The Combinatorial Basis of Entropy...

Post on 27-May-2018

221 views 0 download

Transcript of The Combinatorial Basis of Entropy...

The Combinatorial Basis of Entropy (“MaxProb”)

22nd Canberra International Physics Summer School ANU, Canberra

11 December 2008

by Robert K. Niven

Marie Curie Incoming International Fellow, 2007-2008 Niels Bohr Institute, University of Copenhagen, Denmark

School of Aerospace, Civil and Mechanical Engineering

The University of New South Wales at ADFA Canberra, ACT, Australia

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 2

Lectures

1. The Combinatorial Basis of Entropy (“MaxProb”)

2. Jaynes’ MaxEnt, Riemannian Metrics and the Principle of Least Action

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 3

Contents • Historical overview

- combinatorics - probability theory

• Combinatorial basis of entropy / MaxProb principle

generalised combinatorial definitions of entropy and cross-entropy

explanation of MaxEnt / MinXEnt

• Applications 1. Multinomial systems (asymptotic vs non-asymptotic) 2. (In)distinguishable particles or categories 3. “Neither independent nor identically distributed” sampling

• Future applications …

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 4

(Advertisement)

Courses at UNSW@ADFA, Canberra:

• Short course in “Maximum Entropy Analysis”, 14-15 May 2009

(fee paying $1270).

• Masters course: ZACM8327 Maximum Entropy Analysis, semester 2,

2009 (fee paying or UNSW@ADFA enrolled student)

- 3 hours of lectures + tutorials per week

- based on similar course at Niels Bohr Institute

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 5

Historical Overview

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 6

Combinatorics Knowledge is very old! (Edwards, 2002)

(a) Number-patterns

Pythagoras (500BC)

Egypt (300BC)

Theon of Smyrna, Nicomachus (100AD)

Higher dimensions: Tartaglia (1523, publ. 1556)

figurate numbers fk

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 7

(b) Binomial coefficients

= coefficients of (a + b)N

Al-Karaji (1007); Al-Samawal (1180); Al-Kashi (1429)

Chia Hsien (1100); Yang Hui (1261); Chu Shih-chieh (1303)

Cardano (1570), etc

- applied to solution of equations; finding roots; etc

Chu Shih-chieh (1303)

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 8

binomial coefficients

N

k= f

k , where =dimension

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 9

(c) Combinations + Permutations

Ancient; e.g.

- Susruta (600BC), Jains (300BC): combinations of 6 tastes

- Pingala (200BC): combinations of syllables

No. of permutations of N things = N !

- Hebrew Book of Creation (700); Bhaskara (1150)

No. of groups of N things, taken k at a time: - Mahavira (850); Bhaskara (1150); ben Gerson (1321)

Without replacement With replacement

Combinations

CkN

=N

k=

N!

k !(N k)!

wC

kN

=N + k 1

k=

(N + k 1)!

k !(N 1)!

Permutations PkN

= N(k) =N!

(N k)!

wPkN

= Nk

with

N

kk=0

N= 2

N

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 10

Pascal (1654) - equivalence of figurate numbers AND binomial coefficients AND

numbers of combinations without replacement

Multinomial weight - Bhaskara (1150); Mersenne (1636)

= no. of permutations of N objects, containing ni of each category

i = 1,...,s , is:

W =N !

n1!n

2! ... n

s!= N !

1

ni!

i=1

s

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 11

Probability Theory (a) Classical period (e.g. Cardano (1560s), Pascal, Fermat, Huygens, the Bernoullis,

Montmort, de Moivre, Laplace)

Probability =

No. of outcomes of interest

Total no. of outcomes

(b) “Frequentist” school (e.g. Venn, Pearson, Neyman, Fisher, von Mises, Feller)

- probability = measurable frequency, for an infinite number of repetitions of a “random experiment”

- attempt to define probabilities as certainties

- narrow applicability

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 12

(c) “Bayesian” or “Plausibility” school (Bayes, Laplace, Jeffreys, Polya, Cox, Jaynes, 1957; 2003)

- probability = “plausibility” = assignment based on what you know

- need not be a measurable frequency - manipulate using sum + product rules (Jaynes, 2003)

- “subjective” = “information-dependent”

- different observers, with different information, can assign different probabilities to the same event

- more useful; encompasses all frequentist situations

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 13

Probability Distributions “Measures of Central Tendency”

Continuous parameter x Discrete parameter x p(x) = probability density function (pdf) p(x) = pi = probability mass function

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 14

Combinatorial (or Probabilistic) Definition of Entropy

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 15

Definitions Entity = a discrete particle, object or agent, or an item in a sequence, which is

separate but not necessarily independent of other entities

Category = possible assignment of an entity

Probabilistic System = a set of entities K assigned to a

set of categories C by a discrete random variable : K C

e.g. physics: particles energy levels

gambling: die throws die sides

communications: signal bits letters of alphabet

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 16

Configuration = distinguishable permutation of entities amongst categories e.g.: physics: microstate; information theory: sequence

Realization = aggregated arrangement of entities amongst categories = set of configurations e.g.: physics: macrostate; information theory: type

Commonly define realizations by the no. of entities in each category {n

i}

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 17

MaxProb Principle MaxProb Principle (Boltzmann, 1877; Planck, 1901; Vincze, 1974; Grendar & Grendar, 2001)

- “A system can be represented by its most probable realization”

principle for probabilistic inference

- does not depend on asymptotic limits

- does not give certainty

BB GB BG GG

Superset of 2nd Law “A system tends towards its most probable realization”

- not just thermodynamics!

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 18

MaxProb Principle MaxProb Principle (Boltzmann, 1877; Planck, 1901; Vincze, 1974; Grendar & Grendar, 2001)

- “A system can be represented by its most probable realization”

principle for probabilistic inference

- does not depend on asymptotic limits

- does not give certainty

BB GB BG GG

Superset of 2nd Law “A system tends towards its most probable realization”

- not just thermodynamics!

Ergodicity

Inference

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 19

Multinomial Systems (Boltzmann, 1877)

N distinguishable balls (entities)

s distinguishable boxes (categories)

qi = source (“prior”) probability of ball falling in ith box

= normalised degeneracy gi / gii=1

s

Probability of a given realization {n

i} is given by the multinomial

distribution:

Pmult = N ! qi

ni

ni !i=1

s

qi =1/s

Pmult

=W

mult

sN

; Wmult

= N !1

ni!

i=1

s

If categories equiprobable, can use multinomial weight

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 20

MaxProb: want to maximise:

Easier to maximise:

lnPmult = lnN !+ ni lnqii=1

s

lnni !

i=1

s

Asymptotic limit for N (rigorously by Sanov (1957) theorem; crudely by Stirling’s approx. lnm! m lnm m ):

DKL = limN

lnPmult

N= pi ln

pi

qii=1

s

where pi =

ni

N.

If qi = 1/s = constant:

hSh= lim

N

lnWmult

N= pi lnpi

i=1

s

Shannon entropy

Kullback - Leibler cross - entropy

= directed divergence

= negative of relative entropy

Pmult = N ! qi

ni

ni !i=1

s

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 21

Summary

• Kullback-Leibler and Shannon functions are asymptotic forms of the

multinomial distribution P

mult

• If minimise D

KL (MinXEnt) or maximise

hSh (MaxEnt) of a multinomial

system, subject to constraints

obtain asymptotic MaxProb realization

Boltzmann principle:

Define entropy and cross-entropy by: h=

lnW

N,

D =

lnP

N

(compare S

total= SN = k lnW )

hence always consistent with MaxProb

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 22

Jaynes’ MaxEnt • Jaynes (1957)

- minimise D or maximise h , subject to constraints

“most uncertain” distribution = distribution which contains the least

information

• BUT how do we define uncertainty?

- Jaynes only considers D

KL or

hSh axiomatic basis of Shannon

(1948)

• However, a system: - need not be multinomial ! - need not be asymptotic !

Kullback-Leibler or Shannon functions will not give the MaxProb distribution

If know P P

mult or N , must include this information !

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 23

Application to Multinomial Systems (Asymptotic + Non-Asymptotic)

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 24

Why the Multinomial? (Niven, AIP Conf. Proc. 954 (2007) 133; Blower, pers. comm.)

Pmult = N ! qi

ni

ni !i=1

s

with pi =

ni

N

1. Frequentist approach

P

mult, {qi } = measurable frequencies

2. Bayesian approach

P

mult, {qi } = Bayesian probabilities

If ignorant about choice of model P , then all models equiprobable

must choose multinomial (“central model theorem”)

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 25

Asymptotic Analysis Jaynes’ (1957) Algorithm

Minimise

DKL = pi lnpi

qii=1

s

subject to

pii=1

s= 1 and

pii=1

sfri = fr , r = 1,...,R

Form Lagrangian, differentiate w.r.t. pi

pi*= qi e 0

'

r frir=1

R

=1

Zqi e r frir=1

R

Z = e 0

'

= qi e r frir=1

R

i=1

s

Boltzmann

distribution

with 0

'=

0+1

Jaynes’ (1957, 1963, 2003) analysis many more (generic) relations

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 26

Isolated Thermodynamic System:

Isolated from rest of universe

e.g. microcanonical ensemble

Natural:

pii=1

s= 1

Mean energy:

pii=1

si = U

pi

*= qi e 0

'

1 i =1

Zqi e 1 i

D *

h*=

0

'+

1U

compare S* = k lnZ +U

T

or F = kT lnZ = TS * + U

Hence 0

'= lnZ = and

1=

1

kT

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 27

Non-Asymptotic Analysis (Niven, Phys. Lett. A, 342(4) (2005) 286; Physica A, 365(1) (2006) 142)

Use raw multinomial:

Minimise

D(N)

=lnP

N=

1

NlnN !+ ni lnqi

i=1

s

lnni !

i=1

s

subject to

nii=1

s= N and

n

ii=1

sfri= F

r, r = 1,...,R

Form Lagrangian, differentiate w.r.t. n

i

pi#=

ni#

N=

1

N

1 lnN !

N+ lnqi 0

(N)r(N)fri

r =1

R

1

where ( )= digamma function

Non - asymptotic

distribution

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 28

Example 1:

Multinomial

n1,n2,n3

s=3

q =

1

2,3

8, 1

8

subject to

n

i= N

i=1

s

only

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 29

Example 2: Multinomial

n1,n2,n3

s=3

q =

1

14, 4

14, 9

14

subject to

n

i= N

i=1

s

n

i i= E

i=1

s

T

with

= 1,2,4[ ]

U =

ET

N=

5

3

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 30

Example 2 (cont’d):

For constant

U =

ET

N=

5

3,

obtain

0(N)

=(N)

1(N)

=1

kT(N)

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 31

Thermodynamic Double System:

System 1: N

1 particles; energy levels

i

System 2: N

2 particles; energy levels

j

Probs. of realizations {ni }, {nj } are:

Maximise P1P

2 subject to

n

i= N

1i=1

s,

njj=1

m= N

2 and

most probable distrib.:

pi#=

1

N1

1

lnN1!

N1

+ lnqi 0a

(N1)1 i 1

pj#=

1

N2

1 lnN2 !

N2

+ lnqj 0b

(N2)1 j 1

“Zeroth law” upheld

( 1 in common)

P1 = N1! qi

ni

ni !i=1

s

, P2 = N2 ! qj

nj

nj !j=1

m

ET = ni ii=1

s+ nj jj=1

m

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 32

Summary

- combinatorial approach straightforward analysis using system (not

ensemble) parameters

steps towards non-asymptotic thermodynamics

(without thermodynamic limit !)

Application to Information Theory

(Niven, Phys. Lett. A, 342(4) (2005) 286; Physica A, 365(1) (2006) 142)

Adopt Boltzmann principle as definition of information:

I =h

ln2=

log2 W

N or

I =

D

ln2=

log2 P

N (in bits)

non-asymptotic coding ?

non-asymptotic network theory ?

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 33

Application: (In)distinguishability

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 34

Statistics Consider role of distinguishability:

Disting. balls Indisting. balls

Disting.

boxes

Maxwell-Boltzmann

(Lynden-Bell)*

Bose-Einstein

(Fermi-Dirac)*

Indisting. boxes

? ?

* maximum of 1 ball per box

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 35

Statistics Consider role of distinguishability:

Disting. balls Indisting. balls

Disting.

boxes

Maxwell-Boltzmann

(Lynden-Bell)*

Bose-Einstein

(Fermi-Dirac)*

Indisting. boxes

D:I statistic I:I statistic

* maximum of 1 ball per box

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 36

(In)distinguishability Allocate students to PhD supervisors:

1. Disting. students disting. supervisors - consider personal interactions

2. Indisting. students disting. supervisors

- e.g. Dean

3. Disting. students indisting. supervisors

- e.g. student club

4. Indisting. students indisting. supervisors

- e.g. Government department Choice of statistic - and hence entropy - depends on purpose

Tseng & Caticha (2002): “Entropy is not a property of a system … [it] is a property of our description of a system.”

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 37

(a) Maxwell-Boltzmann

WMB = N ! gi

ni

ni !i=1

s

(b) Bose-Einstein

WBE =(gi + ni 1)!

ni !(gi 1)!i=1

s

(c) Fermi-Dirac

WFD =gi !

ni !(gi ni )!i=1

s

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 38

Entropy functions: Name Asymptotic Entropy Non-asymptotic Entropy

(Niven, 2005, 2006) MB

hMB= pi ln

pi

gii=1

s

hMB(N)

=1

Nln[(piN)!]

i=1

s

+1

Npi ln[N!]+ pi lngi

BE

hBE = ( i + pi )ln( i + pi )

i=1

s

i ln i pi lnpi

hBE(N)

=1

Nln ( iN + piN 1)!{

i=1

s

ln ( iN 1)! ln (piN)! }

FD

hFD = ( i pi )ln( i pi )

i=1

s

+ i ln i pi lnpi

hFD(N)

=1

Ni=1

s

ln ( iN piN)!{

+ ln ( iN)! ln (piN)! }

where i = gi / N = relative degeneracy

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 39

MaxProb: maximise h subject to

pii=1

s

= 1,

pi frii=1

s

= fr , r = 1,...,R

Name Asymptotic distribution Non-asymptotic distribution (Niven, 2005, 2006)

MB

pMB,i*

= gi e 0' r frir=1

R

pMB,i#

=1

N

1 ln[N!]

N+ lngi 0 ' r fri

r=1

R

1

BE

pBE,i*

=i

e 0+ r frir=1

R

1

pBE,i#

=

1

N

1( iN + pBE,i

# N) 0 r frir=1

R

1

FD

pFD,i*

=i

e 0+ r frir=1

R

+1

pFD,i#

=

1

N

1( iN pFD,i

# N +1) 0 r frir=1

R

1

where = digamma f’n; -1 =inverse digamma f’n

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 40

(d) D:I Statistic

(Niven, CTNEXT07)

- disting. entities

- indisting. categories, each with g indisting. subcategories

Can show

WD:I =N

n1,n2,...,nk ,0,...,0(g)

=N !

ni !

i=1

k

rj !

j=1

N

ni

g=1

min(g,ni )

i=1

k

where rj = no. of occurrences of j in

{n

i}

ni

g = Stirling no. of 2nd kind

Curious behaviour!

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 41

(e) I:I Statistic

(Niven, NEXT 07)

- indisting. entities

- indisting. categories, each with g indisting. subcategories

Can show

WI:I(g) =N

n1,n2,...,nk ,0,...,0(g)

= P ( j)

=1

min(g, j)rj

j=1

n1

where rj = no. of occurrences of j in

{n

i}

P ( j) = partition number

a + b + ...( )m

= Wronski aleph = “combinatorial polynomial”

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 42

Normal Polynomials Wronski (1811) alephs

(a + b)2 = a2+ 2ab + b

2

(a + b)3 = a3+ 3a

2b + 3ab

2+ b

3

(a + b)m =m

ta

tb

m t

t=0

m

(a + b)2 = a2+ ab + b

2

(a + b)3 = a3+ a

2b + ab

2+ b

3

(a + b)m = atb

m t

t=0

m

Hence

a

=1

m

= a1

t1

t1,t

2,...,t

a2

t2 ...a

t with

t = m

=1

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 43

Example: Non-Degenerate MB and BE statistics

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 44

Example: Non-Degenerate D:I statistic

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 45

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 46

Example: Non-Degenerate I:I statistic

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 47

Summary (non-degenerate, no moment constraints)

Disting. balls Indisting. balls

Disting. boxes

MB statistic

MaxProb; MeanProb

Highly symmetric

Strongly asymptotic

uniform distrib.

BE statistic

MeanProb only

Highly symmetric

Strongly asymptotic uniform

distrib.

Indisting. boxes

D:I statistic

MaxProb; MeanProb

Highly asymmetric

Slowly asymptotic, s N

Non-asymptotic, s N ?

I:I statistic

MeanProb only

Highly asymmetric

Non-asymptotic, s N

Monotonic asymptote for s N

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 48

Application:

Pólya Distribution

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 49

Pólya Distribution (Grendar & Niven, cond-mat/0612697)

- urn: M disting. balls, with mi of each

category,

mi= M

i=1

s

- sample: N balls, with ni of each category

- scheme: draw of ball of category i, return to urn + add c balls of same category to urn

“neither independent nor identically distributed” (ninid) sampling

Prob. of each realization {ni} is:

PPólya =M c + N 1

N

1 mi c + ni 1

nii=1

s

Multivariate

Polya

distribution

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 50

Pólya cross-entropy: put qi = mi/M, and =N/M: Name Asymptotic cross-entropy Non-asymptotic cross-entropy

(without Stirling approx.) Pólya (c>0)

DPólyax

=1

Npi ln

(N +1) ( Nc)

( Nc+ N)i=1

s

+ ln(qiN

c+ piN)

(piN +1) (qiN

c)

Pólya (c<0)

DPólyaSt pi

c( c +1)ln( c +1)

i=1

s

+1c

(qi + pi c)ln(qi + pi c)

1c

qi lnqi pi lnpi

DPólyax

=1

Npi ln

(N +1) ( Nc

N +1)

( N

FD

+1)i=1

s

+ ln(

qiN

c+1)

(piN +1) (qiN

cpiN +1)

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 51

Pólya MaxProb

Name Asymptotic distribution Non-asymptotic distribution Pólya (c>0)

pPólya,i#

=1

N

1F(N, c) + (

qiN

c+ pPólya,i

# N) 0 r frir=1

R

1

Pólya (c<0)

pPólya,i*

=qi

e 0+ r frir=1R

c

pPólya,i#

=1

N

1K(N, c) (

qiN

cpPólya,i

# N +1) 0 r frir=1

R

1

Compare Acharya-Swamy (1994) ansatz for “anyons”

pi* 1

e 0+

1xi

, with [ 1,1]

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 52

Future Applications: Graphs and Networks

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 53

Graph Entropy (Körner & Longo, 1973; Körner & Orlitsky, 1998)

- vertices = categories (alphabet)

- lines (edges) connect disting. categories

H(G,P) = limsupN

1

Nlog2 (G

P

N ) +1( )

where P = prob. distrib on vertex set

(GP

N ) = chromatic no. of graph G

P

N , for N-sequence

consider “heterogeneous” distinguishability of categories

BUT is asymptotic (does not consider entities)

Strong connection to networks + coding theory

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 54

Conclusions

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 55

Conclusions • MaxProb principle: choose realization of highest probability

principle of probabilistic inference

explanation for MaxEnt, MinXEnt

generalised definitions of D and h

• Non-asymptotic theory

- finite N thermodynamics (microcanonical) - other applications!

• Other statistics:

- MB, BE, FD - indisting. categories - Polya sampling (“ninid”)

• Strong connections to graphs, networks + coding

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 56

Acknowledgments:

Thanks to:

• The University of New South Wales, Australia

• The European Commission, for Marie Curie Incoming

International Fellowship at University of Copenhagen

• Dr Bjarne Andresen + Dr Flemming Topsøe

• COSNET, ANU and (Prof. R. Dewar)2 for opportunity to present

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 57

References Acharya, R., Narayana Swamy, P. (1994) J. Phys. A: Math. Gen., 27: 7247-7263. Boltzmann, L. (1872) Sitzungsberichte Akad. Wiss., Vienna, II, 66: 275-370; English transl.: Brush,

S.G. (1966) Kinetic Theory: Vol. 2 Irreversible Processes, Permagon Press, Oxford, 88-175. Boltzmann, L. (1877), Wien. Ber., 76: 373-435, English transl., Le Roux, J. (2002), 1-63,

http://www.essi.fr/~leroux/. Clausius, R. (1865) Poggendorfs Annalen 125: 335; English transl.: R.B. Lindsay, in J. Kestin (ed.)

(1976) The Second Law of Thermodynamics, Dowden, Hutchinson & Ross, PA, (1976) 162. Clausius, R. (1876) Die Mechanische Wärmetheorie (The Mechanical Theory of Heat), F. Vieweg,

Braunschwieg; English transl.: W.R. Browne (1879), Macmillan & Co., London. Edwards, A.W.F. (2002) Pascal’s Arithmetical Triangle: The Story of a Mathematical Idea, 2nd ed.,

John Hopkins U.P., Baltimore. Grendar, M., Grendar, M. (2001) What is the question that MaxEnt answers? A probabilistic

interpretation, in A. Mohammad-Djafari (ed.) Bayesian Inference and Maximum Entropy Methods in Science and Engineering, AIP (Melville), 83.

Grendar, M., Niven, R.K. (in submission), http://arxiv.org/abs/cond-mat/0612697. Jaynes, E.T. (1957), Physical Review, 106: 620-630. Jaynes, E.T. (Bretthorst, G.L., ed.) (2003) Probability Theory: The Logic of Science, Cambridge

U.P., Cambridge. Körner, J., Longo, G. (1973) IEEE Trans. Information Theory IT-19(6): 778. Körner, J., Orlitsky, A., (1998) IEEE Trans. Information Theory 44(6) 2207. Kullback, S., Leibler, R.A. (1951), Annals Math. Stat., 22: 79-86.

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 58

Lilly, S. (2002), A Practical Guide to Runes, Caxton Editions, London. Niven, R.K. (2005), Physics Letters A, 342(4): 286-293. Niven, R.K. (2006), Physica A, 365(1): 142-149. Niven, R.K. (in submission) CTNEXT07, 1-5 July 2007, Catania, Sicily, Italy, http://arxiv.org/

abs/0709.3124. Niven, R.K. (2005-07) Combinatorial information theory: I. Philosophical basis of cross-entropy

and entropy, cond-mat/0512017. Niven, R.K., Suyari, H. (in submission) Combinatorial basis and finite forms of the Tsallis entropy

function. Pascal, B. (1654), Traité du Triangle Arithmétique, Paris. Paxson, D.L. (2005) Taking Up the Runes, Red Wheel/Weiser, York Beach, ME, USA. Pennick, N. (2003) The Complete Illustrated Guide to Runes, HarperCollins, London. Planck, M. (1901) Annalen der Physik 4: 553. Sanov, I.N. (1957) Mat. Sb. 42, 11-44; English transl. Selected Transl. Math. Stat. Prob. 1 (1961),

213-224. Shannon, C.E. (1948), Bell System Technical Journal, 27: 379-423; 623-659. Suyari, H. (2006), Physica A 368(1): 63. Vincze, I, (1974) Progress in Statistics, 2: 869-895. Historical references prior to 1800AD are given in Edwards (2002).

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 59

Appendix 1: Runic alphabet: (Refs: Lilly, 2002; Pennick, 2003; Paxson, 2005; Wikipedia)

fuTarkgw hnijIpzs tbemlNod ...

f.u.th.a.r.k.g.w h.n.i.j.eo.p.z.s t.b.e.m.l.ng.o.d

- used across Germanic + central Europe, Britain + Scandinavia, 5th-10th cent.; in Sweden to 17th cent.

- derived from Etruscan alphabet (not Greek or Roman) - each rune has symbolic meaning Anglo-Saxon h (“Haegl”) = old German h (“Hagalaz”) = hail, hailstones - symbolic of destructive force of Nature, but melts and gives

new life - evokes need to accept what is inevitable; to “go with the flow”;

i.e. rune of transformation

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 60