STATOIL-FAPESP WORKSHOP June 2017 Water...

Post on 01-Aug-2020

0 views 0 download

Transcript of STATOIL-FAPESP WORKSHOP June 2017 Water...

STATOIL-FAPESP WORKSHOPJUNE 2017

WATER HANDLING

Claudio A Oller Nascimento

CEPEMA-USP

Creating a New Environment for Environmental Research

Centro de Capacitação e Pesquisa em Meio Ambiente

Cubatão, SP

Cubatão- São Paulo- Brazil

“Environmental Compensation” by Petrobrás:

CEPEMA Installations (Donated to USP):

Constructed area 4500 m2 (US$ 10 M)

Land 20.000 m2

Initial Operating Fund

US$ 2,5 M

CEPEMA-USP Cubatão, SP

CEPEMA - USP

Um novo Ambiente para a Pesquisa do Meio AmbienteA New Environment for Environmental Research

Cubatão, SP

CEPEMA - USP

Um novo Ambiente para a Pesquisa do Meio AmbienteA New Environment for Environmental Research

Cubatão, SP

CEPEMA - USP

Um novo Ambiente para a Pesquisa do Meio AmbienteA New Environment for Environmental Research

Cubatão, SP

CEPEMA - USP

Um novo Ambiente para a Pesquisa do Meio AmbienteA New Environment for Environmental Research

Cubatão, SP

The Mission of CEPEMA-USP

Create a multi-disciplinary environment that focuses University research on the solution of real-world environmental problems, in

harmony with the public and private sectors of society.

CEPEMA

Fixed Nucleus of Researchers

• Chemical Engineers

• Chemists

• Biochemists

• Pharmacists

• Microbiologists

• Environmental Engineers

• Geologists

• Geophysicists

• Biologists

• Mathematicians

• Geneticists

• Veterinaries

Petroleum industry

PETROLEUMPRODUCTION

PETROLEUMPROCESSING

OIL+WATER PRODUCTS

WATER

WST WASTE

Exploration/Production Processing Environmental issue

WATER REUSE ?

Discard of producedwaters in petroleumfields in the State ofRio Grande do Norte

100.000 m3/day

CONAMA N°357/05

Environmental issue

Environmental legislations

CONAMA N°393/07 – specific to the

continuous discard of water from

processing or production in off shore

plataforms of petroleum and natural gas

20 mg/LTOGMAXIMUMLIMIT

29 mg/LTOG

MONTHLIMIT

42 mg/LMAXIMUMLIMIT

PROPOSAL OF REDUCTION

MONITORING OF THE PRODUCED WATER

Environmental issue

Special and Biological

treatments

removal

removalremoval

Petroleum effluent

Oil

Free

Conventional separation

processes

Dispersed DissolvedSoluble organic

compounds

BTEXPhenol

Flotation or

centrifugation

+ chemical products

removal

Emulsified

ROUTES

BIOLOGICAL

CHEMICAL/PHOTOCHEMICAL

Fe(OH)2+ + 2H+ Fe(OH)2+ + H+

+ 2H2O + H2O

Fe(OH)+ + HO•

Fe3+ + H2O Fe(OH)2+ + H+ Fe3+ + 2H2O Fe(OH)2+ + 2H+Fe(OH)2

+ + hn Fe(OH)+ + HO• Fe(OH)2+ + hn Fe2+ + HO•Fe2+ + H2O2 Fe3+ + HO− + HO•

Fe2+ + H2O2 Fe3+ + HO− + HO•

Fe2+ + HO•

+ h + h

HO• + RH H2O + R •

Photo-Fenton: Fe2+/H2O2/UV

Fe2+ H2O2Mixturetank

pump Fluorescent blacklight lamp (40W) Quartzo tube

(A = 0,05 m2)

Light path

Lamp

Tube

Reflector

Experimental set-up

Parabolic tubular photochemical

reactor with UVA lamps (scheme)

Effluent

ParabolicReflector

Experimental set-up

Parabolic tubular photochemical

reactor with UVA lamps (view)

Fe2+ H2O2

Electro-pump

wastewater

Quartzo tube(A = 0,05 m2)

Solar parabolic photoreactor

Inclination 6°

North

Parabolicreflector

Experimental set-up

Photochemical degradation of phenol (150 mgC/L)[Fe2+] = 1 mM; [H2O2] = 100 mM

0

20

40

60

80

100

0 20 40 60 80 100 120

% T

OC

Deg

rad

ed

Time (min)

Fenton 0,05m2

0,20m20,15m2

0,10m2

0

20

40

60

80

100

0 20 40 60 80 100 120

% T

OC

De

grad

ed

Time (min)

0,05m2

0,20m20,15m2

0,10m2

Fenton

Blank

UVA Solar

0.05 m2 = 1 quartzo tube

Photochemical degradation of phenol (150 mgC/L)[Fe2+] = 1 mM; [H2O2] = 100 mM

UVA Solar

0

20

40

60

80

100

0 0,05 0,1 0,15 0,2

% T

OC

De

grad

ed

Irradiated area (m2)

30 min 60 min 120 min

0

20

40

60

80

100

0 0,05 0,1 0,15 0,2

% T

OC

De

grad

ed

Irradiated area (m2)

15min 30min 45min

Photochemical degradation of phenol (150 mgC/L)[Fe2+] = 1 mM; [H2O2] = 100 mM

VS

0

20

40

60

80

100

0 0,05 0,1 0,15 0,2

% T

OC

de

grad

ed

Irradiated area (m2)

15 min

UVA Solar

0

20

40

60

80

100

0 0,05 0,1 0,15 0,2

% T

OC

de

grad

ed

Irradiated area (m2)

30 min

UVA Solar

Photochemical degradation of phenol (150 mgC/L)[Fe2+] = 1 mM; [H2O2] = 100 mM

VS

0

20

40

60

80

100

0 0,05 0,1 0,15 0,2

% T

OC

de

grad

ed

Irradiated area (m2)

45 min

UVA Solar

0

20

40

60

80

100

0 0,05 0,1 0,15 0,2

% C

OT

De

grad

ado

Área irradiada (m2)

60 min

UVA Solar

Degradation of hydrocarbons in the oil-field produced water

water+oil

Demulsifier

Washing Tank(density separation)

oil To UPGN (unity of natural gas processing)

BufferTank

Water+Oil

± 1400 ppm of oil

Water-oil separator± 200 ppm of oil

PolielectrolyteMixing Tanks

Flotator

± 20 ppm of oil

Sand Filters

± 2 ppm of oilTreated water

Unity of treatment (ETA)

Photochemical degradation of oil field produced watertreated

VS

Photochemical degradation of oil field produced watertreated in Guamaré ETE - [Fe2+] = 1 mM; [H2O2] = 100 mM

0

10

20

30

40

50

0

20

40

60

80

100

0 20 40 60 80 100 120

CO

T (mgC

/l)

% C

OT

De

grad

ed

Time (min)

%COT, UVA %COT, Solar

COT, UVA COT, Solar

45,5%

76,0%

[H2O2] = 100mM

Airrad. = 0,2m2

[Fe2+] = 1mM

Photochemical degradation of oil field produced watertreated in ETA (oil field) - [Fe2+] = 1 mM; [H2O2] = 50 mM

Oil field produced water pos-flotator

RADIATION UVA

%COT degradadedCOT (mgC/L)

[H2O2] = 50mM Airrad. = 0,2m2[Fe2+] = 1mM

100%

Photochemical degradation of oil field produced watertreated in ETA (oil field) - [Fe2+] = 1 mM; [H2O2] = 50 mM

Oil field produced water pos-flotator

RADIATION UVA%COT degradadedCOT (mgC/L)

[H2O2] = 50mM Airrad. = 0,2m2[Fe2+] = 1mM

Xylene: flotation+photochemistry

1ST STEP: INDUCED AIR FLOTATION (IAF)

1º STEP: FLOTATION

TACF PPPP **

Onde: Pc = Probability of collision;

Pa = Probability of adhesion

Pt = Probability of transport

Molar mass

(g. mol-1)HLB

CMC

(g.L-1)CMC (M)

Thermal

decomposition

temperature (ºC)

494 12.5 0.0272 5.51 E-05 398

HOCHCHOHCn222512

1º STEP: FLOTATIONHydrophobic

groupHydrophilic

group

Ar comprimido Sample

Porous plate

Trap

Collector foam

1º STEP: FLOTATION

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60

Eff

icie

ncy

Time (min)

0,0 g/L

0,004 g/L

0,008 g/L

0,012 g/L

0,017 g/L

0,021 g/L

0,025 g/L

0,029 g/L

0,033 g/L

0,050 g/L

0,066 g/L

REMOVAL EFFICIENCY – EO 7

DETERMINATION OF KINETIC CONSTANT

n

xylene

xyleneCk

dt

dC. tk

C

C

t

.ln 0

Assuming ( n = 1):

0

0,8

1,6

2,4

3,2

0 5 10 15

ln (

Co/C

)

Time (min)

0,0 g/L

0,004 g/L

0,008 g/L

0,012 g/L

0,017 g/L

0,021 g/L

0,025 g/L

0,029 g/L

0,033 g/L

0,050 g/L

0,060 g/L

0,025

0,029

0,033

0%

20%

40%

60%

80%

100%

0,00 0,02 0,04 0,06 0,08

Eff

icie

ncy

[EO 7] g/L

CMC

CONCENTRATION X EFFICIENCY – EO 7

2º STEP:

PHOTO-FENTON

Conditions: Lamp de 400W; 300 mM H2O2 and 1 mM Fe 2+

PRELIMINARY TESTS OF DEGRADATION OF XYLENE

0,0

0,2

0,4

0,6

0,8

1,0

0 50 100

TO

C/T

OC

o

Time (min)

Fase líquida

Fase vapor

Liquid phase

Vapor phase

0

20

40

60

80

100

120

140

0 20 40 60 80 100

TO

C (p

pm

)

Time (min)

00

01

02

03

04

05

06

PHOTODEGRADATION OF XYLENE

Exp. [Fe II] [H2O2] %1 0,26 150 89,02 0,26 40 32,83 1,00 40 10,8

Exp. [Fe II] [H2O2] %4 1,00 150 90,55 0,63 95 67,56 0,63 95 62,4

PHOTODEGRADATION

OF SURFACTANTS

EXPERIMENTAL DESIGN

xi -1,41 -1 0 1 1,41

[Fe2+] mM x1 0,025 0,067 0,169 0,27 0,312

[H2O2] mM x2 2,553 6,75 16,875 27 31,19

Exp.[Fe II]

mM[H2O2] mM

Efficiency (%)

45 min. 60 min. 90 min.

1 0,03 16,88 77 95 942 0,31 16,88 78 84 873 0,17 2,56 1 17 414 0,17 31,19 87 100 1005 0,17 16,88 82 94 996 0,17 16,88 86 97 977 0,17 16,88 85 95 958 0,07 27,00 95 99 999 0,07 6,75 58 70 7110 0,27 6,75 56 69 7511 0,27 27,00 90 100 100

RESULTS

-,917423

-1,0939

-3,38427

-20,947

33,4493

p=,05

Standardized Effect Estimate (Absolute Value)

1Lby2L

(1)[Fe II](L)

[Fe II](Q)

[H2O2](Q)

(2)[H2O2](L)

RESULTS

21

2

22

2

11 66,098,1111,1793,155,013,97% xxxxxx

100

90

80

70

60

50 -1,4 -1,2 -1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4

[Fe II]

-1,4

-1,2

-1,0

-0,8

-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

[H2

O2

]

RESULTS

Exp. [Fe II] mM [H2O2] mMEfficiency (%)

45 min 60 min 90 min

4 0,17 31,19 87 100 10011 0,27 27,00 90 100 100O1 0,03 21,94 91 98 100O2 0,03 21,94 93 95 99

INTEGRATION:

IAF AND PHOTO-FENTON

IAF + FOTO-FENTON PROCESS

PHOTO-FENTON

semi-continuous

addition of

reagents in:

0, 20 e 45 min.

0%

20%

40%

60%

80%

100%

0 5 10 15 20 25 30 35 40 45

Eff

icie

ncy

Time (min)

Flotation A - 15 min

Photo-Fenton A

Flotation B - 5 min

Photo-Fenton B

Photo-Fenton C - sat

Photo-Fenton D - over sat.

Integration of processes induced air flotation and photo-Fenton for treatment ofresidual waters contaminated with xyleneSyllos S. da Silvaa, Osvaldo Chiavone-Filhoa,∗, Eduardo L. de Barros Netoa, Claudio A.O. Nascimento bJ.Hazardous Material 199-200920120 151-157

Advanced oxidation processes and their application in the petroleum industry: a Review L. N. Mota,L. F. Albuquerque, L. T. C. Beltrame,. Chiavone-Filho, Machulek Jr., C. A. O. Nascimento Brazilian J of Petrl Gas 2008, 2(3), 122-142Photo-Fenton degradation of wastewater containing organic compounds in solar reactors. IBS Will, JEF Moraes, A Teixeira, R Guardani, CAO Nascimento; Separation and Purification Technology 34 (1), 51-57, 2004. Citations: 125Treatment of saline wastewater contaminated with hydrocarbons by the photo-Fenton process. JEF Moraes, FH Quina, CAO Nascimento, DN Silva, O Chiavone-Filho; Environmental science & technology 38 (4), 1183-1187, 2004. Citations;: 120Modeling the kinetics of a photochemical water treatment process by means of artificial neural networks. S Göb, E Oliveros, SH Bossmann, AM Braun, R Guardani, CAO Nascimento; Chemical engineering and processing 38 (4-6), 373-382; 1999. Citations:72

Some Publications

47

48Título da apresentação – 01/12/2010

(opcional)

Aknowledgements

Natal / Rio Grande do Norte / Brasil