Storages for (solar) heating systems at domestic, community and industrial scales | Klaus Vajen

Post on 17-Jul-2015

502 views 0 download

Tags:

Transcript of Storages for (solar) heating systems at domestic, community and industrial scales | Klaus Vajen

Storages for (solar) heating systems

at domestic, community and industrial scales

Klaus Vajen, Kassel University (DE), Inst. of Thermal Engineering, Edinburgh, 21.10.14

1. Introduction

2. Conventional (solar) thermal storages

3. New storage developments > 3 m³

4. Systems with 50+ solar heating

5. Solar heat for industrial processes

6. New concept for district heating

≈ 25 scientists + students + spin-offs

R&D:

Coordination:

• MSc-programme „Renewable Energies and Energy Efficiency“

• Europewide PhD-education in solar heating (SolNet)

• Council „Teaching RE at Universities“ in German speaking countries

• Solar World Congress in Kassel 2011

• …

2

• (solar) thermal energy systems

• energy efficiency in buildings

• advice to policy makers

• higher education

Solar- and Systems Engineering

3

Angebot & Bedarf

2.

8

5.

5

6.

6

7.

4

8.

1

8.

8

9.

6

10

.3

11

.1

11

.8

12

.5

13

.3

14

.0

14

.7

15

.5

16

.2

17

.0

17

.7

18

.4

19

.2

19

.9

22

.4

Zeit [h] ->

Angebot 5m² Bedarfsdeckung 90%

Angebot & Bedarf

2.

8

5.

5

6.

6

7.

4

8.

1

8.

8

9.

6

10

.3

11

.1

11

.8

12

.5

13

.3

14

.0

14

.7

15

.5

16

.2

17

.0

17

.7

18

.4

19

.2

19

.9

22

.4

Zeit [h] ->

Angebot 5m² Bedarfsdeckung 90%

12 0 24

Tageszeit [h]

Le

istu

ng

[k

W]

15

20

12

6

3po

we

r (k

W)

time of day (h)

Solar irradiance on a 5 m² collector area

and domestic hot water demand of a single family dwelling

picture: H. Drück, Stuttgart Univ.

Why diurnal storage?

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

TWW

DHW and space heating

Without seasonal storage:

Solar contribution limited to ≈ 25% of the overall heat demand

Why seasonal storage?

kWh / month

solar radiation

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

TWW

DHW and space heating

Higher solar fraction:

Larger collector area and seasonal store neccessary

Why seasonal storage?

kWh / month

solar radiation

6

Why do we store heat?

System optimization

Peak generation

Peak load Increase

solar fraction

Increase comfort

Improvement of system reliability

Heat storage

sensible heat

solid solid/ liquid

liquid

- water

- heat transfer oil

latent heat

solid/liquid

organic

inorganic

liquid/gaseous

chemical reaction heat

7

Mediums to store heat

Wärmespeicherung

Sensible Wärme Latente Wärme

Fest-Flüssig

Granit

Eisen

Aquifer

Kies/Wasser

Flüssig-Gasförmig

Chemische Reaktionswärme

Fest Fest+Flüssig Flüssig

Wasser

Wärmeträgeröl

Organisch Anorganisch

Wasser

Fettsäuren

Ammoniakate

Salzlösungen/Wasser

Silikagel/Wasser

Salzgemische

10.000

1.000

100

theoretical energy density of storage mediums

MJ/m³

10 20 40 100 200 400 1.000

temperature in °C

• real densities compared to water

– latent 1 ... 2

– sorption 2 … 3

– chemical 4 …10

• water most important

storage medium

in domestic applications

Overview: Heat Storages Mediums

Picture: Hadorn (CH) 2005

Domestic buildings

• (solar) domestic hot water (dhw)

• (solar) dhw and space heating

• (solar) district heating

• „solar houses“ – high solar fractions

Non residential

• dhw

• industrial process heat 9

Typical applications of heat stores

picture: C. Brunner, AEE INTEC (AT)

Small water storages

picture: G. Stryi-Hipp (BSI)

solar fraction: 60% of energy for hot water demand

picture: H. Drück, Stuttgart Univ.

Solar domestic hot water

storage: potable water, ca 300 l

cold water

hot water

ca 5 m²

solar fraction: 25% of the overall heat demand

picture : H. Drück, Stuttgart Univ.

Solar assisted space heating

storage: heating water, ca. 700 l ca 12 m²

Source: Simulation study from Uni Stuttgart (DE), SFH in Würzburg ENEV 2005, Slide H. Drück

solar

fraction

25m²/30m³ 35m²/10m³

Solar assisted space heating: simulations

Aim:

collector area

Overview water storages > 3 m³

Common challenges

• logistics (volume limited to ≈ 750 l before)

• space demand

• costs

picture: ITW, Stuttgart Univ. (DE)

State of the art

Pro

• most common solution

• simple logistics

• pressurized

Contra

• high costs and heat losses

• much space needed

• complex assembling and hydraulic integration

15

picture: Bauer Lmt. (DE)

Storage cascade of single tanks

Pro

• customizable

Contra

• complex assembling and welding

• high costs for individually planned system

16

Picture: Thüsolar Lmt (DE)

On site welded steel tank

State of the art

Pro

• available

Contra

• difficult logistics

• only for non-residential and new building

• expensive 17

picture:

Jenni Energietechnik (CH)

Monolithic steel storage

State of the art

Pro

• „zero“ space demand in building

Contra

• costly logistic

• groundwork necessary

• heat losses depend on geology

18

picture: Mall Lmt (DE)

New developments

Buried buffer storage

Pro

• simple logistics

• inexpensive

• optimized space utilization

Contra

• mounting only by specialists

19

picture: fsave Lmt (DE)

New developments

Modularly erected PP-H storage

Pro

• resistant to high temperatures

• stainless

Contra

• complex and costly mounting

• high costs of GRP

20

picture: Haase Lmt (DE)

GRP = glass-fibre reinforced plastic

New developments

On site laminated GRP buffer storage

21

Pro

• simple logistics

• good space utilization

• pressurized

Contra

• not cheap

• (dis)charging

picture:

Consolar Lmt (DE)

New developments

Collective insulated storage cascade

22

New storage developments > 5 m³

Mall FSAVE Solartechnik Haase

Energietechnik

Consolar

features buried

unpressurized

cubic

unpressurized

unpressurized

pressurized < 2,5 bar

materials concrete and

stainless steel

PP, PU GRP plastics, steel

typical

application

(old and) new

building

old and new

building

old and new

building

old and new

building

⇨ use of new materials (concrete, plastics)

⇨ new designs (not necessarily cylindrical) new technical options

Mall FSAVE Solartechnik Haase

Energietechnik

Consolar

logistics

costs

space

demand

New storage developments > 5 m³

Specific costs vs. volume

picture: H. Drück, Stuttgart Univ. (DE)

€ /m³

Solar building 50+

pictures: Sonnenhausinstitut (DE)

• solar fraction > 50%

• collector area: 30 .. 50 m²

• water storage: 6 .. 10 m³

• requirements:

• excellent heat insulation

• low temperature heating system

pictures: Sonnenhausinstitut (DE)

The concept “Solar Building 50+”

-0.625

-0.500

-0.375

-0.250

-0.125

0.000

0.125

0.250

0.375

0.500

0.625

0.750

0.875

1.000

-125

-100

-75

-50

-25

0

25

50

75

100

125

150

175

200

Nov Dez Jan Feb Mrz Apr Mai Jun Jul Aug Sep Okt

rela

tive

r W

ärm

ein

ha

lt S

pe

ich

er

[-]

rme

me

ng

e [

kW

h]

Solar Pos. Zusatzwärm WW-Verbrau Gesamt-NUT Wärmeverl. Rel. WärmeQsol Qzusatz QTW QHK QSp,verl qSp,relativ

heating period 2011/2012 HP 2012 summer period 2012

Qaux QDHW QSH Qsto,loss qsto,rel Qsol

Oct May Dec

He

at co

nsu

mp

tio

n p

er

da

y [kW

h]

Re

lative

he

at co

nte

nt o

f sto

re [-]

Storage management

source: H. Drück, Stuttgart Univ., 2013

House: 550 m², Collector 62 m² @ 44°, Storage: 15 m³

-0.625

-0.500

-0.375

-0.250

-0.125

0.000

0.125

0.250

0.375

0.500

0.625

0.750

0.875

1.000

-125

-100

-75

-50

-25

0

25

50

75

100

125

150

175

200

Nov Dez Jan Feb Mrz Apr Mai Jun Jul Aug Sep Okt

rela

tive

r W

ärm

ein

ha

lt S

pe

ich

er

[-]

rme

me

ng

e [

kW

h]

Solar Pos. Zusatzwärm WW-Verbrau Gesamt-NUT Wärmeverl. Rel. WärmeQsol Qzusatz QTW QHK QSp,verl qSp,relativ

heating period 2011/2012 HP 2012 summer period 2012

Qaux QDHW QSH Qsto,loss qsto,rel Qsol

Oct May Dec

Heat

co

nsu

mp

tio

n p

er

day [

kW

h]

Rela

tive h

eat

co

nte

nt

of

sto

re [

-]

P1 P2 P3 P4

phase 1: storage discharching

Phase 2: auxiliary heating

Phase 3: storage charching

Phase 4: excess of solar energy

Storage management

source: H. Drück, Stuttgart Univ., 2013

• 8 flats, 100% solar

• 276 m² solar roof

• 210 m³ seasonal storage

29

Solar building 100 in CH

• 8 Mietwohnungen, 100% Solar

• 276 m² Solardach

• 210 m³ saisonaler Speicher

30

Solar building 100 in CH

(Solar) heat for industrial processes

Potential for solar process heat in Germany

Potential for solar process heat in Germany

≈ 16 TWh/a (3,4 %)

=> 25 GWth

Industry27%

Services, etc.16%

Households28%

Transport29%

<100 C21%

100..200 C8%

200..300 C2%

300..500 C4%

>500 C65%

Heat74%

Cooling1%

mech. Energy22%

IT1%

Lighting2%

32

Principles of system integration

33

Integration on supply level – hot water

• Feed-in solar energy in heating circuit

• High set temperature

• Simple system integration 34

Integration on process level

• Solar energy is directly used for the process

• Different system layouts possible

• Often complex system integration 35

Characteristics of suitable processes

for solar heating

• High and continuous heat demand

• Low temperature level (< 100 °C)

• Maximal demand during summer

• Water as medium for the process

• Storage internally available

nice to have

must

36

Suitable processes

37

• Pre-heating of raw materials

• Cleaning and washing

• Pasteurization, sterilization

• Surface treatment

• Drying

• Boiler feed water

• Supply of hot water or steam

• ...

Processes utilized as storages

Possibility to increase system performance and reduce system costs

• reduction of stagnation during off-times

• reduced volume of solar buffer tank

• …

Feasibility depends on

• maximum temperature

• sedimentation or cleaning periods

• …

38 [www.gz-online.de]

[KRONES]

Electro plating baths

Tunnel pasteurizer for beverages

Tannery in Thailand

• Hot water for processes (30..80 °C)

• 1,3 MW evacuated tube collectors

• 35 m³ storage in containers

39 Source: Aschoff Solar

Copper mine in Chile

• Codelco (CL)

• Copper refining, washing of copper cathods

• 28 MW flat plate collectors

• 4.300 m³ storage

• fsol ≈ 85 %

pictures: Sunmark

41 (Source: Sunmark)

Solar process heat worldwide

42 (Source: IEA SHC Task 49/IV http://shipsurvey.pse.de/)

none in UK yet …

New concept for district heating

44

Low temperature district heating: flow temperature ≈ 40°C,

in operation only during heating season

central heat

pump

ground regeneration

(swimming pool

absorbers)

borehole heat

exchanger

New concept for district heating

• heat supply without gas and oil

• efficient technology

(geothermal heat pump and solar heating system)

• negligible heat losses through distribution (≈ 2,5 %)

„cold“ district heating

(flow temp. ≈40°C)

decentral heating systems

(solar thermal and

electrical heating element )

• small heat stores is mature technology

• several large storages > 3 m³ recently developed

• seasonal storages usually expensive due to few storage cycles/a

• > 10 x cheaper to store heat instead of el. or chemical energy

• new options with large storages and district heating

• R&D

• decreased heat losses (vacuum insulation)

• new materials for container and storage

(increased energy density)

• further decrease costs!

Conclusions

contact: solar@uni-kassel.de

46

Thank you

Prof. Dr. Klaus Vajen, Department of Solar and Systems Engineering

Potential in European countries

48

0

1

2

3

4

5

0

4

8

12

16

Germany Italy Spain Austria Portugal Netherlands

SH

IP p

ote

nti

al

/in

du

str

ial

he

at

de

ma

nd

[%

]

Te

ch

nic

al

SH

IP p

ote

nti

al

[T

Wh

pe

r ye

ar]

SHIP Potential for EU 25 ≈ 70 TWh/a =>

approx. 110 GWth (Source: IEA SHC Task 33/IV)

49

Kombispeicher mit integriertem Brennwertkessel, externem TWW-Wärmeübertrager

und Schichtbeladeeinrichtung, Fa. Solvis

Kombispeicher mit integrierter

Rohrschlange zur TWW-Bereitung, Fa. Viessmann

Tank-in-Tank-

Speicher,

Fa. Wagner

Verschiedene Kombispeicher

Pufferpeicher

Bilder: Wagner & Co. Solartechnik

Hier noch Vor- und Nachteile, Marktanteile etc..

Haben wir hierzu noch Material?

Innovative Weiterentwicklungen für Spezialmärkte

• Innovative Weiterentwicklungen für Spezialmärkte Firma Paradigma Consolar Wagner

Besonderheiten Direkteinbindung des

Kollektors

Behälter aus Polypropylen,

drucklos

Entleerung der Kollektoren

bei Pumpenstillstand

Spezialmarkt Nachrüstung bestehender

Heizungsanlagen

leicht einbringbar,

korrosionsfrei

südliche Länder mit

häufigen Stromausfällen

Solarhaus 50+ : Altbausanierung

Quelle: Sonnenhausinstitut e.V.

• Zweifamilienhaus 273 m²

vorher 6.000 Liter Öl/a

• Sanierung

• Wärmedämmung

• Kollektor 42 m²

• Speicher 4,4 m³

• solarer Deckungsanteil ca. 55%

Prozesswärmekollektoren

53 // Das Kollektorkapitel kommt von Elimar Frank //

Flachkollektoren

54

www.schueco.com

www.solid.at

80-120 C

(Source: E. Frank, SPF HSR)

Vakuumröhrenkollektoren

55

www.ritter-gruppe.com

www.kollektorfabrik.de

120-250 C 80-120 C

(Source: E. Frank, SPF HSR)

Flachkollektoren mit Hochvakuum

56

www.srbenergy.com

www.tvpsolar.com

120-250 C 80-120 C

(Source: E. Frank, SPF HSR)

Parabolrinnenkollektoren

57

www.smirro.de

120-250 C

www.nep-solar.com

(Source: E. Frank, SPF HSR)

Parabolrinnenkollektoren

58

www.soltigua.com

120-250 C

www.solitem.com

(Source: E. Frank, SPF HSR)

Fresnelkollektoren

59

www.chromasun.com

120-250 C

www.industrial-solar.de

(Source: E. Frank, SPF HSR)

Konz. Kollektoren mit fixer Spiegelfläche

• Niedrige Windlast, geringes Gewicht, geringe Höhe (<1m)

• Ca. 40 m² pro Modul

60

www.tsc-concentra.com

(Source: E. Frank, SPF HSR)

120-250 C

Kennlinien Medium-Temp. Kollektoren

61 (Source: E. Frank, SPF HSR)

Kennlinien Medium-Temp. Kollektoren

62 (Source: E. Frank, SPF HSR)

Kennlinien Medium-Temp. Kollektoren

63 (Source: E. Frank, SPF HSR)

Fazit Kollektoren

• Vielzahl unterschiedlicher Kollektoren, grosser Bandbreite

von technischen Spezifikationen

• Viele bereits erfolgreich in Demoanlagen erprobt

• Aktuelle F&E Tätigkeiten im Bereich:

– Dauerbeständigkeit

– Kostenreduktion

– Höhere Leistungsfähigkeit

– Vielseitigkeit bzw. Installationsmöglichkeiten

(Source: E. Frank, SPF HSR)

Hütt Brauerei Kassel

• Mittelständische Brauerei

• 5 GWh für ca. 60.000 hl

• Neues Kochverfahren

• Optimierung

Wärmerückgewinnung

• Integration thermische Solaranlage

• 155 m² FK (110 kW), 10 m³ Pufferspeicher

• 50 €/MWhsol

Hofmühl Brauerei Eichstätt

• Kombination mehrere Verbraucher

– Flaschenreinigung (> 90 °C)

– Warmwasserbereitstellung (60..85 °C)

– Gebäudeheizung (50..60 °C)

• 735 m² CPC (515 kW), 110 m³ Speicher

TU Chemnitz

Betriebserfahrungen:

• Spezifischer Systemertrag: 245 kWh/m²a

• Systemnutzungsgrad: 22 %

• Aktiver Forstschutz:

– Dez 09 – Feb 10: 13.000 kWhth (≈7% des Ertrags) + 1.500 kWhel

– Dez 10 – Feb 11: 6.000 kWhth (≈3% des Ertrags) + 1.800 kWhel

• Ungleichmäßige Durchströmung der Kollektoren

– Dampfbildung

– Frostschutz

Hofmühl Brauerei

67

Solar Dampferzeugung ALANOD GmbH

• Alanod GmbH, Ennepetal

• Direkte Dampferzeugung mit Parabolrinnenkollektoren

• 108 m² Kollektorfläche

• 4 bar, 143 °C

Solare Dampferzeugung ALANOD GmbH

steam drum

recirculation pump

process 1 process 2

feedwater pump

pressure control valve

sola

r fie

ld

conventionalsteam system

condensate return

feedwater

69

Solare Dampferzeugung ALANOD GmbH

Betriebserfahrungen :

• Fehlerfreie und verlässliche Dampfproduktion und

Einspeisung

• Geringer Dampfmassenstrom (niedriger

Systemnutzungsgrad)

• Lange Anfahrzeit (Ausrichtung und Fokussierung)

• Technisch machbar, allerdings hohe Kosten

Verbesserungsmaßnahmen:

• Regelstrategien

• Optimierung von Kollektoren und Peripherie

• Einsatzort südlich der Alpen …

70

Feinkost Merl

• Hot water demand for food production ≈ 30 m³/d, 60°C

• 568 m² flat plate collectors

• 10 x 3 m³ buffer stores

• 280 MWh/a, solar fraction 40 %

• 300 €/m² system costs

• 570 m² Flachkollektoren zu WW-Bereitstellung

• Ein Jahr für die Analyse des Wärmeverbrauchs

• Vier Wochen Installation

• In Betrieb seit April 2010

71

Feinkost Merl

72

Gasdruckregelanlage • Gasentspannung vor lokalem Gasnetz (90..16 bar)

=> Gaserwärmung um ca. 25 K („Gefrierschutz“)

• Niedriges Temperaturniveau (≈ 20..40 °C)

• Nahezu konstanter Bedarf

• 0,2 % des Energieinhalts wird benötigt

• 0,5 bis 4 GWh/a für eine Station

• Solaranlage mit 355 m² FK und 25 m³ Speicher

73

Gasdruckregelanlage

(Source: FSAVE Solartechnik)

Hustert Galvanik (Westfalen)

• Beheizung Vorreinigungsbecken (90 °C)

• Parallele Einbindung zum Kessel

• 220 m² CPC (150 kW) , kein Speicher

• 40 % Deckung

• 450 kWh/m²

(Source: Ritter XL)

70 kWth in Bever (CH), Tout = 190 °C

• 115 m² zur Dampfbereitstellung

76 (Source: E. Frank, SPF HSR)

360 kWth in Saignelegier (CH), Tout = 125 °C

• 630 m² zur Bereitstellung von Heißwasser

77 (Source: E. Frank, SPF HSR)

Berger Fleischwaren

• Sieghartskirchen, Österreich

• WW für Reinigungsprozesse (40..70 °C)

• Vorwärmung Kesselspeisewasser (28..93 °C)

• 1.100 m² FK (770 kW)

• 60 m³ Speicher

• 470 kWh/m²

• 45 €/MWhsol

(Source: S.O.L.I.D.)

Heineken I

• Brauerei Göss, Österreich

• Solarunterstützes Maischen

(80..90 °C)

Speisewasseraufheizung

(15..85 °C)

• 1.500 m² FK (1 MW)

• 200 m³ Pufferspeicher

• Inbetriebnahme

6/2013

(Source: C. Brunner, AEE INTEC)

Heineken II & III

• Brauerei Valencia, Spanien

• Solarunterstütze Tunnelpasteurisation (65..85 °C)

• 1.600 m² FK (1,1 MW), 350 m³ Pufferspeicher

• Mälzerei Vialonga, Portugal

• Trocknung von Grünmalz

• 4.700 m² FK (3,3 MW), 400 m³ Pufferspeicher

• Inbetriebnahme Frühling 2014

• Erwarteter Wärmepreis: ca. 30..40 €/MWhsol

Nestle Waters

• Riad, Saudi Arabien

• Warmwassererzeugung für Flaschenwaschmaschine (70 °C)

• 515 m² FK (360 kW), 15 m³ Speicher

• In Betrieb seit 01/2012

(Source: Millennium Energy Industries)

Prestage Food

• North Carolina, USA

• Warmwassererzeugung (>60 °C) für Reinigung

• Bedarf 570 m³/d

• 7.800 m² FK (5,5 MW), 850 m³ Speicher

• 50 % Deckung

• In Betrieb seit 2012

• Contracting

(Source: FLS Energy)

Gatorade Pepsico

• Phoenix, AZ, USA

• Warmwasser für UO (30..50 °C)

• 3.800 m² FK (2,7 MW) , 115 m³ Speicher

• 1090 kWh/m²

(Source: S.O.L.I.D.)

Gerberei Thailand

• Heißwasserbereitstellung (30..80 °C)

• 1.890 m² China-Röhren

• 35 m³ Speicher

84 (Source: Aschoff Solar)

Kupfermine Chile

• Codelco, Chile

• Elektrolytbeheizung Kupferraffination,

Waschen Kupferkathoden

• 40.000 m² FK (28 MW)

• 4.300 m³ Speicher

• ca. 85 % Deckungsrate

(Source: Sunmark)

86 (Source: Sunmark)

Potential of industrial sectors in Germany

87

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

Te

ch

nic

al S

HIP

Po

ten

tia

l (T

Wh

pe

r y

ea

r)

200..300°C

100..200°C

<100°C incl. HW and SH

(Source: Lauterbach et al., The potential of solar heat for industrial processes in Germany,

Renewable and Sustainable Energy Reviews, in print)

Technic

al S

HIP

Pote

ntial (T

Wh

/a)

<100°C

100..200°C

200..300°C

88

Feldlager

0

10

20

30

40

50

60

70

80

90

100

T in

°C

Heizung alt

Nahwärme

Solar, el.

Heizung neu

und TWW

Heizung alt und

TWW

TWW

Heizung neu

TWW

89

Temperaturniveaus Vorlauf / Rücklauf

Zentrale

Wärmepumpe

Drei

Versorgungsstränge

90

Erdwärmesondenfeld

Grundfläche: rd. 30 m 185 m

Neubausiedlung Feldlager

127 Gebäude,

haupts. EFH

Innovatives Wärmeversorgungskonzept

für die zeitgemäße Siedlung „Zum Feldlager“

Wärmebedarf aus dem Erdwärmesondenfeld inkl. zentrale Wärmepumpe:

Heizung: 1.199,4 MWh/a

Warmwasser: -

Kältebedarf aus dem Erdwärmesondenfeld:

Freie Kühlung: 318,6 MWh/a

Solarthermische Wärmeeinspeisung in das Erdwärmesondenfeld; Umfang

nach Bedarf.

Geplante Systemkonfiguration des EWS-Feldes

nEWS = 92

LEWS = 120 m

nEWS LEWS = 11.040 m

Qsolar = 700 MWh/a

Innovatives Wärmeversorgungskonzept

für die zeitgemäße Siedlung „Zum Feldlager“

Regeneration des Erdreichs mit Solarthermie

Unabgedeckten Kollektoren

(„Schwimmbadabsorber“)

• Sehr günstig und effektiv, ca. 1 ct/kWh Wärme

• Ca. 1.500 m² Fläche, ca. 1 GWh Einspeisung

Dachflächen

• Dächer der MFH: ca. 565 m² (Roter Rahmen)

• Carports Reihenhäuser: ca. 480 m²

(Schwarzer Rahmen)

• Carports MFH: ca. 570 m² (Blauer Rahmen)

• Gesamt verfügbare Fläche: ca. 1615 m²

Preliminary

• heat for space heating

from district heating

transfer station

• domestic hot water from

solar thermal energy and

electrical heating element

New concepts for district heating

Heat supply in the houses

‘cold’ district heating (40°C)

2

1

3

4

5 1 fresh water station

2 solar collector

3 storage with heating element

4 space heating

5 district heating transfer station