Stress Fields Around Dislocations -...

Post on 17-Mar-2018

214 views 2 download

Transcript of Stress Fields Around Dislocations -...

Stress Fields Around DislocationsThe crystal lattice in the vicinity of a dislocation is distorted (or strained). The stresses that accompanied the strains can be calculated by elasticity theory beginning from a radial distance about 5b, or ~ 15 Åfrom the axis of the dislocation. The dislocation core is universally ignored in calculating the consequences of the stresses around dislocations. The stress field around a dislocation is responsible for severalimportant interactions with the environment. These include:1. An applied shear stress on the slip plane exerts a force on the dislocation line, which responds by moving or changing shape.2. Interaction of the stress fields of dislocations in close proximity to one another results in forces on both which are either repulsive or attractive.3. Edge dislocations attract and collect interstitial impurity atoms dispersed in the lattice. This phenomenon is especially important for carbon in iron alloys. 

Screw DislocationAssume that the material is an elastic continuous and a perfect crystal of cylindrical shape of length L and radius r. Now, introduce a screw dislocation along AB. The Burger’s vector is parallel to the dislocation line ζ . Now let us, unwrap the surface of the cylinder into the plane of the paper 

A

B

L

b

2πr

rGbG

rb

πγτ

θπ

γ

2

tan2

==

==

Then, the strain energy per unit volume is:22

2

82 rπGbγτrgyStrain ene =

×=

We have identified the strain at any point with cylindrical coordinates (r,θ,z)

r

A

B

Slip planez

θ r

A

B

Slip planez

θ

τθZτZθ

rGbGZ π

γτθ 2== The elastic energy associated with an element is its 

energy per unit volume times its volume.The volume of a pipe is  rrδπ2

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛== ∫

0

121

0 22 ln

41

22

21

rrGb

πδr

πrπrGbth unit LengEnergy per

r

r

To obtain the total energy locked in the crystal due to the screw dislocation we need to integrate the above equation for all values of rwith a ro (minimum) of 5b.

Shear plane

Escrew =

Gb2

4πln

rr0

⎝ ⎜

⎠ ⎟ ≈

Gb2

2

Energy per unit length of screw dislocation (integrating from r0 to r): 

Elasticity theory breaks down for r0~5b so core energy is ignored here.

14π

lnrr0

⎝ ⎜

⎠ ⎟ ≈

12

Roughly, due to r dependence

The total strain energy of a dislocation is the sum of the elastic strain energy plus the energy of the core of the dislocation (about 1/15th of the total energy – quantum mechanical calculations).

We have shown the distortion of a cylindrical element by a screwdislocation and the equivalent to a simple shear type of distortion. When translated to a coordinate system, the only shear possible are those with a z‐component. 

The strains given in cartesian and cylindrical coordinates are:

( )

( ) rθ

πb

yxx

πbγγ

πb

yxy

πbγγ

cos22

sin22

223223

223113

=+

==

−=

+−

==

All the other strains should be zero in an isotropic material. The associated stresses are given by:  ( )

( ) rθ

πGb

yxx

πGb

πGb

yxy

πGb

cos22

sin22

0

223223

223113

2112332211

=+

==

−=

+−

==

=====

σσ

σσ

σσσσσ

The strain field surrounding the core of a screw dislocation can be represented as:

⎥⎥⎥

⎢⎢⎢

⎡=

00000

3231

23

13

εεεε

ε

Where each value εij depends on the x‐yposition for dislocation lying along the z‐axis (or 3‐axis).

Energy of Edge Dislocations

Eedge =

Gb2

4π(1−ν)ln

rr0

⎝ ⎜

⎠ ⎟ ≈

Gb2

2(1−ν)

For idealized edge component, one entire plane has been pushed into the other planes above the glide plane but not below (tensile + compressive stresses). Hence, there is Poisson Effect along length of line, which yields a (1‐v) in denominator for strain.

compression

Idealized Edge

For many metals, ν~ 1/3, so 

Eedge =

32

Escrew

Elasticity theory breaks down for r0~5b so core energy is ignored here.

Slides presentations taken from http://web.mse.uiuc.edu/courses/mse406/Handouts/index.html

Dislocation Stress Fields:  Edges

See book, Hirth and Loath.

zxryxrxx

=====

3

2

1

sincos

θθ

Edges with z‐axis line direction best describe in x‐y plane in cartesian coordinates.  Use:

General trend:• Above the edge (x=0, y>0), pure compression.• Below the edge (x=0, y<0), pure tension.• Along the slip plane (y=0), pure shear.• All other locations, compression + tension + shear.

+Edge at center with u=(001) and b=(100) interacting with +edge somewhere nearby

y=x

y=–xOther stresses are zero!

compression

)()1(2)1(

32)(

31

)(–

)1(2

)(1

)1(–)(

)(–

)1(2

)(3

)1(2–

22

222

22

22

222

22

222

22

yxyGbp

yxyxGbx

yxGby

yxyxGbyyxyxGby

zzyyxx

yxxy

yyxxzz

yy

xx

+−+=++−=

+−+

==

+−=+=

+−+

=

++

−=

νπνσσσ

νπττ

νπνσσνσ

νπσ

νπσ

The elastic displacements around edge dislocations in isotropic materials include all three normal strains εxx, εyy and εzz, and the shear strains in the x‐y plane γxy. 

For an edge dislocation with a core along the z‐axis and the Burger’s vector in the positive x‐direction ⎥

⎥⎥

⎢⎢⎢

⎡=

33

2221

1211

0000

εεεεε

ε

Energy and Forces between  Edge dislocations

Eedge ≈

Gb2

2(1−ν)Idealized

Roughly, your expectation should be (as found from intuition):

b

–bb=0

Energy before: 2Gb2

Energy after:    Gbtot2 = 0

b b

b=2

Energy before: 2Gb2

Energy after:   Gbtot2 = G(2b)2 = 4Gb2

Should attract

Should repel

Mixed DislocationsMixed dislocations are dislocation segments wherein the angle between the Burgers vector and the line direction is neither 90o (edge) or 0o

(screw).

Each mixed dislocation can be resolved into edge and screw components.

Emixed =

G(b⊥)2

4π(1−ν)ln

rr0

⎝ ⎜

⎠ ⎟ +

G(b||)2

4πln

rr0

⎝ ⎜

⎠ ⎟

Energy has component from both types:

Edge  Screw 

b

b

bu

b|| = bsinθ

b⊥ = bcosθ

θ

Edge

Screwmixed

Emixed =

Gb2

4π(1−ν)ln

rr0

⎝ ⎜

⎠ ⎟ (1−ν cos2θ)

14π

lnrr0

⎝ ⎜

⎠ ⎟ ~

12

(core energy < 10% of E)

Combining (Screw, Mixed, Edge):

π2

−θ

Etotal = Ecore + Emixed (θ)

Where θ is the angle between the Burger’s vector and the line direction.

The elastic energy of a dislocation can be generalized as: 

lGbE ndislocatio2α=

Where α is a dimensionless factor (0.5‐1.0) and l is the dislocation length. It can be noted that smaller values of b lead to smallest energy.

(111) fcc plane

Partial Dislocations   b = b1 + b2

a2

1 01[ ]=a6

2 11[ ]+a6

1 1 2[ ]

b1yb1

b1x b2x

b2b2y

b1y and b2y are attractive screw segments b1x and b2x are repulsive edge segments

b

FCC Partial Dislocations and Stacking Faults

b

Here partials form, edge repulsion wins out, which creates stacking faulted region in between.

Energies of Full and Partials are  E1 = Gb2 E1+2 = Gb1

2 + Gb22

E1+2 = 2

Ga2

36(4 + 1+ 1) =

Ga2

32)101(

4

222 GaGabGbGbE =++=•== >

Favorable for partials to form, i.e. dislocation disassociate.

Dislocations may be sessile if not on the correct slip plane.

If energy is favorable, Gb2 >  Gb12 + Gb22, then partial dislocation form. (We need to show: Ga2/2 > Ga2/3)

due to …ABC… stacking

A AB BC

FCC

HCP

C

partial

b

Motion of partials

Separation of partials 

Partial dislocations move apart. As they move apart leave hcp SF ribbon.ABC = 3 layersAB   = 2 layersABCABC  converts to ABABAB

Partial Dislocations   b = b1 + b2

a2

1 01[ ]=a6

2 11[ ]+a6

1 1 2[ ]In FCC,  due to …ABC… stacking, if partials form, edge repulsion wins out, which creates stacking faulted region in between. Green Partials Separate.

Stacking Faults are defects that cost energyEnergy balance between separating partials to lower elastic energy and creation of more SF.

Non‐conservative Motion for Edge Dislocation: Vacancy‐assisted Climb

Edge climbs up

Climb is non‐conservative in work.

Only a part of the dislocation line climbs up, hence it will generate jogs. Edge can climb down too!

Vacancy:Missing atom

Swapped with atom at bottom of edge

b, τ

bxu2

n

bxn

Slip plane

Not a slip plane

With jogs, an edge dislocation will have  sections that are sessile! Why?  Because segments are not laying in possible slip plane.

Moves = Glissile Does not move = Sessile

b, τ

n

bxn

Slip plane

• n is the slip plane normal.• b is the Burger’s vector of edge dislocation.• τ is shear stress (could be applied or from other dislocation lines).

Vacancy‐assisted Climb creates jogs!

τ

bxn

b

Jogs will create sessile edge dislocation segments

Conservative Motion for Screws:  Cross‐Slip

b u

The Burger’s vector is : This is a ScrewdislocationIt moves in the direction of 

b u

Cross‐Slip of Screw Component

For a FCC

( )1 1 11 =n( )1 1 12 =n

( )1 1 11 =n

( ) ( ) [ ]1 0 11 1 11 1 121 =×=×= nnb

( )1 1 11 =n( )1 1 12 =n

( )1 1 11 =n

( ) ( ) [ ]1 2 11 0 11 1 11 =×=×= bnd

Here partials are favorable, Gb2 >  Gb12 + Gb22,  since Ga2/2 > Ga2/3.

Partial Dislocations   b = b1 + b2a2

1 01[ ]=a6

2 11[ ]+a6

1 1 2[ ]

b1 yb2x

b1 b2b2y

b1x

a4

1 01[ ]

screw

edge edgea4

1 01[ ]

u for edge

Separation of Partials: Stacking Fault 

In FCC crystals, the magnitude of the Burgers’ vector is:

2ab =

As the edge components have the same direction, the b1x and b2x components of the partials will repel.As the screw components of the partial dislocations b1yand b2y are in opposite direction these will attract.

[ ][ ]121

12

12112

2

1

ab

ab

y

y

=

=

dGbbGbF s

sScrew πγτ

2

2

±=±=±=

The attractive force between the parallel screw dislocations separated by a distance d is: 

As the partials separate, the energy increase by d*SFE, where SFE is the stacking fault energy and d is the fault separation distance. Thus, the “chemical” force resisting separation is SFE (dimensions of joules per square meter or force per unit length). 

The repulsive force between the edge components of the dislocations is: 

222

222

)(–

)1(2 yxyxxGbFedge +−

+=

νπ

Since the dislocations are in the same plane and separated by a distance d, then y=0 and x=d d

GbFedge )1(2

2

νπ −=

Since the units of SFE are in force per unit length, and so are those of the forces above, we can just equate them directly. 

dGb

dGbSFE 1

)1(21

2

22

νππ −=+

EdgeScrew FFSFE =+

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛−

−⋅= 1

)1(1

2

2

νπ SFEGbd

For a perfect dislocation 0 1 12a

6 112

6abab ==For a partial dislocation 

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛−

−⋅= 1

)1(1

12

2

νπ SFEGad

High SFE low separation, low SFE large separation in TEM.

Stacking Faults and Energy Partial dislocation repel and leave stacking faults

)(221

SFEbGbdsf π

•=

For ideal case:

Stacking Faults are defects that cost energyEnergy balance between separating partials to lower elastic energy and creation of more SF. Partial Dislocations   b = b1 + b2

b

b1

b2dSF

hcp

fccfcc

TEM image 

In TEM, you see contrast between faulted and unfaulted regions, hence, you can measure dSFand get SFE.

D

A B

C

αβ

γ

δ

Full (Mixed) Dislocation Recombination: Lomer‐Cottrell “Locks”

Consider two slip planes in FCC crystals, δ and γ,namely (111) and (11‐1) planes .

[ ] [ ] [ ] 1 1 02

1 0 12

0 1 12 321

ababab ===

The three perfect dislocations in the (111) plane are

[ ] [ ] [ ] 1 1 02

1 0 12

0 1 12 654

ababab ===

The three perfect dislocations in the (11‐1)plane are

The direction b1 and b4 are in opposite direction and they will cancel each other. The combination b2 and b5 will result in a higher energy (not possible). The sole combination that result in a energy reduction is the b3 and b5. [ ] [ ] [ ]

222

0112

1012

1102

222

53

aaa

a a abb

>+

=+=+ This dislocation is not mobile in either (111) or (11‐1) planes. 

Full (Mixed) Dislocation Recombination: Cottrell “Locks”

(MIXED) full dislocation reaction: b = b1 + b2

b1 =

a2

101[ ]

b2 =

a2

01 1 [ ] n2 = 111( )

n1 = 11 1 ( ) b1 • n1 = 0

b2 • n2 = 0

Check slip planes? 

b

Mixed dislocations: u’s are all  parallel to intersection, and b’s are not ⊥ to u’s.

n=(001)

motion

motion

11 1 ( )

111( )

u1 = 1 1 0[ ]

u2 = 1 1 0[ ]

u = 1 1 0[ ]

b1 =

a2

101[ ]

b2 =

a2

01 1 [ ] b =

a2

110[ ]

Burger’s vector, b?  (See figure above in cube)

Favorable to recombine? Yes, Gb12 + Gb22 > Gb2

Slip Plane?  does not lie in either of the two slip planes, but does lie in n = b x u= (001).

Glissile or Sessile? Sessile, not {111} fcc slip plane

b1 + b2 =

a2

101[ ]+a2

01 1 [ ]= b =a2

110[ ]

b1

2+ b2

2= a2 > b2 =

a2

2

b =

a2

110[ ]

• Unless lock (sessile dislocation) is removed, dislocation on same plane cannot move past.  • Going back b => b1 + b2 would allow other dislocation to glide again.

It impedes slip and therefore is called a lock.

Schockley Partial Dislocations Recombination: “Locks”Partial dislocations reaction:   b = bp1 + bp2

b1 =

a2

101[ ]→ b1p1 + b1

p2 =a6

112[ ]+a6

2 1 1[ ]

Lormer‐Cottrell lock.But if full b’s combine, it is Cottrell lock.

b1 •n1 = 0 n1= 111 ( )

b2 • n2 = 0 n2 = 111( )

b2 =

a2

01 1 [ ]→ b2p1 + b2

p2 =a6

1 2 1 [ ]+a6

112 [ ]

n

motion

motion

11 1 ( )

111( )

u1 = 1 1 0[ ]

u = 1 1 0[ ]

b1p 1⊥u

b2p 2⊥u

b1p 2

b2p 1

Burger’s vector?   Leading partials combine

Favorable to recombine? Check Gb12 + Gb22 > Gb2

Line Direction?

Slip Plane?

Glissile or Sessile? Sessile, not {111} fcc slip plane

b1

p2 + b2p1 =

a6

2 1 1[ ]+a6

1 2 1 [ ]= b =a6

110[ ]

b1

2+ b2

2=

a2

3> b2 =

a2

18

u = n1 ×n2 =i j k1 1 1

1 1 1

= i2 − j2 + k0 → [11 0]

n = b × u = [00 1 ]

Unless lock (sessile dislocation) is removed, dislocation on same plane cannot move past.  Other possible combinations give:

b =a3

110[ ]

Edge‐Edge Interactions: creates edge jogs

Dislocation 1 got a “jog” in direction of b2e of the other dislocation; thus, it got longer.Extra atoms in half‐plane increases length.

This dislocation got a jog in direction of b1e.

after

b1e

b2e

before

b1e

b2e

**Dislocations each acquire a jog equal to the component of the other dislocation’s Burger’s vector that is normal to its own slip plane.

Energy cost of jog: Gb2/2 (Energy/length)  x  b (length of jog) = Gb3/2 

What happens when dislocations are extended, i.e. composed of two trailing partials?

Screw‐Edge Dislocation Interactions: creates edge jogs

Time snap shots

Energy cost of jog is Gb3/2 

Edge jog is in direction of bs.

Jogs slow motion of dislocation.

Why does screw also have jog?

be

bs

be

edge

edge (later)

B of screw

Direction of screw dislocation motion

bsline

beThis end of edge goes underneath creates jog .

Screw‐Edge Dislocation Interactions: creates edge jogs

edge (early)

edge (later)

B of screw

Direction of screw dislocation motion

bsline

be

Edge jog is in direction of bs.

Jogs slow motion of dislocation.

be

bs

Screw jog is in direction of be.

Why is there a jog in screw?

Screw‐Screw Dislocation Interactions: creates edge jogs

screw

screw (later)

bsline

bs

Energy cost of jog  Gb3/2 

Jogs slow motion of dislocation.

In screw‐screw case, jog has to move via CLIMB, or generate a row VACANCIES or INTERSTITIALS. 

Climb is non‐conservative, and point‐defects costs more energy.

Time snap shots

be

bs

bs

Multiplication of DislocationsTo account for large plastic strain that can be produced in crystals, it is necessary to have regenerative multiplication of dislocations. Of course, there are many variants that lead to many effects.

Two important mechanisms for this are: 

• Frank‐Read sources and  multiple cross glide

From Hall and Bacon 4th Ed

Fig. 3.10 Cross slip of single crystal of Fe‐3.25%Si

Marked pts could be from cross slip

Dislocations Generation: single‐ended Frank‐Read source 

Single‐ended Frank‐Read source leads to regenerative multiplication.This mechanisms can be attained from a “superjog”, where an extended line is out of the slip plane and thus sessile.

For super‐jogs, see book and Gilman and Johnston, Solid State Physics 13, 147 (1962).

CEF

Sessile segment

• Segment BC is edge anchored at one end. (a)• Moves by rotating. (b)• Each revolution around B displaces the crystal above slip plane by b, so nrevolutions gives nb slip.• Spiraling around B increases line length.

Dislocation Generation: Frank‐Read SourceAfter effects of dislocation‐dislocation interaction

rTθ/2

θ/2

Line Tension (E/L) = 2T sinθ/2 ~ Tθ = θGb2/2 

opposes bowing via shear τ:F/L * bowing arc =  τb rθ

So,    τb rθ = θGb2/2τ = Gb/2r

Radius of curvature r smallest for semicircular arc of  r = L/2. Larger L easier to deform.

τmax = Gb/L

Small jog τ applied shear stress 

Generated a dislocation in place of old one, which is now a loop. 

(Shaded area has 1 unit of slip.)  

Larger density. Back stresses hinder motions.

Tsinθ/2Tsinθ/2

τ

What type of dislocations?What can happen? 

Shear bowing of lineUnstable position: loop expands 

Screws annihilate 

Shape due to Sidirectional bonding

A more likely mechanism for dislocation loop formation is the Frank Read Source – dislocation pinned at both ends.Radius of curvature depends on applied shear stress.Critical bow out for R = L/2 (L = AB)Further steps are the formation of a kidney‐shaped loop and the annihilation of dislocation segments with the same b vector but opposite line sense.

Dislocation Generation: Frank‐Read Source via Cross Slip

What type of dislocation is in (a)? 

Bowing of cross slipped dislocation line is similar to jogged dislocations.

τ applied shear stress  can be parallel and perpendicular to b. 

jogτ applied shear stress 

Looks like  two pints on (111) plane, as in Si case

Summary

• Dislocations (line defects) give rise to complicated interactions in a crystal.

• Dislocation multiplication is responsible for the very large increases in YS.

• Dislocation‐dislocation interactions, or dislocations interacting with other defects, lead to higher stresses required to move the dislocations further (work‐hardening). For example, dislocation pile‐up, jogs, trasnfer across grain boundaries, etc., all contribute to YS increases.

• Dislocations interacting with anything lead to other defects (point, planar, volumetric).

• Consequences are found in the allowed slip and strengthening of materials.

• Be familiar/conversant with how dislocations interact and the consequences. 

Are these consequences able to be mathematically described?