The Phenomena of Fluid Flow - mie.uth.gr2009-2010)a.pdf · The Phenomena of Fluid Flow ... that has...

Post on 09-Jul-2018

213 views 0 download

Transcript of The Phenomena of Fluid Flow - mie.uth.gr2009-2010)a.pdf · The Phenomena of Fluid Flow ... that has...

1

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

The Phenomena of Fluid FlowThe Phenomena of Fluid FlowNicholas S. VlachosNicholas S. Vlachos

LabLab. . Fluid Mechanics & TurbomachinesFluid Mechanics & TurbomachinesDepartment of Mechanical EngineeringDepartment of Mechanical Engineering

University of ThessalyUniversity of Thessaly

Program of Graduate StudiesProgram of Graduate StudiesAcademic Year Academic Year 20020099--20102010

2

Coherent (large scale) flow structures

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

3

Tornado

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

4

Coherent (large scale) flow structures

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

5

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

6

A future challenge in fluid flow

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

7

Droplet breakup

Fluid flow is a non-linear phenomenon

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

8

Droplet production from water stream

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

9

“Observe the motion of the water surface, which resembles that of hair, that has two motions: one due to the weight of the shaft, the other to the shape of the curls; thus, water has eddying motions, one part of which is due to the principal current, the other to the

random and reverse motion.”- Leonardo da Vinci, ca.1510

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

10

Flow around a cylinderLaminar

Turbulent

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

11

Turbulence is

3D

random isotropic

(?)Experimental evidence caused

revision

of this perception of turbulence

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

12

Methods for the study of fluid flow

Theoretical/Analytical: Requires solution of partial differential equations

Solutions exist only for simple flows

Phenomenological/Experimental: Requires many resources and much time

There are no powerful measuring methods

Computational: Requires knowledge of physical phenomena

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

13

Wind tunnel of UTH Fluids Lab

Airfoil

NACA 4418

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

14

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

15

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

16

V Pds + + VdVρt

¶ ¶¶

+ ρdz = 0

Bernoulli equation (valid along fluid path):Bernoulli equation (valid along fluid path):

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

17

Daniel Bernoulli (1700-1782)

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

18

ρ ρ( +U + V )xt

V V V Vα ¶ ¶ ¶ ¶¶ ¶ ¶ ¶

= + Wy z

ρ p ρα g f f vis em = - + + + +...

Equations of fluid motion

(1)

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

19

Equations of fluid motion

(2)

ρ p ρα g = - +

p ρg =

ρ pα = -

Hydrostatic condition

Euler’s equation

Euler

+ gravity

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

20

Leonhard Euler (1707-1783)

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

21

Solution methods for flow equations

Lagrange: Requires solution of motion equations

of many particle

(ordinary differential equations)

Euler: Solution of fluid motion as continuum(partial differential equations)

Lattice Boltzmann

methodsRequire knowledge of distributions

Computational Fluid Dynamics (CFD)Requires large grids and CPU

time

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

22

(ρ )+ (ρ ) + xt

U U U U¶ ¶ ¶ ¶¶ ¶ ¶ ¶

U V W(ρ ) + (ρ ) =y z

(ρ)+ (ρ ) + Sxt

¶ ¶ ¶ ¶¶ ¶ ¶ ¶

FU V W(ρ ) + (ρ ) =

y z

Linear momentum

equation (Navier-Stokes):

Mass conservation equation

(continuity):

Navier-Stokes flow equations

+ U U U S¶ ¶ ¶ ¶ ¶ ¶¶ ¶ ¶ ¶ ¶ ¶

Feff eff eff(μ ) + (μ ) + (μ )

x x y y z z

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

23

George Gabriel Stokes (1819-1903)

Claude Louis Marie Henri Navier(1785-1836)

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

24

Momentum equation:

ρu u uρ(u v )t x y

¶ ¶ ¶+ + =

¶ ¶ ¶

ρv v vρ(u v )t x y

¶ ¶ ¶+ + =

¶ ¶ ¶

ρ ρu ρv 0t x y

¶ ¶ ¶+ + =

¶ ¶ ¶

Two-dimensional flows

Continuity equation:

xp u u[ μ( ) μ( )]x x x y y

ρg βΔΤ¶ ¶ ¶ ¶ ¶- + + +¶ ¶ ¶ ¶ ¶

yp v v[ μ( ) μ( )]y x x y y

ρg βΔΤ¶ ¶ ¶ ¶ ¶- + + +¶ ¶ ¶ ¶ ¶

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

25

Two-dimensional flows

(2)

Energy equation:

pT Tρc (u ρυ )x y

¶ ¶+ =

¶ ¶T T(k ) (k )

x x y y¶ ¶ ¶ ¶

+¶ ¶ ¶ ¶

2 2u u u uμ[( ) 2 ( ) ]x x y

p p(u v )x yy

¶ ¶ ¶ ¶+ +

¶ ¶ ¶¶ ¶

+ + +¶ ¶¶

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

26

0

yv

xu

2

2

u u P uρ(u v ) μx y x y

0

yP

Continuity :

x-momentum:

y-momentum:

Energy equation:

2-D

boundary layer

pT T Tρc (u υ ) (k )x y y y

¶ ¶ ¶ ¶+ =

¶ ¶ ¶ ¶2uμ( ) pu

xy+

¶+

¶¶¶

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

27

Ludwig Prandtl (1875-1953)

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

28

Fluid vorticity

x y z

u v w

rot x , ,x

¶ ¶ ¶¶ ¶ ¶

ì üï ïï ïï ïï ïï ï= = =í ýï ïï ïï ïï ïï ïî þ

Ω V V

i i iy z

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

29

Vorticity components

xv wz

ω ¶ ¶¶ ¶

= -y

yw ux

ω ¶ ¶¶ ¶

= -z

zu vy

ω ¶ ¶¶ ¶

= -x

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

30

Vorticity Transport

u v w Sφ +t

¶ ¶ ¶ ¶¶ ¶ ¶ ¶

+ + + =Ω Ω Ω Ω

x x x

1 ( ) ( ) ( )eff eff eff¶ ¶ ¶ ¶ ¶ ¶

m m mr ¶ ¶ ¶ ¶ ¶ ¶ì üï ïï ï+ +í ýï ïï ïî þ

Ω Ω Ωx x y y z z

KolmogorovKolmogorov

scales scales λλ

= (= (νν33//εε))1/41/4

, , υυ

= (= (νενε))1/41/4

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

31

Two-Phase Flow: Particle DynamicsLagrange ModelLagrange Model

-pD i i

p

d p F pdt

U U U g F

2p

DD Dp24

ReC18F

2

321D Re

aReaaC

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

32

Two-Phase Flow: Particle Heat Transfer

t

CmTh

3pppp

4Rppfg

pp

p

3pppp

4Rppfg

pp

p

pp

3ppp

e

TAAh

Ahdt

dmTAh

tT

TAAh

Ahdt

dmTAh

)tt(T

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

33

Chemical Reaction -

Coal Combustion

p 2 1 2p 0

1 2

dm R R= -πD Pdt R + R

0.75

p o1 1

p

T + T /2R = C

D

2 2p

ER = C exp -R T

KKineticsinetics

rate:rate:

DDiffusioniffusion

raterate::

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

34

Magnetic force on a particle (Lorentz)

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

35

Hendrik Antoon Lorentz (1853-1928)

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

36

ElectrodynamicsElectrodynamics

--

DefinitionsDefinitions

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

37

P = p + |B|2 /2μ

·

V

= 0

·

B = 0

Magneto-hydrodynamics equations

U (ρ )+ (ρ ) + x

+ ( · ) / +

Pt¶ ¶ ¶ ¶ ¶¶ ¶ ¶ ¶ ¶

¶ ¶ ¶ ¶ ¶ ¶¶ ¶ ¶ ¶ ¶ ¶

F

U U U U

U U U B B Seff eff eff

V W(ρ ) + (ρ ) = - +y z x

(μ ) + (μ ) + (μ ) μx x y y z z

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

38

Magneto-hydrodynamics equations

U + (ρ ) + + + +x x

+ + + S

tΒ U U UΒ Β Β

Β Β Β

¶ ¶ ¶ ¶ ¶ ¶ ¶¶ ¶ ¶ ¶ ¶ ¶ ¶

¶ ¶ ¶ ¶ ¶ ¶¶ ¶ ¶ ¶ ¶ ¶

F

x y zV W(ρ ) (ρ ) = B B By z y z

1/μσ[ ( ) ( ) ( )] x x y y z z

x y zB B B + + 0x

¶ ¶ ¶¶ ¶ ¶

=y z

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

39

g

U = V = 0

T = 1

U = V = 0

T = 0

U = V = 0

T = 0Y

U = V = 0

T = 0Y

Y, V

X, U

B

Flow configuration

Non-dimensional variables group

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

40

Ha=0 Ha=30 Ha=75

Stream lines (upper) and isotherms (lower) for Gr

= 106

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

41

Turbulence and large structures in air jet

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

42

Boundary layer around a ship’s hull and waves

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

43

Shock wave and turbulence

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

44

Pressure waves and turbulence

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

45

Navier-Stokes for instantaneous, laminar/turbulent,

fluid motion

Reynolds decomposition

equations of time-averaged motion

Terms of the Reynolds stress tensor appear

The problem of turbulence modeling does not close (closure)

Solution of Reynolds-stress transport equations, leads to higher-order correlations

Modeling turbulent flow

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

46

Spectrum of turbulent kinetic energySpectrum of turbulent kinetic energy

KolmogorovKolmogorov

scalesscales

lengthlength

--

λλ

= (= (νν33//εε))1/41/4

velocityvelocity

––

υυ

= (= (νενε))1/41/4

ReReλλ

= = λυλυ//νν

= 1= 1

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

47

Balance of turbulent kinetic energyBalance of turbulent kinetic energy

t

0k = G - ρε > Increasing turbulenceIncreasing turbulence

EquilibriumEquilibriumt

0k = G - ρε =

Decaying turbulenceDecaying turbulence

t

0k = G - ρε <

k = ½

(u' 2

+v' 2

+ w' 2)

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

48

(ρ ) + 0x¶ ¶ ¶¶ ¶ ¶

U V W(ρ ) + (ρ ) =y z

Reynolds decompositionReynolds decomposition: :

φφ

= = ΦΦ

+ + φφ’’

TimeTime--mean mean φφ

= = ΦΦ

(ρu) + 0x¶ ¶ ¶¶ ¶ ¶

v w(ρ ) + (ρ ) =y z

Continuity equationContinuity equation::

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

49

Osborne Reynolds (1842-1912)

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

50

Reynolds Averaged EquationsReynolds Averaged Equations

y z z¶ ¶ ¶ ¶ ¶¶ ¶ ¶ ¶ ¶

Φ(ρΦ) + (ρUΦ) + (ρVΦ) + (ρW ) =

t x

y y¶ ¶ ¶ ¶¶ ¶ ¶ ¶Φ Φ

Φ Φ(Γ -ρu'φ') + (Γ - ρv'φ')

x x

z z¶ ¶¶ ¶

ΦΦ

Φ+ (Γ -ρw'φ') + S

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

51

0U Vx y

2

2 ' 'U U P UU V u vx y x y

0yP

( ) ( ) ' 'p p pT T Tc u k c u T c v Tx y y y

r ru r r¶ ¶ ¶ ¶

+ = - -¶ ¶ ¶ ¶

Continuity:

x –

momentum:

y -

momentum:

Energy equation::

2D

boundary layer

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

52

Turbulence modelsTurbulence models

--

Standard kStandard k--εε

(ρ ) + x

Uk (ρVk) + (ρWk) =y z

Turbulence kinetic energyTurbulence kinetic energy

k = ½

(u' 2

+v' 2

+ w' 2)

+G-ρε Φ Φ Φ

k k k(Γ ) + (Γ ) + (Γ )

x x y y z z

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

53

Turbulence model (2)Turbulence model (2)

1 2ε ε ε + ε/k(CG - Cρε)¶ ¶ ¶ ¶ ¶ ¶

¶ ¶ ¶ ¶ ¶ ¶Φ Φ Φ(Γ ) + (Γ ) + (Γ )

x x y y z z

Turbulence dissipation rateTurbulence dissipation rate

(ρ ) + x¶ ¶ ¶¶ ¶ ¶

Uε (ρVε) + (ρWε) =y z

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

54

Turbulence ModelTurbulence Model

--

constantsconstants

CD = 0,09

C1 = 1,44 C2 = 1,92

σk

= 1,0 σε

= 1,314

ε2kρDC =tμ

μe

= μ

+ μt

U V W2 2 2G μ 2[( ) ( ) ( ) ]e x y z

U V W U V W2 2 2[ ] [ ] [ ] y x x z z y

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

55

Magneto-hydrodynamic

turbulence:

(ρU ub) + vb + wbx

- b u + - b u + b ux

+ + + S

Β Β Β

U U U

Β Β Β

¶ ¶ ¶r r r

¶ ¶ ¶¶ ¶ ¶¶ ¶ ¶¶ ¶ ¶ ¶ ¶ ¶¶ ¶ ¶ ¶ ¶ ¶

F

- - -

-x x y y z z

V W(ρ ) (ρ ) = y z

B B B y z

1/μσ[ ( ) ( ) ( )] x x y y z z

x y zB B B + + 0x

¶ ¶ ¶¶ ¶ ¶

=y z

x y zb b b + + 0x

¶ ¶ ¶¶ ¶ ¶

=y z

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

56

It has been observed experimentally that in every flow under critical conditions

(i.e critical Re, Ra, etc) especially

in shear flows (velocity gradients), there appear large scale structures

(coherent structures)

These structures modify the flow field and all its parameters of technological importance

(eg. skin friction

coefficient, coefficient of heat/mass transfer etc)

Coherent (large scale ) flow structures (1)

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

57

Coherent (large scale ) flow structures (2)

They have been observed in turbulent flows (free jets, mixing layers, boundary layers)

Need to understand their dynamics and effect on the flow

Development of modelling

methods in the CFD environment

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

58

Coherent (large scale) flow structures

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

59

Navier-Stokes

for instantaneous, laminar/turbulent,

fluid motion

Reynolds decomposition

equations of time-averaged motion

(Reynolds stress tensor appears)

Closure problem

(turbulence modeling cannot close)

Reynolds-stress transport equations

-

solution leads to higher-order correlations

Modeling turbulent flow

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

60

Magneto-hydrodynamic

turbulence:

(ρU u ) + v + wx

- b u + - b u + b ux

+ + + S

¶ ¶ ¶r r r

¶ ¶ ¶¶ ¶ ¶¶ ¶ ¶¶ ¶ ¶ ¶ ¶ ¶¶ ¶ ¶ ¶ ¶ ¶

- - -

-

B

Β b Β b Β b

U U U

Β Β Β

x x y y z z

V W(ρ ) (ρ ) = y z

B B B y z

1/μσ[ ( ) ( ) ( )] x x y y z z

x y zB B B + + x

0¶ ¶ ¶¶ ¶ ¶

=y z

x y zb b b+ + x

0¶ ¶ ¶¶ ¶ ¶

=y z

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

61

Turbulence modelTurbulence model

(k(k--equation)equation)

(ρ ) + x

Uk (ρVk) + (ρWk) =y z

Turbulence kinetic energyTurbulence kinetic energy k = ½

(u' 2

+v' 2

+ w' 2)

+G-ρε Φ Φ Φ

k k k(Γ ) + (Γ ) + (Γ )

x x y y z z

B4σC ( ) k3

B B

MHD term ??---->

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

62

Turbulence model (Turbulence model (εε--equation)equation)

1 2ε ε ε + ε/k(CG - Cρε)¶ ¶ ¶ ¶ ¶ ¶

¶ ¶ ¶ ¶ ¶ ¶Φ Φ Φ(Γ ) + (Γ ) + (Γ ) x x y y z z

Turbulence dissipation rateTurbulence dissipation rate

(ρ ) + x¶ ¶ ¶¶ ¶ ¶

Uε (ρVε) + (ρWε) =y z

B4σC ( ) ε3

B B

MHD term ??---->

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

63

Turbulence ModelTurbulence Model

--

constantsconstants

CD = 0,09

C1 = 1,44 C2 = 1,92

σk

= 1,0 σε

= 1,314

ε2kρDC =tμμe

= μ

+ μt

U V W2 2 2G μ 2[( ) ( ) ( ) ]e x y z

U V W U V W2 2 2[ ] [ ] [ ] y x x z z y

CB = 0

or 1

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

64

Modelling

MHD Flows & Transport for ITER

Need to understand physics of:-

Hydrodynamic turbulence

-

Electromagnetic field effects-

Electromagnetic turbulence

-

Coherent structure dynamics

Need to improve modelling

techniques:-

Incorporate better multi-physics

-

Develop better numerical schemes-

Perform parallel computing (clusters?)

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines

65

MHD -

FUSION RESEARCH

University of Thessaly

-

Lab. Fluid Mechanics & Turbomachines