STRC01 ReinforcedConcrete Part1 0715

Post on 14-Apr-2016

31 views 5 download

description

PPI2PASS SE Exam Review CourseLecture 01Structural Engineering Course

Transcript of STRC01 ReinforcedConcrete Part1 0715

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 1

Reinforced Concrete Design (Part 1)Structural Engineering Review Course

STRC ©2015 Professional Publications, Inc.

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 2

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Lesson OverviewReinforced Concrete Design (Part 1)

• General Requirements

• Strength Design Principles

• Strength Design of Reinforced Concrete Beams

• Serviceability Requirements for Beams

• Shear in Beams

• Deep Beams

• Corbels

• Beams in Torsion

2

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 3

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Learning ObjectivesYou will learn

• reinforced concrete design theory

• R/C beam design

• R/C corbel design

• efficient solution approaches

• common terminology and practice

• code nomenclature

• short‐cuts and rules‐of‐thumb

3

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 4

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Prerequisite KnowledgeYou should already be familiar with

• statics

• mechanics of materials

• structural analysis

• basic reinforced concrete terminology

4

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 5

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Referenced Codes and Standards• International Building Code (IBC, 2012)

• Building Code Requirements for Structural Concrete (ACI 318, 2011) 

5

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 6

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

General RequirementsIBC adopts ACI by reference.

Sec. 1905 of IBC modifies some sections of ACI.

6

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 7

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

General Requirements2011 ACI follows strength design method

• apply factored loads

• determine required ultimate strength

• calculate nominal strength

• multiply by factor to get design strength

• design strength ≥ required ultimate strength

7

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 8

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Strength Design Principlesrequired strength

• service load × load factor

• check all load combinations

• most critical combination governs

= service loadU Q

U = required strength

γ = load factor

Q = service load

8

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 9

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Strength Design Principlesloads

9

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 10

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Strength Design Principlesload combinations (ACI Sec. 9.2.1)

STRM Sec. 1.2

10

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 11

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Strength Design PrinciplesCSCO Example 2.1

dead load

live load or roof live load

wind load

11

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 12

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Strength Design Principles

12

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 13

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Strength Design Principles

13

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 14

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Strength Design Principlesdesign strength

nominal strength (theoretical ultimate) × strength reduction factor

design strength nR

ϕ = reduction factor

Rn = nominal, or theoretical, strength

14

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 15

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Strength Design Principlesreduction factors

Multiply nominal strength by these values to get design strength.

15

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 16

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Strength Design of Reinforced Concrete Beamsreinforcement bar sizes

CSCO Table 1.1 Properties of Standard Reinforcing Bars (no. 14 and no. 18 omitted)

16

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 17

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Strength Design of Reinforced Concrete Beamstypical assumptions

• rectangular stress block

• tension reinforcement has yielded

• linear strain

• max concrete strain of 0.003

• neglect concrete in tension 

17

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 18

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Strength Design of Reinforced Concrete BeamsFig. 1.1 Rectangular Stress Block

American Concrete Institute. Commentary on Building Code Requirements for Reinforced Concrete.Farmington Hills, MI: American Concrete Institute, 1985.

18

Tu = Cu (assumes no axial force)Mu = Tu (d – a/2) = Cu (d – a/2)Cu = 0.85fc’(β1c)(b)

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 19

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Strength Design of Reinforced Concrete Beamsnominal flexural strength

• two basic concrete strength equations to calculate nominal flexural strength

• very important concrete equations

19

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 20

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Strength Design of Reinforced Concrete Beamsdepth of equivalent rectangular stress block

depth of portion of concrete that is effective in compression

20

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 21

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Strength Design of Reinforced Concrete Beamsrequired reinforcement ratio

amount of steel required when

• concrete dimensions given

• moment given

21

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 22

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Strength Design of Reinforced Concrete Beamstension‐controlled section 

• strain in compression fiber (concrete) = 0.003

• strain in tension steel ≥ 0.005

• c/d ≤ 0.375

22

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 23

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Strength Design of Reinforced Concrete Beamscompression‐controlled section

• strain in compression fiber (concrete) = 0.003

• strain in tension steel ≤ 0.002

• c/d ≥ 0.600

23

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 24

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Strength Design of Reinforced Concrete Beamstransition region between tension‐ and compression‐controlled sections

• strain in compression fiber (concrete) = 0.003

• 0.002 < strain in tension steel < 0.005

• 0.375 < c/d < 0.600

24

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 25

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Poll QuestionThe reinforced concrete section below is

(A) tension‐controlled

(B) compression‐controlled 

25

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 26

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Poll QuestionThe reinforced concrete section below is

(A) tension‐controlled

(B) compression‐controlled 

The answer is (B). 

26

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 27

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

minimum reinforcement

Strength Design of Reinforced Concrete Beamsmaximum reinforcement

• applies to non‐prestressed bending members 

• tension steel strain = 0.004

• c/d = 0.429

• ACI Sec. 10.3.5

ACI Sec. 10.5.1

27

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 28

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Strength Design of Reinforced Concrete BeamsCSCO Example 3.1

28

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 29

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Strength Design of Reinforced Concrete BeamsCSCO Example 3.1

29

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 30

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Strength Design of Reinforced Concrete Beams

30

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 31

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Strength Design of Reinforced Concrete Beamsbeams with compression reinforcement

required when 

• concrete strength and/or area cannot be increased

• factored moment exceeds design strength at steel strain = 0.005

Beams with compression reinforcement, when used, also require additional tension reinforcement. 

10.319 ct

y

ff

31

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 32

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: SD of Reinforced Concrete BeamsAt what applied factored moment does compression reinforcement become required?

fc’ = 4 ksi, fy = 60 ksi

32

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 33

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: SD of Reinforced Concrete Beams

fc’ = 4 ksi, fy = 60 ksi

1

2

2

0.319

kips4 in0.319 0.85 kips60 in

0.018

ct

y

ff

2

0.018 12 in 20 in

4.32 in

sA bd

33

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 34

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: SD of Reinforced Concrete Beams

The answer is 3922 in‐kips.

22

2

2

0.590.9 0.9 1

kips0.9 4.32 in 60 20 inin

kips0.59 0.018 60 in1 kips4

in3922 in-kips

ys y

c

fMn A f df

fc’ = 4 ksi, fy = 60 ksi

34

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 35

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Strength Design of Reinforced Concrete Beams

Fig. 1.3 Flanged Section with Tension Reinforcement

American Concrete Institute. Building Code Requirements for Structural Concrete and Commentary. Farmington Hills, MI: American Concrete Institute, 2011.

35

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 36

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Strength Design of Reinforced Concrete Beamsprocedure for flanged section with tension reinforcement 

1. Calculate the steel required to balance the flange.

2. Determine the moment resisted by the flange.

3. Calculate the residual moment resisted by the web.

36

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 37

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Strength Design of Reinforced Concrete Beamsprocedure for flanged section with tension reinforcement (continued) 

4. Calculate the additional area of reinforcemen required to balance the web.

5. Superimpose the results.

37

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 38

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Serviceability Requirements for Beamsoverview

• control crack widths

• limit deflections

• service load conditions apply

38

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 39

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Serviceability Requirements for Beamscontrol of crack widths 

tension reinforcement

skin reinforcement

If h > 36 in, provide skin reinforcement Per ACI 10.6.7.

Fig. 1.4 Tension Reinforcement Details

39

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 40

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

deflection limits

• allowable immediate deflection (flexural members)

• l/180 for flat roofs

• l/360 for floors due to applied live load

• total deflection after attachment of nonsensitive elements limited to l/240

• total deflection after attachment of sensitive elements limited to l/480

Serviceability Requirements for Beams

40

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 41

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

service load conditions

• apply for the calculation of deflections

• rectangular stress block assumption is not made

• linearly varying stress distribution assumed

Serviceability Requirements for Beams

41

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 42

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Serviceability Requirements for BeamsFig. 1.5 Service Load Conditions

42

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 43

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Serviceability Requirements for Beamsdeflection calculation procedure

1. Calculate moment of inertia of cracked transformed section.

2. Calculate cracking moment.

3. Calculate effective moment of inertia.

ACI Eq. 9‐8

43

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 44

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Serviceability Requirements for Beams

4. Calculate short‐term deflections using effective moment of inertia.

5. Calculate additional long‐term deflections.  ξ comes from STRM Table 1.3. 

ACI Eq. 9‐11

deflection calculation procedure (continued)

STRM Table 1.3 Values of ξ

44

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 45

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Serviceability Requirements for Beams

6. Calculate live load deflection

7. Calculate final deflection

deflection calculation procedure (continued)

45

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 46

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Serviceability Requirements for BeamsExample 1.7

46

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 47

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Serviceability Requirements for BeamsExample 1.7

47

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 48

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Serviceability Requirements for Beams

48

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 49

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Serviceability Requirements for Beams

49

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 50

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Serviceability Requirements for Beams

50

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 51

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Serviceability Requirements for Beams

51

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 52

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Elastic Design Methodelastic design method overview

• also known as the “alternate design method”

• allowed by 2011 ACI per Commentary R1.1

• covered in 1999 ACI

• service load conditions apply

• actual stresses checked against allowable stresses

52

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 53

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Elastic Design Methodprocedure

1. Determine allowables.

2. Calculate service load condition coefficients.

53

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 54

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Elastic Design Methodprocedure (continued)

3. Calculate actual stresses.

reinforcement: 

concrete: 

4. Check actual stresses against allowable stresses.

54

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 55

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Elastic Design MethodCSCO Example 4.1

55

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 56

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Elastic Design MethodCSCO Example 4.1

56

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 57

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Elastic Design Method

57

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 58

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Elastic Design Method

58

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 59

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Shear in Beamscritical section

as shown in Fig. 1.6 when

• checking near support

• reaction produces compressive stress

• loads applied at or near top of beam

• no concentrated load between support and section location shown

otherwise, taken at location of max shear

Fig. 1.6 Critical Section for Shear

59

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 60

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Poll Question: Shear in BeamsThe critical section for shear is at which location?

60

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 61

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Poll Question: Shear in Beams checking near support

reaction produces compressive stress

loads applied at or near top of beam

no concentrated load between support and section location shown

The critical section is located d away from the support. 

The answer is (B). 

61

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 62

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Shear in BeamsWhen is shear reinforcement required?

• For                    , provide minimum reinforcement. 

• For                  , provide reinforcement with a capacity of         so that

ACI Eq. 11‐13

2c

uVV

u cV V Vs

62

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 63

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Shear in Beamsshear capacity of concrete

simplified

refined

ACI Eq. 11‐3

ACI Eq. 11‐5

63

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 64

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Shear in Beamsshear capacity of stirrups

for inclined stirrups

for vertical stirrups

maximum allowed shear capacity from shear reinforcement

Fig. 1.7 Beam with Inclined Stirrups

ACI Eq. 11‐16

ACI Eq. 11‐15

64

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 65

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Shear in Beamsspacing of stirrups

limited to maximum d/2 or 24 in when 

limited to maximum d/4 or 12 in when 

Fig. 1.7 Beam with Inclined Stirrups

65

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 66

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Shear in BeamsSXST Vertical Breadth Problem 40

66

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 67

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Shear in Beams

67

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 68

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Shear in Beamsshear capacity of inclined bars

for single, bent‐up bar or group of bars

for series of equally spaced bent‐up bars

Spacing = s, as shown in Fig. 1.8. 

ACI Eq. 11‐17

ACI Eq. 11‐16

Fig. 1.8 Beam with Inclined Bars

68

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 69

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Shear in Beamsspacing of inclined bars

typical condition 

When                            , use ½ of typical value.4s c wV f b d

Fig. 1.8 Beam with Inclined Bars

69

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 70

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Shear in BeamsExample 1.10

70

Each U‐stirrup has two vertical legs.

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 71

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Shear in BeamsExample 1.10

71

Each U‐stirrup has two vertical legs.

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 72

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Shear in Beams

72

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 73

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Deep Beamsdeep beam definition

• illustrated in Fig. 1.9

minimum reinforcement

• illustrated in Fig. 1.9

Fig. 1.9 Minimum Shear Reinforcement for a Deep Beamclear span 4

depth

73

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 74

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Deep Beamsmaximum shear strength

The maximum achievable shear strength for deep beams is limited.  

deep beam action

also applies to beams with concentrated loads less than 2h from support

74

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 75

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Deep BeamsB‐ and D‐ regions

split beam into D‐regions and B‐regions

• D (discontinuity)

• Region where traditional beam theory is not applicable

• D‐region extends distance h from discontinuity

• B (beam)

• Treat this region like a typical beam 

(beam theory applies)Fig 1.10 B‐ and D‐Regions

75

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 76

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Deep BeamsBreak the beam shown into D and B regions. 

76

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 77

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Deep BeamsThough this beam is not a deep beam, it still has D‐ and B‐regions.

77

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 78

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Deep Beamsstrut‐and‐tie model

• ACI App. A

• only applies if “compression struts can form”

load ≤ 2h from support

results θ ≥ 25 deg

Fig. 1.11 Strut‐and‐Tie Model

78

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 79

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Deep Beamsstrut nominal strength

• governed by transverse tension

• developed by lateral spread of compression force

ACI Eq. A‐2

ACI Eq. A‐3

Fig. 1.12 Prism and Bottle‐Shaped Struts

79

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 80

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Deep Beamstie nominal strength

• strength of tension reinforcement

80

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 81

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Deep Beamsnodal zone nominal strength

ACI Eq. A‐7

ACI Eq. A‐8

Fig. 1.13 Nodal Zone

81

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 82

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Deep BeamsExample 1.11

82

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 83

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Deep Beams

83

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 84

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Deep Beams

84

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 85

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Deep Beams

85

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 86

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Deep Beams

86

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 87

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Deep Beams

87

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 88

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Deep Beams

88

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 89

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Corbelsintroduction to corbels

• cantilever bracket supporting a load‐bearing member

• shear span‐to‐depth ratio ≤ 1

• horizontal tension‐to‐vertical shear ratio ≤ 1

Fig. 1.14 Corbel Details

89

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 90

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Corbelsintroduction to corbels (continued)

• shear force (Vu) requires reinforcement area Avf

• moment (Vua + Nuc(h − d)) requires reinforcement area Af

• tensile force (Nuc) requires reinforcement area An

Fig. 1.14 Corbel Details

90

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 91

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Fig. 1.14 Corbel Details

Corbelsshear in corbels

Avf = shear friction reinforcement

factored shear force

91

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 92

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Corbelstension in corbels

Nuc (tension force) ≥ 0.2Vu

total tension reinforcement,

primary tension reinforcement

minimum closed ties over depth 2d/3 

STRM Sec. 1.7

Fig. 1.14 Corbel Details

92

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 93

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: CorbelsCSCO Example 5.3

93

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 94

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: CorbelsCSCO Example 5.3

94

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 95

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Corbels

95

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 96

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Corbels

96

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 97

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Beams in Torsionintroduction to torsion

Torsion may be neglected if                                      . Otherwise, provide torsion reinforcement to resist Tu .

Fig. 1.15 Torsion in Rectangular Section Fig. 1.16 Torsion in Flanged Section

97

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 98

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Beams in Torsionreinforcement requirements

• required area (per leg) of closed stirrup

• required area of longitudinal reinforcement

ACI Eq. 11‐21

ACI Eq. 11‐22

98

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 99

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

minimum longitudinal area bar size

minimum transverse area max spacing

Beams in Torsionminimum and maximum reinforcement

ACI Eq. 11‐24

ACI Eq. 11‐23

99

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 100

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Beams in TorsionCSCO Example 5.4

100

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 101

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Beams in Torsion

101

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 102

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Beams in Torsion

102

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 103

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Beams in Torsion

103

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 104

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Beams in TorsionCSCO Example 5.5

104

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 105

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Beams in Torsion

105

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 106

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Beams in Torsion

106

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 107

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Beams in Torsion

107

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 108

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Beams in Torsion

108

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 109

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Beams in Torsion

109

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 110

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Example: Beams in Torsion

110

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 111

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Learning ObjectivesYou have learned

• reinforced concrete design theory

• R/C beam design

• R/C corbel design

• how to avoid common exam pitfalls

• tricks to speed up problem solving on the exam

111

Structural Engineering  Review Course Reinforced Concrete Design (Part 1)

© 2015 Professional Publications, Inc. 112

Reinforced Concrete Design Part 1

STRC ©2015 Professional Publications, Inc.

Lesson OverviewReinforced Concrete Design (Part 1)

• General Requirements

• Strength Design Principles

• Strength Design of Reinforced Concrete Beams

• Serviceability Requirements for Beams

• Shear in Beams

• Deep Beams

• Corbels

• Beams in Torsion

112