

yt −ε =φ(yt−1 −ε)+ut

yt −ε =φL(yt −ε)+ut

(1−φL)(yt −ε) =ut

An important feature for Lyt =φyt−1 +ut

(1−φL)yt =ut

yt =1

(1−φL)ut

yt = φ jLjutj=0

∑ = (φL) j utj=0

∑1

(1−φL)= (φL) j

j=0

MA(1) -> AR(infinity)

yt =μ +θut−1 +ut

yt −μ =(1+θL)ut

1(1+θL)

(yt −μ)=ut

(−θL) j (yt −μ)j=0

∑ =ut

MA->AR

yt −μ = −(−θ) j

j=1

∑ (yt−j −μ )+ut

yt −μ = (−1) j−1θ j

j=1

∑ (yt−j −μ )+ut

|θ |<1 "Invertibility"

AR's and MA's

Can convert any stationary AR to an infinite MA

Exponentially declining weightsCan only convert "invertible" MA's to

AR'sStationarity and invertibility:

Easy for AR(1), MA(1) More difficult for larger models

Combining AR and MA ARMA(p,q) (more later)

yt =μ + φiyt−ii=1

p

∑ + θ jut−jj=1

q

∑ +ut

Modeling ProceduresBox/Jenkins

Identification Determine structure

How many lags? AR, MA, ARMA?

Tricky Estimation

Estimate the parameters Residual diagnostics Next section: Forecast performance and

evaluation

Identification Tools

Diagnostics ACF, Partial ACF Information criteria Forecast

Autocorrelationγ̂ j =

1T − j

(t=1

T−j

∑ yt −μ )(yt+ j −μ )

τ̂ j =γ̂ j

γ̂0

White noise:τ̂ j ~N(0,1 /T )

95% bands

[-1.96 (1 /T ),1.96 (1 /T )]

Partial Autocorrelation

Correlation between y(t) and y(t-k) after removing all smaller (<k) correlations

Marginal forecast impact from t-k given all earlier information

Partial Autocorrelation

yt =μ +β1,1yt−1 +ut

yt =μ +β1,2yt−1 +β2,2yt−2 +ut

yt =μ +β1,3yt−1 +β2,3yt−2 +β3,3yt−3 +ut

pacf =[β1,1,β2,2 ,β3,3,…]

For an AR(1)

yt =μ +φyt−1 +ut

ACF( j) =τ j =φj

PACF(1) =φPACF(>1) =0

AR(1) (0.9)

For an MA(1)yt =μ +θut−1 +ut

ACF(1) =τ1 =θ

1+θ 2

ACF(>1) =0PACF =AR(∞)

yt = (−1) j−1θ j

j=1

∑ (yt−j ) +ut

PACF =(θ,−θ 2 ,θ 3,−θ 4 ,…)

MA(1) (0.9)

General Features

Autoregressive Decaying ACF PACF drops to zero beyond model order(p)

Moving average Decaying PACF ACF drops to zero beyond model order(q)

Don’t count on things looking so good

Information Criteria

Akaike, AICSchwarz Bayesian criterion, SBICHannan-Quinn, HQICObjective:

Penalize model errors Penalize model complexity Simple/accurate models

Information Criteria

k=number of parameters

AIC =log(σ̂ 2 ) +2kT

SBIC =log(σ̂ 2 ) +kT

log(T )

HQIC =log(σ̂ 2 ) +2kT

log(log(T ))

Estimation

Autoregressive AR OLS Biased(-), but consistent, and approaches

normal distribution for large TMoving average MA and ARMA

Numerical estimation procedures Built into many packages

Matlab econometrics toolbox

Residual Diagnostics

Get model residuals (forecast errors)Run this time series through various

diagnostics ACF, PACF, Ljung/Box, plots

Should be white noise (no structure)