Thirty Years of Research, Development and Applica … Swain.pdfThirty Years of Research, Development...

Post on 18-Apr-2020

3 views 0 download

Transcript of Thirty Years of Research, Development and Applica … Swain.pdfThirty Years of Research, Development...

ThirtyYearsofResearch,DevelopmentandApplica�on

forCorrosionandBiofoulingControl

and

EnvironmentallyFriendlyAn�foulingCompounds

GeoffSwainandPei-YuanQian

19thInterna�onalCongressonMarineCorrosionandFoulingJune24–29,2018

CenterforCorrosionandBiofoulingControl

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

34’Mainship actsascontrolcenter withpower,computer andSCUBA

30x8’ steeltestpanel

StaticImmersionTestBarge

LargeScaleSeawaterTestSitePortCanaveral

1984topresentTounderstandtheprocessesofbiofoulingandcorrosionandtodevelopandapplyinnova�vesolu�onsforcontrolandpreven�on

PortCanaveralTestSite

FloridaIns�tuteofTechnology

Sebas�anInlet

Florida

X

IndianRiverLagoonTestSite

PortCanaveralSta�cImmersion

DynamicImmersionGroomingFacility

FITLabFacili�es

HighSpeedTestCra�HydrodynamicTes�ng

LagoonSta�cImmersion

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

IanDavidsonSERC

DriversEngineeringChallenges

Economics

Environment Regula�ons

Sustainability

AdvancesinTechnologies

CorrosionandBiofoulingControl

19802020

2000

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

IanDavidsonSERC

DriversEngineeringChallenges

Economics

Environment Regula�ons

Sustainability

AdvancesinTechnologies

CorrosionandBiofoulingControl

19802020

2000

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

Invasive

Species

Green

House

GasEmissions

OceanpH

Microplas�cs

Organo�n

EnvironmentallyFriendlyFoulingControl

LessonsLearnt

OffshoreOilandGasConoco

1984to1989

RebarCorrosionLivingSeasEPCOT

1990to1999

EnvironmentallyFriendlyFoulingControlMethodsOfficeofNaval

Research1993toPresent

Pei-YuanQianButenolide

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

EngineeringandEconomicChallenges

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

OffshoreOilandGasConoco1884to1989TheApplica�onofCoa�ngsforCorrosionandBiofoulingControlofOffshoreStructures

RebarCorrosionLivingSeasatEpcot1990to1999Thecauseandpreven�onofrebarcorrosionintheLivingSeas(withNemoandFriends)atEpcot,Disney

OffshoreOilandGasConoco1884to1989

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

Coa�ngsforCorrosionandBiofoulingControlintheNorthSeaExtremeSeaandweathercondi�onsHighdemandonthesacrificialcathodicprotec�onsystemsUnan�cipatedbiofoulingesp.bluemusselWiththehighcostofbiofoulingcleaningprogramstherewasrenewedinterestincopperasanan�foulingmaterial.Coa�ngapplica�onisexpensiveandsteelstructuresaretypicallyuncoatedinthefullysubmergedcondi�on.1.  Couldahighvolume%coppercoa�ngbeapplieddirectlytoacathodically

protectedsteelstructure?Sacrificialanodesarelessac�veduringtheearlylifeofacoatedstructureandmayfoul.2.  Wouldfouledanodesreac�vateifrequiredasthecoa�ngsandcathodic

protec�oncurrentdemandincreasedwith�me?

OffshoreOilandGasConoco1884to1989

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

  Swain,G.W.J.andThomason,W.,(1990)"CathodicProtec�onandtheUseofCopperAn�foulingSystemsonFixedOffshoreSteelStructures."OffshoreMechanicsandArc�cEngineering9thInterna�onalConference,Houston.February1823,1990.

  Swain,G.W.J.,(1987)"Evalua�onofAn�foulingCoa�ngsforFixedOffshoreStructures,"Proceedingsofthe6thInterna�onalSymposiumonOffshoreMechanicsandArc�cEngineering,Houston,Texas,March151987.

Conclusions  Highpercentcoppercontainingan�foulingcoa�ngswillcausegalvaniccorrosionwherethereisnoorinsufficientbarriercoat.

  Thean�foulingac�onofthecopperwillbenegatedwherethecoppercoa�ngisgroundedtothesteel.

CathodicProtec�onandtheUseofCopperAn�foulingSystems

BarrierCoat

Method1mlengthof50mmouterdiametersteelpipeswerecoatedwithahighpercentcoppercontainingan�foulingcoa�ngwithandwithoutabarriercoat.Thepipesweredamagedbya6mmwidescribethatraninastraightlinefor500mmalongthepipe.Allpipeswereprotectedbyanaluminumsacrificialanode.

NoBarrierCoat

OffshoreOilandGasConoco1884to1989

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

TheEffectofBiofoulingonthePerformanceofSacrificialAnodes

Swain,G.W.J.andPatrickMaxwell,J.,(1990)"TheEffectofBiofoulingonthePerformanceofAlZnHgAnodes."Corrosion,March1990

Conclusions  Nonac�veanodeswillfoul.  Zincanodesfoullessthanaluminum.  Zincanodeshaveabe�erefficiencythanaluminum.

  Biofouledanodes:  willreac�vate.  haveincreasedanoderesistance.  operateatareducedcurrentoutput.  havereducedtheanodeefficiency.

MethodAc�veandinac�veanodeswereimmersedinahighfoulingenvironment.Theanodesweremonitoredforfoulingandtestedfortheirabilitytoprovidecurrenttoanuncoatedsteelstructure.

Ac�veanodeandmusselfoulingonuncoatedsteelstructure

Musselfoulingoninac�veanodeonacoatedsteelstructure

LessonsLearnt

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

  Whenusingdissimilarmaterialsdonotignorebasic

thermodynamics–anode/cathode.

  Caremustbetakenwhenusing“copper”withlessnoble

metals.

  Useabarriercoat.  Biofoulingwillaltertheresistanceandelectrochemical

reac�onsthatoccuronmetalssurfaces.

  Therearenoshortcutswhenworkinginthemarine

environment!

Copper-BasedAn�foulingCoa�ngsonAluminumAlloy5083

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

Dr.KevinChasse,NavalSurfaceWarfareCenter,CarderockDivision(NSWCCD),USADr.AndrewScardino,DefenseScienceandTechnologyGroup,AustraliaDr.GeoffreySwain,FloridaIns�tuteofTechnology,USA2016Interna�onalCongressonMarineCorrosionandFouling:19–24June,2016,Toulon,France

Conclusions  Copperdeposi�onwasfoundonthealuminumundercoppercontainingAFcoa�ngs.  Copperisthermodynamicallystableonaluminumsurfacesandformsdeposits.  Coppermaypromotelocalizedcorrosioninabsenceofcathodicprotec�on.  Coppermayini�atelocalcorrosioncellsundercoa�ngstopromoteundercu�ng,blisters,andotherflaws/defects.

Mo�va�on  Arecentpaperconcludeditsafetouse

copperbasedAF.Bagleyetal2015  Amajorcoa�ngcompanywaspromo�ng

theuseofcopperoxidebasedan�foulingproductsforaluminumhulls.

RoyalAustralianNavyArmidaleClassPatrolBoat(ACPB)

RebarCorrosionLivingSeasatEpcot1990to1999

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

  Swain,G.W.J.andMuller,E."OxygenConcentra�onCellsandCorrosioninaSeawaterAquarium,".ProceedingsofCorrosion92,No394,1992.

TheLivingSeas(withNemoandFriends)atEPCOTisa61mdiameter,9mdeep,21,600cubicmeterseawateraquariumconstructedfromreinforcedconcrete.Theprematureappearanceofrebarcorrosionpromptedinves�ga�onstoiden�fythecause.

Causes:  InsufficientConcreteCover  ExposedTieWires  InclusionofSteelTrash  ChloridePenetra�on

Hypothesis:Rebarcorrosioninthemaintankisdrivenbyanoxygenconcentra�oncellcausedbyozonatedreturnwaterviatheaera�ontower.

RebarCorrosionLivingSeasatEpcot1990to1999

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

OxygenConcentra�onCellsandCorrosion  Theaera�ontowerwasatahigherredoxpoten�althanthemaintank.  Theaera�ontowerbecamecathodictothemaintank.  Thiswasdrivingtheprematurerebarcorrosioninthemaintank.

QUAD II QUAD I

AerationTower

Main Tank

0

5

10

15

20

25

Scale (ft)

MAGNESIUM ANODE

A

Wall

Footer

Ride Tunnel

QUAD III QUAD IV

Pedestrian Tunnel

In-Tank Module

Floor Plates48D5

32D5

Swain,G.W.J.andMuller,E."OxygenConcentra�onCellsandCorrosioninaSeawaterAquarium,".ProceedingsofCorrosion92,No394,1992.

RebarCorrosionLivingSeasatEpcot1990to1999

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

CorrosionControl

Swain,G.W.J.,Muller,E.,Polly,D."ACathodicProtec�onSystemfortheLivingSeas-EpcotCenter.”MaterialsPerformance,V.33,No.10,p21,October1994.

FinalDesign  Sacrificialmagnesiumanodes.  Magnesiumisthesecondmostabundantca�oninseawater.  Currentoutputcontrolledbyvariableresistors.  Therebarwaspolarizedtoapoten�alwhereanodicac�vityceased.Thiswasfoundtobeabout-0.6VrefAg/AgCl.

  Thepoten�algradientshadnonega�veimpactsonthemarinelife.

1.E-09 1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01

Ray Detects, 5E-09 A/m2

CP Concrete, 3E-06 A/m2

CP Main Tank, 28E-06 A/m2

Magnesium anode 5.7 A/m2

Sharks Repelled, 8.0A/m2

Impressed Current, 250 A/m2

Impressed Current, 5000A/m2

Log Potential Gradients

Requirements  Compa�bilitywithMarineLife  Compa�bilitywithSeaWaterChemistry  EaseofInstalla�on  VariableControl  Compa�blewithOtherStructures  Aesthe�csandCost

LessonsLearnt

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

  Problemsolvinginthemarineenvironment

requiresunderstandingtheBigPicture.

  WhatistheCause?

  WhatistheEffect?

  WhatistheBestCure?

  Whenpossible-workwithnature-don’tfightit!

BiocideFree

Coa�ngs

InertplusCleaning

Non-s�ck FoulingRelease

FoulingReleasePlus

Ac�veMechanisms

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

Coa�ngsplus

Ac�veIngredient

InertMatrix

Abla�veMatrix

SelfPolishing

Silicone

Copper

CopperFree

Non-Toxicand

Biodegradable

Environment,Regula�onsandSustainability

FoulingControlCoa�ngs

EnvironmentallyFriendlyFoulingControlOfficeofNavalResearch1994toPresent

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

BiofoulingresearchneedsfortheUnitedStatesNavy:ProgramhistoryandgoalsRandallSAlberte,StephenSnyder,BernardJZahuranec&MarcWhetstone

Biofouling,1992,Vol.6,pp.91-95

Developmentofanenvironmentally-acceptableAFcoa�ngforNavalpla�ormsisofpar�cularimportanceatthis�meofdecliningNavybudgetsandincreasedawarenessofenvironmentalqualityissues.Effec�veAFcoa�ngscanreducefleetopera�ngcosts,therebyallowingmoreshipstobeoperatedforagivenamountofopera�ngfunds.Effec�vecoa�ngsthatrequirelessfrequentdry-docking(onceevery5-7oreven7-10years)wouldeasetheproblemofshipnon-availabilityduringdry-dockings.Maximizingtheavailability,opera�ngefficiency,andstrategicreadinessandopera�onofeachshipinadown-sizedforcecouldassistfleetcommandersintheir

efforttoavoidlongerdeploymentsofavailableships.Lastly,non-pollu�ngAFcoa�ngswillminimizethehealthandsafetyhazardsassociatedwithapplica�onandremoval,andensureanenvironmentallysoundmeanstoprotectandpreservetheecologicalhealthofmarinecoastalenvironments.TheNavyprogramandthedevelopmentofanewgenera�onofeffec�veAFcoa�ngswillhavecri�calandwidespreadapplica�onsinthemari�meindustries.

ConcepttoCoa�ng

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

FIELDTESTS

SHIPTRIALS

LABORATORYTESTS

MATHEMATICALMODELS

CONCEPT

IMPR

OVE

DAN

TIFO

ULI

NG

PER

FORM

ANCE

INST

ANTA

NEO

US

WEE

KS

WEE

KST

OY

EARS

YEAR

S

Experimenta�on

Qualifica�on

Theory

FieldTests

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

  Swain,G.W.J.andSchultz,M.P.“TheTes�ngandEvalua�onofNon-ToxicAn�foulingCoa�ngs,”BiofoulingVol.10,pp187-197,1996.  Swain,G.W.J,Nelson,W.G.,andPreedeekanit,S.“TheInfluenceofBiofoulingAdhesionandBio�cDisturbanceontheDevelopmentofFoulingCommuni�esonNon-Toxic

Surfaces”BiofoulingVol.12(1–3)pp257–269,1997.  Swain,G.W.“FieldEvalua�onsofNon-ToxicAn�foulingCoa�ngs:NewFieldTechnologiesandPerformanceCriteria”,NavalResearchReview,Vol.XLIX.pp46–50,1997.  SwainGeoffrey;StephanieHerpe;EmilyRalston;MelissaTribou.Short-termtes�ngofan�foulingsurfaces:theimportanceofcolour.Biofouling,22(6):425-4292006  Hunsucker,K.J.Hunsucker,H.Gardner,G.Swain(2017)Sta�canddynamiccomparisonsfortheevalua�onofshiphullcoa�ngs.MarineTechnologySocietyJournal,

March/April,2017,Volume51,Number2,p.71

  Sta�cImmersion

  DynamicImmersion

  PercentFouling  BiofilmAdhesion

  BarnacleAdhesion  Grooming/Cleaning

  Hydrodynamics

DynamicImmersion

StaticImmersion

BiofoulingBiofouling AdhesionPhysical Condition

RoughnessHydrodynamic Properties

Cleaning or Grooming

HydrodynamicEvaluation

Support Vessel

10x3mTestPlateStaticImmersion

LifeCycleTes�ng

BiocideFreeCoa�ngs

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

Silicones

Teflon

1940 1950 1960 1970 1980 1990 2000 2010 2020

Foul

ing

Rele

ase

EngineeringMaterialsandCoa�ngs

NonS�ckAsymptote?

Copper

SPCtributyl�n

FactorsFavoringRelease

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

BradyandSinger,“MechanicalFactorsFavoringReleasefromFoulingReleaseCoa�ngs”.Biofouling2000Vol15(1-3)

y = 4.1215x R² = 0.89768

0

10

20

30

40

50

60

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

Rel

ativ

e A

dhes

ion

(SE*E)^1/2

21

a2c t

Kw2a=F ⎟⎠

⎞⎜⎝

⎛π

F -normalforcet -thicknessofcoatinga -radiusofstudwa -Dupre'sworkofadhesion(γS+γL-γSL)K -bulkmodulus(E/3(1-2ν))E -Young’smodulusν -Poissonratio

K.Kendall,Theadhesionandsurfaceenergyofelas�csolidsJ.Phys.D:Appl.Phys.,4(1971)1186

PolymerRela�veAdhesion

SurfaceEnergy E(GPa) SQRTSE*E

Polydimethylsiloxane 5 23 0.002 0.21

Polyhexafluoropropylene 21 16.2 0.5 2.85

Polytetrafluoroethylene 16 18.6 0.5 3.05

Polyvinylidenefluoride 18 25 1.2 5.48

Polyethylene 30 33.7 2.1 8.41

Polymethylmethacrylate 48 41.2 2.8 10.74

Polystyrene 40 40 2.9 10.77

Nylon66 52 45.9 3.1 11.93

Deg

ree

of B

iolo

gica

l Fou

ling

Surface Energy

Met

hyla

ted

and

Hyd

roxy

late

d Su

rfac

es

Fluorocarbon Compositions

Common

Com

mercia

l Coa

tings

High Energy M

aterials

Spontaneously Adsorbed Conditioning Films

HYDROPHOBIC HYDROPHILLIC

Baier,R.E.1972.Influenceoftheini�alsurfacecondi�onofmaterialsonbioadhesion,p.633-639.InProc.ThirdInt.Congr.onMarineCorrosionandFouling.Na�onalBureauofStandards,Gaithersburg,Md.

Dexteretal.1975InfluenceofSubstrateWe�abilityontheA�achmentofMarineBacteriatoVariousSurfaces.AppliedMicrobiologyV30,No.2P.298-308

Anequilibriumtheoryofadhesionbetweenelas�csolids

HardFoulingAdhesion

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

  Livehardfoulingorganismsareselected.  Ashearforceisappliedtothebaseoftheorganism.  Theforcerequiredtoremovetheorganismismeasured.  Theorganismisretainedandreturnedtothelaboratory.  Thebasesurfaceareaismeasuredusingascanner.  Theshearstrengthofadhesion(MPa)iscalculatedbydividingtheforceforremoval(Newtons)bytheareaoftheorganismbase(mm2).

Adhesion Strength (MPa)0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Silicone (Best)Silicone RTV11

Silicone J501FEP Teflon

UHM PEPolypropylene

LexanAcrylic

Fl. UrethaneEpoxy

UrethaneCP Bronze

  Swain,G.W.J.,Griffith,J.,Bultman,D.,andVincent,H.,"TheUseofBarnacleAdhesionMeasurementsfortheFieldEvalua�onofNon-toxicFoulReleaseSurfaces,"Biofouling,1992,V.6,pp.105-114  Swain,G.W.J.,Schultz,M.P.,andVincent,H.L.,"ShearForceMeasurementsofBarnacleAdhesionforFieldEvalua�onofNon-ToxicFoulReleaseSurfaces."In:RecentDevelopmentsinBiofoulingControl.

Eds.Mary-FrancesThompson,RachakondaNagabhushanam,RachakondaSarojini,MiltonFingerman,OxfordandIBHPublishingCo.,1994  Swain,G.W.J.andSchultz,M.P.“TheTes�ngandEvalua�onofNon-ToxicAn�foulingCoa�ngs,”BiofoulingVol.10,pp187-197,1996.

Kendall’sModelandDC3140

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

0.0

0.4

0.8

1.2

1.6

2.0

0.05 0.09 0.17 0.22 0.25 0.50 0.60 0.78 1.00 1.20 1.50

Coating Thickness (mm)

Failu

re S

tres

s (M

Pa)

Tensile DataKendall's ModelShear DataBalanus eburneus

AComparisonoftheAdhesionStrengthof12mmDiameterEpoxyStudsandBarnaclestothePredictedAdhesionStrengthusingKendall’sModelonDifferentCoa�ngThickness

Kendall’sModelandBarnacles

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

StressStrainCurvesforPseudoBarnacleandBalanuseburneusto0.25mmThickDC3140Coa�ng.Kavanagh,C.,Quinn,R.andSwain,G.Observa�onsofbarnacledetachmentfromsiliconesusinghigh-speedvideo.TheJournalofAdhesion,81:1-26,2005

0

0.05

0.1

0.15

0.2

0.25

0 0.25 0.5 0.75

Stress(M

Pa)

Displacement(mm/mm)

BalanuseburneusPseudoBarnacle

Varia�oninAdhesionStrength

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

  Kavanagh,C.J.,M.P.Schultz,G.W.Swain,J.Stein,K.TrubyandC.DarkangeloWood.“Varia�oninAdhesionStrengthofBalanuseburneus,CrassostreavirginicaandHydroidesdianthustoFouling-ReleaseCoa�ngs,”Biofouling,Vol17(2)pp.155-167,2001.

  KavanaghC.;SwainG.;KovachB.;SteinJ.;Darkangelo-WoodC.;TrubyK.;HolmE.;MontemaranoJ.;MeyerA.;WiebeD.“TheEffectsofSiliconeFluidAddi�vesandSiliconeElastomerMatricesonBarnacleAdhesionStrength.”Biofouling,December2003,vol.19,no.6,pp.381-390(10)

Varia�oninAdhesionStrengthofBalanuseburneus,CrassostreavirginicaandHydroidesdianthustoFouling-ReleaseCoa�ngs

Barnacle Oyster Tubeworm

She

ar A

dhes

ion

Stre

ngth

(kP

a)

0

50

100

150

200

Barnacle Oyster TubewormS

hear

Adh

esio

n S

treng

th (k

Pa)

0

200

400

600

800

1000

RTV11 RTV11+oil

HydrodynamicsofFoulingRelease

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

M.Schultz,CKavanagh,G.Swain.HydrodynamicForcesonBarnacles:Implica�onsonDetachmentfromFouling-ReleaseSurfaces.Biofouling1999,Vol.13(4),pp323-335

Vector=√Fd2+Fl2

Li�Coefficient=0.45DragCoefficient=0.52

Modeltopredictforcesatthebase

HydrodynamicTes�ng

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

WetWell

DragMeter Video

Camera

TestPanel

Measurementsofdragandreal�mevideoofcoa�ngandfouling

Method  Placeandalign(25x30cm)test

panelsindragmeter.  Placedragmeterinwetwell.  Zeroandcheckinstruments.  Bringboatto3m/sandholdforone

minute.  Increaseto5,10,13and15m/sand

holdforoneminuteateachspeed.  Returnto0m/sandthenbackto

15m/sforoneminute.  Recordvideooffoulingthroughout.

CenterforCorrosion andBiofoulingControlFlorida InstituteofTechnology, Melbourne FL

NACEEasternAreaConference,St.PeteBeach,FL.October3-5,2016

VideoofFoulingRelease

BarnacleAdhesionandHydrodynamics

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

SwainG.TheMechanicsandHydrodynamicsofFoulingReleaseCoa�ngs.ICMCFNewcastleUK25-29July2010

0.00

0.02

0.04

0.06

0.08

0.10

0 2 4 6 8 10 12 14 16

Stre

ss(M

Pa)

Velocity(m/s)

Mean

13m/s,80%released

FrequencyDistribu�onforBarnacleAdhesiontoaCommercialSiliconeFoulingReleaseCoa�ng

0102030405060708090

3 6 10 13 15

Perc

entB

arna

cles

Re

leas

ed

Velocity(m/s)

n=2171Mean=0.048MPa

SD=0.018MPa

BarnacleReleaseatIncreasingVeloci�es

Theore�calForceDevelopedonBarnacleatIncreasingVeloci�es

Compara�veDragData

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14

Velocity (m/s)

Dra

g (N

)

Self-polishing CopperAblative CopperSelf-polishing tbtFouling Release Silicone

SPC-tbt SPC-Cu

ABL-Cu FR-SiSwainGeoffrey,Bre�Kovach,ArthurTouzot,FranckCasse,ChristopherJKavanagh.Measuringtheperformanceoftoday’san�foulingcoa�ngs.JournalofShipProduc�on,Aug2007,V23,n.3,pp.164-171.

Sta�cImmersionPanelsa�errunningat30knots

for5minutes

TheChallengetoFoulingRelease

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0 1 2 3 4 5 6 7 8 9 10 11

Velocity (m/s)

Bou

ndar

y La

yer

Thic

knes

s (m

) Oysters(CD=.5;CL=.27)

Barnacles(CD=.5;CL=..5)

AveHeight10-15mm

SlimeFilms(CF=Ks)

Height<1mm

Tubeworms(CD=.65;CL=..5)AveHeight3-6mm

AveHeight20-30mm

HullMaintenance

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

HullGrooming

  Proac�ve  EnhancedPerformance  ReducedGHGEmissions  GentleBrushes  Coa�ngLongevity  MinimumDischarge  PreventsInvasiveSpecies

HullCleaning+Capture

  Reac�ve  FoulingPenalty  IncreasedGHGEmissions  PowerfulBrushesorWaterJets  Coa�ngDamage  TreatmentforDischarge  RiskofInvasiveSpecies

JohnHearin,KelliZ.Hunsucker,GeoffreySwain,AbrahamStephens,HarrisonGardner,KodyLieberman&MichaelHarper.Analysisoflong-termmechanicalgroomingonlarge-scaletestpanelscoatedwithanan�foulingandafouling-releasecoa�ng.Biofouling,2015Vol.31,No.8,625–638TribouM,andGSwain.Groomingusingrota�ngbrushesasaproac�vemethodtocontrolfouling.Biofouling31,No.4,309-319May2015SwainG.andM.Tribou(2014)Groomingasanop�onforfoulingcontrol.JournalofOceanTechnology,Vol.9,No.4.Tribou,M.andG.Swain.Theuseofproac�vein-watergroomingtoimprovetheperformanceofshiphullan�foulingcoa�ngs.Biofouling26:1,47-56Jan2010.

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

HullGroomingvsCleaning

ComparisonbetweenCleaningandGroomingAbla�veCopperAF

Groomedfor1year

Cleaneda�er22monthssta�cimmersion

0

50

100

150

200

250

300

350

AsApp

lied

Groom

edW

eekly

For1

Year

Clean

edA�e

r22

Mon

thsImmersio

n

Rt50

(μm

)

Tribou,MandG.Swain.(2017)Theeffectsofgroomingonacopperabla�vecoa�ng:asixyearstudy.Biofouling,2017VOL.33,NO.6,494–504

LessonsLearnt

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

  Therearemanyfactorsthataffectadhesion,nons�ckorrelease–  FoulingOrganismandAdhesiveType

  ChemicalBonding,Electrosta�cInterac�ons,MechanicalInterlocking,DiffusionProcesses

–  Coa�ngProper�es  Elas�cModulus,SurfaceEnergy,Poisson’sRa�o,Coa�ngThickness,Addi�ves

–  ModeofFailure  RateofLoading,Adhesive,Cohesive,Visco-elas�cFailure

  Thehydrodynamicsoffoulingreleasearecomplicatedbythecommunitystructureandboundarylayercondi�ons.

  Biofilmsarepar�cularlydifficulttoremove.  Ac�veingredientsarerequiredtoimproveperformance.  Proac�veHullGroomingmaybeappliedtocontrolfouling.

Coa�ngsplus

Ac�veIngredient

InertMatrix

Abla�veMatrix

SelfPolishing

Silicone

Copper

CopperFree

Non-Toxicand

Biodegradable

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

CRADLETOCRADLE

NEWTECHNOLOGY

Butenolide as a non-toxic, effective and environmentally friendly antifouling

compound Pei-Yuan Qian

Department of Ocean Science & Division of Life Science

Hong Kong University of Science & Technology ((bbooqqiiaannppyy@@uusstt..hhkk))

NON-Toxic antifouling compound: Butenolide

USA Patent Ø  Title::Antifouling Furan-2-One Derivatives Ø  Patent number: US8177896 B2

Ø  Date of Granted: May 15, 2012.

fouling larvae EC50 LC50 LC50/EC50

Balanus amphitrite 0.52 >50 >97

Hydroides elegans 0.017 >2.0 >119

Bugula neritina 0.2 >50 >250

O O

Non-Toxic antifouling compounds - Butenolide

1)  Retained the ring structure 2)  Increased lipophilicity

Xu et al 2010 Biores Tech

SeaNine 211

Comparison of the synthetic butenolide to a commercial antifoulant – SeaNine 211

O O Cl N

S

Butenolide

�   Simpler structure �  More complicate structure

�  Good activity against Bugula larvae EC50 = 0.2ppm

�   Poor activity against Bugula larvae EC50 = 5ppm

�  Low toxic, reversible �  High toxic, non-reversible

Thiolase

Larvae do not have enough energy to secrete and attach

Fats

Fatty acids

Secrete, attach, metamorphosis

Butenolide

Energy

Thiolase is the target of butenolide

Zhang et al 2012 ACS Chem Biol

Butenolide: detoxification without obvious endocrine disruption DCOIT: obvious endocrine disruption without detoxification

Mechanisms for lower toxicity of butenolide

NON-Toxic antifouling compound: Butenolide

Ø  Butenolide was extracted from a deepsea bacterium originally;

Ø  Butenolide used in coating was slightly modified through structure-function analysis process and totally synthesized;

Ø  Butenolide is very effective against both natural biofilm formation and larval settlement of major foulers in HK water.

Butenolideinself-polishingcopolymer

8months

10months

6months

12months

DP0DP5DP10ControlDB5Coating

DP5Coating

MP55Coating

MT55Coating

MP552Coating

AZnCoating

Biodegradablepolymer Self-polishingcopolymerTime/month

3

6

8

Piperine Butenolide

Time/month

6

DR610-based MP552-based DR106-basedDR610-based

8

10

12

D220-basedMP552-based

Take-home message::Butenolide as the most promising antifouling compound

Ø  Butenolide showed high activity, excellent performance in field test for >18 month in tropic waters;

Ø  Non-toxic, degradable in seawater, environmentally safe;

Ø  Cheap and easy to synthesize;

Ø  Well-known molecular mechanisms with known molecular targets;

Ø  Well mixed with polymer, stable and controllable release rate;;

Ø  Self-polished polymers and biodegradable polymers with butenolide as biocides are environmentally friendly new coating with very promising market potential – Ready for large scale testing and production.

Ø  DCOIT is not really environmentally safe antifouling agent as it has strong endocrine disruptive effects.

Sustainability

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

Managementand

Sustainability

BiogeographicRegion

Aqua�cSe�ng

WaterColumn

Structure

Substrate

DesignLife

FoulingTolerance

EnvironmentalEnrichment

FoulingControl

AdvancesinTechnology

IncreaseWeight

IncreaseDiameter

DragCoefficient

Iner�aCoefficient

VortexInducedVibra�ons

Corrosion

Biodegrada�on

Inspec�on

InvasiveSpecies

Biofouling

Opera�ons

Swain,G.(2017)Aguidetodevelopingabiofoulingmanagementplan.MarineTechnologySocietyJournal,March/April,2017,Volume51,Number2,pp.105–110

BiofoulingManagement

FoulingTolerance

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

7.5litertanksfilledwithlagoonseawater.Onetankhad4OysterShellsfouledwith:AborescentBryozoan,Encrus�ngBryozoan,Colonial

Tunicate,SeaSquirt,CalcareousTubeworm,SedimentaryTubeworm,Mussel,Barnacle,Amphipods

TheBenefitsofFouing

IanDavidsonSERC

FutureTechnologiesNewAn�fouling

Technologies

InvasiveSpecies

IcePhobicCoa�ngs

MacroandIntegra�veBiology

HydrodynamicandDynamic

Tes�ng

PolicyandRegula�ons

CorrosionManagementofVesselFouling

BeyondShips

Biomimicry,Bioinspira�onandNaturalAn�fouling

Newanaly�calMethods

Bioadhesion

MarineBiofilmsonNaturalandAr�ficialSurfaces

FutureTechnologies–13TopicSessions!

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

Acknowledgements

CenterforCorrosionandBiofoulingControlFloridaIns�tuteofTechnology,MelbourneFL

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

19thInterna�onalCongressonMarineCorrosionandFouling

June24–29,2018

ComiteInterna�onalPermanentPourLaRecherchesurlaPreserva�ondesMateriauxenMilieuMarinOfficeofNavalResearchIndustrySponsorsColleagues

ResearchTeamCenterforCorrosionandBiofoulingControlKelliHunsuckerEmilyRalston

Designlife100+yearsNodrydocking

NofoulingNoCorrosion

CradletoCradle

RhincodontypusDistribu�on:AlltropicalandtemperateseasSpeed:SlowMoving(3knots)Size:Length0-12mandMass>36tonnes

ThankYou