Status and roadmap of hybridization technologies technologies … · 2018-11-21 · - Precisive but...

Post on 04-Jul-2020

1 views 1 download

Transcript of Status and roadmap of hybridization technologies technologies … · 2018-11-21 · - Precisive but...

1T-Micro / Motoyoshi

T-Micro

Status and roadmap of hybridization

technologies technologies technologies

relevant to future pixel detectors

Makoto Motoyoshi

Tohoku-MicroTec

Dec. 13, 2017 SPIPIX2017

2T-Micro / Motoyoshi

T-Micro

LSI Technology

- Predictable- Precisive but inflexible

- unpredictableApplication driven technology

- Need flexibility System technologyMany integration methods

3D-IC Technology

Dec. 13, 2017 SPIPIX2017

3T-Micro / Motoyoshi

T-Micro 3DIC Supply chain

Base devices

4 inch Si wafer

6 inch Si wafer

8 inch Si wafer

12 inch Si wafer

Shuttle service (LSI Chip)

Compound Semiconductor (Chip/Wafer) 3D

integration

Dec. 13, 2017 SPIPIX2017

4T-Micro / Motoyoshi

T-MicroUnique Points of 3D-LSI

Conventional SoC3D-SoC

Long Global interconnect

large RC delay, large CP

Length of TSV:1-50mm

-Short global interconnectsmall RC delay, small CP

-High band width-Small form factor

1. Increase of electrical performances

2. Increase of circuit density

3. New Architecture (Hyper-parallel processing, Multifunction, etc)

4. Heterogeneous integration

5. Better yield

Sync.

clock Repartitioning Die

Compound semiconductor

TSV:Through Silicon Via

Dec. 13, 2017 SPIPIX2017

5T-Micro / Motoyoshi

T-Micro

5

WSTS: World Semiconductor Trade Statistic Inc. (2017)

Semiconductor Market Forecast

‘11 ‘12 ‘13 ‘14 ‘15 ‘16

3000

2000

1000

2500

1500

500

0

3500

M$

‘17 ‘18 ‘19 ‘20 ‘21

4000

4500

3D-IC

WSTS data

‘22 ‘23 ‘24 ‘25

DRAM, Flash

MEMS device

Sensor /Detector

6T-Micro / Motoyoshi

T-Micro

Source: Cliff Hou (TSMC), ISSCC 2017 (Plenary)

Chip & System Integration Trends for better PPA & System Performance

Dec. 13, 2017 SPIPIX2017

7T-Micro / Motoyoshi

T-Micro

Key technologies of 3D-IC Integration

Chip Alignment

Micro bump TSV (Through Silicon Via)

Wafer thinning

N+ N+

N+ N+

N+ N+

P+ P+

P+P+

P+P+

SiO2

SiO2 SiO2 SiO2

SiO2

SiO2SiO2

Pch-MOSFETNch-MOSFET

Pch-MOSFET

Nch-MOSFET

Si Substrate

NWell

PWell PWell

NWell

Over coat

metal metal

metal

metal

Top tier

Middle tier

Bottom tier

775μm 50~10μm

satisfy LSI reliability test

Dec. 13, 2017 SPIPIX2017

8T-Micro / Motoyoshi

T-Micro

Via Last

Aft

er

BE

OL

Front Via

450~350ºC >

Handle

Wafer

Back Via

Via Middle

Aft

er

MO

S

Aft

er

1st

Inte

rlayer

600ºC >

Befo

re M

OS

Allowable max. process

temperature1000ºC >

Via First

TSV process classification

TSV

step

Well

IsolationMOS Interlayer

FEOL BEOL

MOS

process

SOI

Handle

Wafer

Stacking

Handle

Wafer

Handle

glass

Thinning

Dec. 13, 2017 SPIPIX2017

9T-Micro / Motoyoshi

T-Micro

Si

Multi-levelmetallization

Organic film (Adhesive) Oxide Metal Microbump

Adhesive Bonding Oxide Fusion Bonding Metal (Cu) Fusion Bonding

Wafer Bonding Methods -1

Si

Multi-levelmetallization

Si

Multi-levelmetallization

Metal (Cu/SnAg) Eutetic Bonding

Dec. 13, 2017 SPIPIX2017

10T-Micro / Motoyoshi

T-Micro

Microbump

Adhesive/ Metal Bonding

Oxide

Oxide/ Metal Bonding

(Hybrid bonding)

Si

Multi-levelmetallization

Si

Multi-levelmetallization

Organicfilm

Microbump

Wafer Bonding Methods -2

Dec. 13, 2017 SPIPIX2017

11T-Micro / Motoyoshi

T-Micro

Dec. 13, 2017 SPIPIX2017

T-Micro

12T-Micro / Motoyoshi

T-MicroHBM (High Band Width Memory)

Commercialized 3D DRAM

Source: Kyomin Sohn (Samsung), ISSCC2016

Dec. 13, 2017 SPIPIX2017

13T-Micro / Motoyoshi

T-MicroCross-sectional View and Chip Photo of HBM

Source: Kyomin Sohn (Samsung), ISSCC2016

Dec. 13, 2017 SPIPIX2017

14T-Micro / Motoyoshi

T-Micro

Source: Kyomin Sohn (Samsung), ISSCC2016

Dec. 13, 2017 SPIPIX2017

15T-Micro / Motoyoshi

T-Micro

Top part

BI-CIS

Middle part

DRAM

Bottom part

Logic

Sony / 3D-Stacked Image Sensor

Cu-Cu Via

3um wide

14um pitch

Cu-Cu Via

3um wide

6um pitch

Source: T. Haruta (Sony) ISSCC2017Source: Chipworks, April, 2016

Sony’s first CIS module(IMX260) product

with Cu-Cu Hybrid bonding

Dec. 13, 2017 SPIPIX2017

16T-Micro / Motoyoshi

T-Micro

High Density Memory Systens using Si Interposer

Dec. 13, 2017 SPIPIX2017

17T-Micro / Motoyoshi

T-Micro

Fury graphics card : $649, June, 2015

Si Interposer

HBM (1GB, 1GbX4 Tier)

Memory Interface ; 4096bit

Memory Bandwidth ; 512GB/s

9900mm2

<4900mm2

AMD reveals HBM-powered Radeon Fury graphics

cards,

new R300-series GPUs

Dec. 13, 2017 SPIPIX2017

18T-Micro / Motoyoshi

T-Micro

MEMS chipSensor chipCMOS RF-ICMMICPower ICControl ICLogic LSIFlash memoryDRAMSRAMMicroprocessor

Metal microbumpThrough-Si via (TSV)

3D Super Chip

New chip stacking

technologies are

required

Different

chip size

Different devices

Different materials

Highly Integrated Heterogeneous 3D Integrated System1.3

mm

38-layer chip stack

Dec. 13, 2017 SPIPIX2017

19T-Micro / Motoyoshi

T-Micro

Dec. 13, 2017 SPIPIX2017

Fine Pitch TSV

By Plating

20T-Micro / Motoyoshi

T-Micro

Dec. 13, 2017 SPIPIX2017

Novel Hybrid Bonding Features

for Ultra-High Density 3D/2.5D Integration

21T-Micro / Motoyoshi

T-Micro

Dec. 13, 2017 SPIPIX2017

Novel Hybrid Bonding Features

for Ultra-High Density 3D/2.5D Integration

22T-Micro / Motoyoshi

T-Micro

Dec. 13, 2017 SPIPIX2017

Inorganic Anisotropic Conductive Film

23T-Micro / Motoyoshi

T-Micro

Dec. 13, 2017 SPIPIX2017

Hybrid Bonding using Cu Nano-Pillar

24T-Micro / Motoyoshi

T-Micro

Dec. 13, 2017 SPIPIX2017

Hybrid Bonding using Cu Nano-Pillar

25T-Micro / Motoyoshi

T-Micro

Dec. 13, 2017 SPIPIX2017

Multi-Chip FPGA TEG Modules

26T-Micro / Motoyoshi

T-Micro

Dec. 13, 2017 SPIPIX2017

300mm FPGA TEG modules Fabricated by

Multichip-to-Wafer 3D Stacking

27T-Micro / Motoyoshi

T-Micro

Dec. 13, 2017 SPIPIX2017

Chip-to-chip,Chip-to-Wafer bonding

using Au cone bump

28T-Micro / Motoyoshi

T-MicroX-ray CT Image

M5

M4

M3

M2

M1

M1

M2

M3

M4

M5

W plug

AlCu

AlCu

Au Cone bump connection

28

29T-Micro / Motoyoshi

T-MicroAu Cone bump formation

29

Bump litho.

NpDSi-sub

Photoresi

st

Hole pattern

Top view after deposition

Close bump hole

Au/barrier

metal/SiO2

Si

After resist lift-off

HeHe He He

30T-Micro / Motoyoshi

T-MicroMaterial cost of Au bump

2.5μm

2.5μmφ

106 micro bumps

30μmφ

Au wire

0.57cm

Reuse the deposited Au on photoresist

Dec. 13, 2017 SPIPIX2017

31T-Micro / Motoyoshi

T-Micro

Cylinder Bump for fragile material

Dec. 13, 2017 SPIPIX2017

32T-Micro / Motoyoshi

T-Micro

CdTe

CdTe surface after CdTe/Si-ROIC bonding with Au bump

Dec. 13, 2017 SPIPIX2017

33T-Micro / Motoyoshi

T-MicroBump bonding with cylinder Au bumps

Thin

(easy to deform)

Cylinder bump

Si-sub

Fragile material

Si-sub

Dec. 13, 2017 SPIPIX2017

34T-Micro / Motoyoshi

T-Micro

Cylinder bump

3.5μm

photoresist

Au Sputter Au

Short Throw(SL)Au spatter SiO2

AuAu electrode

after photoresist lift-off

Bump hole patterning

SiO2

Bump bonding with cylinder Au bumps

Dec. 13, 2017 SPIPIX2017

35T-Micro / Motoyoshi

T-Micro

Si ROIC

CdTe

SEM cross sectional view

Dec. 13, 2017 SPIPIX2017

36T-Micro / Motoyoshi

T-Micro

Process cost reduction

for the Heterogeneous Integration

Dec. 13, 2017 SPIPIX2017

37T-Micro / Motoyoshi

T-Micro

Need a high speed COW technique with the high alignment

accuracy and the practical process cost

3D stack approaches

CtC

(chip to chip)

CtW

(chip to wafer)

WtW

(wafer to wafer)

stack dicing dicing

Process cost High LowHigh ~ Middle

Stack chips with

different chip size possible possible Impossible

Chip alignment

accuracy

<0.5μm (3σ)

Difficult from economical stand point possible ?

MiscellaneousNeed high yield wafers

Ytotal=YW#1 x・・・・・x YW#n

Need same size wafers

Dec. 13, 2017 SPIPIX2017

38T-Micro / Motoyoshi

T-Micro

(a)Current 3D Production

Economy of 3D LSI manufacturingT

hro

ug

h p

ut

3D LSI chip

LSI Wafer process 3D integration

~10k chips/hour100 chips/hour

pro

cess 1

pro

cess 2

pro

ce

ss

3

pro

cess n

-1

pro

ce

ss

n

12”φ

wafer

8”φ

wafer

6”φ

wafer

2”φ

wafer

Stack one-by-one

IP11IP12

IP1n

IP21

IP22

IP2n

IP

IPIP

IPm2 IPm1

IPmn

IPm3

IP

IPIP・・・・・・・・・・・・・・・・・・・・・・・

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

Dec. 13, 2017 SPIPIX2017

39T-Micro / Motoyoshi

T-Micro

(b)Our Target

Economy of 3D LSI manufacturing

Th

rou

gh

pu

t

3D-IC chip

LSI Wafer process 3D integration

10k chips/hour 100 chips/hour

(a)Current 3D ProductionT

hro

ug

h p

ut

3D-IC chip

10k chips/hour 10k chips/hour

pro

ce

ss

1

pro

ce

ss

2

pro

ce

ss

3

pro

ce

ss

n-1

pro

ce

ss

n

pro

ce

ss

1

pro

ce

ss

2

pro

ce

ss

3

pro

ce

ss

n-1

pro

cess n

Dec. 13, 2017 SPIPIX2017

40T-Micro / Motoyoshi

T-Micro

Self-assembly Technique

“Super Chip”

Dec. 13, 2017 SPIPIX2017

41T-Micro / Motoyoshi

T-MicroSelf-assembly technique

hydrophilic areahydrophobic area

5mm

droplet

Dec. 13, 2017 SPIPIX2017

42T-Micro / Motoyoshi

T-Micro

Targetinterposer

wafer

New Reconfigured Wafer-to-Wafer 3D IntegrationReconfigured waferKnown good die (KGD)

3D super chipCarrier waferLSI wafer with/without TSV

1st layer chip

2nd layer chip

3rd layer chip

Failure die

Dec. 13, 2017 SPIPIX2017

43T-Micro / Motoyoshi

T-Micro

2. Self-assembly

DC supply

+ ‐

DC supply

00

SAE carrier

KGD

SAE carrier

Bipolar electrode

Top view

Water

SAE carrier

Hydro-philic

3. Electrostatic bondingComb-type

bipolar electrode

5. Electrostatic debonding

Dielectric layer

Cross-sectional view

CA: < 30°

Self-Assembly & Electrostatic (SAE) Bonding

CA: > 110°

Assembly area(hydrophilic)

Surrounding area(hydrophobic)

4. Inverse-voltage apply

Top view

Cross-sectional view

SAE carrier

Hydro-phobic

Hydro-phobic

KGD

1. Face-up KGD release

Self-assembled KGDs

KGD

Dec. 13, 2017 SPIPIX2017

44T-Micro / Motoyoshi

T-Micro

Dec. 13, 2017 SPIPIX2017

Thank you for your kind attention.

If there’s anything you are unclear on, please feel free to contact me. motoyoshi@t-microtec.com