The status of the Excited Baryon Analysis Center

Post on 24-Feb-2016

42 views 0 download

Tags:

description

The status of the Excited Baryon Analysis Center. B. Juli á -D í az Departament d’Estructura i Constituents de la Mat è ria Universitat de Barcelona (Spain). Summary. Motivation Model used at EBAC@JLAB , , , production: Hadronic production   Photoproduction   - PowerPoint PPT Presentation

Transcript of The status of the Excited Baryon Analysis Center

The status of the Excited Baryon Analysis Center

B. Juliá-DíazDepartament d’Estructura i Constituents de la MatèriaUniversitat de Barcelona (Spain)

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

Summary

• Motivation• Model used at EBAC@JLAB• , ,, production:

Hadronic production Photoproduction Electroproduction *

• Expected during 2010

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

Baryon Resonances

ΔNExciting the substructure we can learn about the forces which keep the quarks together, e.g. using the quark model picture some of the predicted states are:

P11 (939)

0s

0p

L=0, S=1/2, J=1/2+P33 Δ(1232)L=0, S=3/2, J=3/2+

S11 (1535)L=1, S=1/2, J=1/2-

D13 (1520)L=1, S=1/2, J=3/2-

S31 (1620)L=1, S=1/2, J=1/2-

D33 (1700)L=1, S=1/2, J=3/2-

J=1/2 J=3/2 J=3/2 J=1/2

qqq

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

The Δ (1232) and others

• The Delta (1232) resonance stands as a clear peak• The region 1.4 GeV – 2 GeV hosts ~ 20 resonances

πN

X

, πN

N*: 1440, 1520, 1535, 1650, 1675, 1680, ...

Δ : 1600, 1620, 1700, 1750, 1900, …

Δ (1232)100

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

E.m. probes

• Jefferson LAB (USA)• GRAAL (Grenoble)• MAMI (Mainz)• BATES (MIT)• ELSA (Bonn)• SPring 8 (Japan)

(Courtesy of D. Leinweber)

Originaly, the hope was that probing the structure with electrons would minimize the “hadronic” debris and would give a cleaner access to the properties of nucleons and resonances

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

Electroproduction of mesons

*

NN*

NN

M

Main elements:1. Strong-strong interactions2. Hadronic structure of Resonances3. Electromagnetic structure of Resonances

Coupled-channels

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

EBAC plan and method

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

EBAC@JLAB

N* propertiesN-N* form factors

QCD

Lattice QCDHadron Models

Dynamical Coupled-Channels Analysis @ EBAC

Reaction Data

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

Formalism (DCC)

Non-resonant + resonant

Dressed resonant vertex

Resonance self energies

Non-resonant amplitude (resummation)

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

Partial wave amplitude of a b reaction:

Reaction channels:

Potential:

2-body v potential(no N cut) bare N* state2-body Z potential

(with N cut)

EBAC-DCC

A. Matsuyama, T. Sato, T.-S.H. Lee, Phys. Rep. 2007

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

5 diagramss-ch Nu-ch Nu-ch Dt-ch rt-ch s

2 diagramss-ch Nu-ch N

2 diagramss-ch Nu-ch N

3 diagramss-ch Nu-ch Nt-ch

2 diagramss-ch Nu-ch N

2 diagramss-ch Nu-ch N

4 diagramss-ch Nu-ch Nt-ch t-ch w

2 diagramss-ch Nu-ch N

2 diagramss-ch Nu-ch N

2 diagramss-ch Nu-ch N

4 diagramss-ch Nu-ch Nu-ch Dt-ch r

1 diagrams-ch N

1 diagrams-ch N

2 diagramss-ch Nu-ch N

2 diagramss-ch Nt-ch r

Total 36 diagrams

Two body v’s (strong)

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

7 diagramss-ch Nu-ch Nu-ch Dt-ch t-ch rt-ch s

contact

2 diagramss-ch Nu-ch N

2 diagramss-ch Nu-ch N

4 diagramss-ch Nu-ch Nt-ch r

contact

Total 20 diagrams

5 diagramss-ch Nu-ch Nu-ch Dt-ch

contact

Two body v’s (e.m.)

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

EBAC framework overview

Physics:Non-resonant obtained from phenomenological LagrangiansUnitarity fulfilled within the modelMost relevant channels included

Up to now , , (s, r, D), near future

Consistent study of all production reactionsCorrect treatment of 3 body cut

TechnicalParallel computing version of the codes needed

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

Hadronic part(essential starting point)

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

MBMB (up to 2 GeV)

We introduce explicitly (impose) a minimal number of bare poles, 16 of 23 (4* and 3* from PDG):N: S11(2), P11(2), P13(1), D13(2),

D15(1), F15(1)Δ: S31(1), P31(1), P33(2), D33(1),

F35(1), F37(1)

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

Technical aspects

Need for extensive parameter search. Several unknowns: e.g. couplings of resonances to MB states

Supercomputing Resources

NERSC LBNL (>500 kh, 07/10) PI: TSH Lee

BSC, Spain (340 kh, 07/08), PI: B. Julia-Diaz

Involved system of coupled integral equations with singularities.

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

: comparisons to data

EBACSAID06

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

Data obtained through R. Arndt et al, SAID , gwdac.phys.gwu.eduB. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, Phys. Rev. C 76, 065201 (2007)

ds/d Polarization

: comparisons to data (ii)

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

: comparing amplitudes• Amplitudes compared to

GWU/SAID amplitudes for the I=1/2 sector

B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, Phys. Rev. C 76, 065201 (2007)

Real part of the AmplitudesImaginary part of the Amplitudes

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

: comparing TCS • Total Cross sections

compared to experimental data

B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, Phys. Rev. C 76, 065201 (2007)

• Prediction for the total cross sections for each individual channel

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

: vs other approaches

From M. Paris talk at INT 2009 and R. Arndt talk at Badhonnef 2009

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

TCS s

H. Kamano, B. Julia-Diaz, TSH Lee, A. Matsuyama, T. Sato, Phys. Rev. C 79 (2009) 025206

Not used to constrain the model.

Previous works, mostly tree level:• Meissner et al (1995)• Oset et al (1985)

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

, distributions

Data handled with the help of R. Arndt

Invariant massdistributions

Phase space

Full model

H. Kamano, B. Julia-Diaz, TSH Lee, A. Matsuyama, T. Sato, Phys. Rev. C 79 (2009) 025206

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

Properties of N*(strong)

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

I. Analytic continuation of T(W) to the unphysical sheet by using contour deformation

II. Poles can be both in the non-resonant and resonant amplitudesIII. One can search for poles of T as a function of W (p’s are arbitrary)

Resonance states

Extraction of Resonances from Meson-Nucleon Reactions.N. Suzuki, T. Sato, T.-S.H. Lee, Phys. Rev. C 79 (2009) 025205; arXiv:0910.1742, part of Suzuki’s PhD Thesis

Resonance Mass

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

N. Suzuki, B. Julia-Diaz, H. Kamano, A. Matsuyama, TSH Lee, T Sato, arXiv: 0909.1356

Dynamical origin of N(1440)

polesEBAC 1357 - i 76 1364 - i 105

R. A. Arndt et al.(SAID) 1359 - i 82 1388 - i 83

M. Doring et al.(JUELICH) 1387 - i 147/2 1387 - i 71

1. Within our framework the three P11 states evolve from the same bare state.

2. In the fig: evolution of the pole position as we increase the self energy

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

EBAC current N*

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

Electromagnetic part

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

Goal:E.m. meson production

Make use of the vast database for single and double pion photo and electroproduction reactions (JLAB, ELSA, MAMI, …) to:

1) Look for yet unseen resonances2) Confirm the existence of the N*s seen

in the hadronic reactions3) Extract resonance properties:

a) Couplings to meson-baryonb) Electromagnetic structure

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

Schematic view

*

NN*

N

Consequence of Unitarity

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

Data considered:– Differential cross sections

– p 0 p (8793)– p + n (5063)

– Photon asymmetry (Sigma)– p 0 p(1204)– p + n (881)

Consider up to W = 1.6 GeV.

Single pion photoproduction

Analysis performed at specific energies.

B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, L.C. Smith, Phys. Rev. C77, 045205 (2008)

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, L.C. Smith, Phys. Rev. C77, 045205 (2008)

σ TO

T (b

)

p0p Comparison to data• Total cross section• Differential cross

sections• Target polarization

p+n

Single pion photoproduction

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

Electroproduction

Julia-Diaz, Kamano, Lee, Matsuyama, Sato, Suzuki, Phys. Rev. C 80, 025207 (2009).

1. Fit1: sT+ sL , sLT , sTT , p(e,e’0)p [Joo et al. PRL02]

2. Fit2 all p(e,e’+)n, p(e,e’0)p3. Fit3 p(e,e’0)p [Joo et al. PRL (2002 & 2003)]

• Consider W<1.65 MeV and Q2<1.45 GeV2

• No assumption on the Q2 dependence of the helicity amplitudes

• Resonances which play a role: S11, P11, P33, D13• Could not fit all the structure functions

simultaneously• Performed several fits to clarify the situation

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

Data at Q2<1.45 GeV2

Fit1Fit3Fit2

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

Structure functions (ii)

Q2 = 0.4 GeV2

Solid: Fit1Dashed:Fit2Dotted: Fit3

p+n

Julia-Diaz, Kamano, Lee, Matsuyama, Sato, Suzuki, Phys. Rev. C 80, 025207 (2009).

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

Coupled channels effects

1. Solid Full Fit12. Dashed only N intermediate (in e.m. piece)3. Data from http://clasweb.jlab.org/physicsdb/

Q2 = 0.4 GeV2

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

H. Kamano, B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, arXiv:0909.1129 (2009) (Phys. Rev. C in press)

Study of two pion photoproduction:

• Good description near threshold• Reasonable shape of angular

distributions• Not good description of the total

cross sections of p00 and p+- above 1440 MeV-

Previous (tree level) works include• Meissner (1994)• Gomez Tejedor, Roca,(1993)• Fix et al (2005)

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

In progress (~ 2010) EBAC second generation model:

Full Combined (global fit) analysis of: N N, N (W<2 GeV) N N (W<2 GeV) N N (W<2 GeV) N N (W<2 GeV) N N (W<2 GeV)

N* structure extraction *N N (W<2 GeV, Q2<4 GeV2) *N N (W<2 GeV) *N N (W<2 GeV)

WEBPAGE: http://ebac-theory.jlab.org

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

BACKUP

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

EBAC@JLAB

WEBPAGE: http://ebac-theory.jlab.org

MANPOWER:

Leader (ANL/JLAB):• T.-S.H.Lee

Postdocts (JLAB): • H. Kamano• S. Nakamura• K. Tsushima• A. Sibirtsev

Starting date:• 2006

EXTERNAL COLLABORATORS:

• T. Sato, N. Suzuki (Osaka)• A. Matsuyama (Shizuoka)• B. Julia-Diaz (Barcelona)• B. Saghai, J. Durand (Saclay)

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

Timeline of EBAC results• Full DCC Formalism

A. Matsuyama, T.-S.H. Lee, T. Sato, Phys. Rep. (2007)• Hadronic piece fixed (NN, N)(W<2 GeV)

B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, PRC (2007)J. Durand, B. Julia-Diaz, T.-S.H. Lee, T. Sato, B. Saghai, PRC (2008)

• NN (W<1.6 GeV)B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, LC Smith, PRC (2008)

• NNH. Kamano, B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, PRC (2008)

• Analytic continuation N. Suzuki, T. Sato, T.-S.H. Lee, PRC (2008)

• *N (W<1.6 GeV, Q2<1.5 GeV2)B. Julia-Diaz, H. Kamano, T.-S.H. Lee, A. Matsuyama, T.Sato, , PRC (2009)

• N (W<1.8 GeV)H. Kamano, B. Julia-Diaz, T.-S.H. Lee, A. Matsuyama, T. Sato, PRC (2010)

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

Multi step (unitarity) How do we produce

meson-baryon states?

• Directly• Through MB states• Through MMB states

• We need to incorporate all

the possibilities Unitarity Coupled-channels

σTOT (b)

p

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

Structure functions

Q2 = 1.45 GeV2

p0p

Solid: Fit1

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

H. Kamano, B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, arXiv:0909.1129 (2009), Phys. Rev. C in press

, N* effects

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

PDG *s and N*’s origin

Are they all genuine quark/gluon excitations?

|N*> =| qqq >

Is their origin dynamical? E.g. some could be understood

as arising from meson-baryon dynamics

|N*>= | MB >

Most of their properties are extracted from

N N N N

B. Juliá-Díaz, HADRON 2009, Tallahassee, FSU, 2009

Z terms

Z