shashi sdh

Post on 16-Nov-2014

1.689 views 3 download

Transcript of shashi sdh

1

Confidential Information of Huawei. No Spreading without Permission.

OTA000004 SDH Principle

Issue 2.1

Internal Use

ObjectivesObjectives

Upon completion of this course, you will be able to:

Understand the basic of SDH multiplexing standard

Know the features, applications and advantages of SDH based equipment

Internal Use

Chapter1 SDH Overview

Chapter2 Frame Structure & Multiplexing

Methods

Chapter3 Overhead & Pointers

Chapter4 Logical Functional Blocks

Internal Use

ReferencesReferences

SDH Principle Manual

ITU-T G.701, G.702, G.707

Internal Use

What is SDH?---- Synchronous Digital Hierarchy---- It defines frame structure, multiplexing method, digital rates hierarchy and interface code pattern.

Emergence of SDHEmergence of SDH

Why did SDH emerge?---- Need for a system to process increasing amounts of information.---- New standard that allows mixing equipment from different suppliers.

Internal Use

Disadvantages of PDHDisadvantages of PDH

1. Interfaces

Electrical interfaces--- Only regional standards. 3 PDH rate hierarchies for PDH: European (2.048 Mb/s), Japanese, North American (1.544 Mb/s).

Optical interfaces--- No standards for optical line equipments, manufacturers develop at their will.

Plesiochronous Digital Hierarchy

Internal Use

Disadvantages of PDHDisadvantages of PDH

2. Multiplexing methods

Asynchronous Multiplexing for PDH

The location of low-rate signals in high-rate signals is not regular nor predictable.

Internal Use

Disadvantages of PDHDisadvantages of PDH

140 Mb/s34 Mb/s 34 Mb/s

8 Mb/s 8 Mb/s

2 Mb/s

140 Mb/s

de-multiplexer

de-multiplexer

de-multiplexer multiplexer

multiplexer

multiplexer

level by levelNot suitable for huge-volume transmission

Internal Use

Disadvantages of PDHDisadvantages of PDH

3. OAM function--- Weak Operation, Administration & Maintenance function.

4. No universal network management interface--- Capabilities to setup a TMN is limited.

Telecommunications Management Network

Internal Use

Advantages of SDHAdvantages of SDH

1. Interfaces

Electrical interfaces--- Can be connected to all existing PDH signals.

Optical interfaces--- Can be connected to multiple vendors’ optical transmission equipments.

Internal Use

Advantages of SDHAdvantages of SDH

---Basic rate is STM-1, other rates are multiples of the basic rate

---PDH signal to/from SDH signal---Low level SDH to/from high level SDH

2. Multiplexing method

STM-1

STM-1

STM-1

STM-4STM-1

Low rate SDH High rate SDH

622 Mbit/s 622 Mbit/s

2 Mbit/s

De-m

ultiplexing

Multiplexing

Internal Use

Advantages of SDHAdvantages of SDH

×4STM-1 155 Mb/s

STM-4 622 Mb/s

STM-16 2.5 Gb/s

×4 ×4STM-64 10 Gb/s

Low rate SDH to higher rate SDH

Internal Use

Advantages of SDHAdvantages of SDH

byte interleaved multiplexing method

4:1

STM-1A

STM-1B

STM-1C

STM-1D

A BDCBADCBA …STM-4

One Byte from STM-1 B

Internal Use

Advantages of SDHAdvantages of SDH

--- Synchronous multiplexing method and flexible mapping structure

--- Use multistage pointer to align PDH loads in SDH frame, thus, dynamic drop-and-insert capabilities

Internal Use

Advantages of SDHAdvantages of SDH

3. OAM function

--- Abundant overheads bytes for operation, administration and maintenance.

--- About 5% of the total bytes are being used

Internal Use

Advantages of SDHAdvantages of SDH

4. Compatibility

package

transmit

SDHnetwork

unpacking

PDH, SDH, ATM, FDDI Signals

packing

STM-N STM-N package

receive ProcessingProcessing

PDH, SDH, ATM, FDDI Signals

Internal Use

Disadvantages of SDHDisadvantages of SDH

Low bandwidth utilization ratio.

64 E1139.264 Mbit/sE416 E134.368 Mbit/sE3128 E08.448 Mbit/sE232 E02.048 Mbit/sE1

One 64 kbit/s64 kbit/sE0ChannelsDigital Bit RateSignal

4032 E1, 192 E3, 64 E4STM-6410 Gbit/s9953.28Mbit/s1008 E1, 48 E3 or 16 E4STM-162.5 Gbit/s2488.32Mbit/s252 E1, 12 E3 or 4 E4STM-4622 Mbit/s622.08 Mbit/s

63 E1, 3 E3 or 1 E4STM-1155 Mbit/s155.52 Mbit/sSDH CapacitySDHAbbreviatedBit Rate

PDH Hierarchy

SDH Hierarchy

Internal Use

QuestionsQuestions

1. Why did SDH emerge?2. What are the advantages & disadvantages of

SDH?3. What is the basic transmission rate in SDH

and what are the other common ones?

Time to thinkSoon Coffee Time!

Internal Use

Chapter1 SDH Overview

Chapter2 Frame Structure & Multiplexing

Methods

Chapter3 Overhead & Pointers

Chapter4 Logical Functional Blocks

Internal Use

Part 2 SDH Frame Structure Part 2 SDH Frame Structure

From ITU-T G.707:

1. One frame lasts for 125 microseconds (8000 frames/s)

2. Rectangular block structure 9 rows and 270 columns(STM-1)

3. Each unit is one byte (8 bits)4. Transmission mode: Byte

by byte, row by row, from left to right, from top to bottom

Frame = 125 us

Bit rate of STM-1= 9*270*8*8000

123456789

270 Columns

9 rows

Internal Use

SDH Frame StructureSDH Frame Structure

Three parts:1. Information

Payload2. Section

Overhead3. AU-PTR

Frame = 125 us

9

MSOH

AU-PTR Information Payload

RSOH123456789

270 Columns

9 rows

Internal Use

Information PayloadInformation Payload

Information Payload

√ Also known as Virtual Container level 4 (VC-4)√ Used to transport low speed tributary signals√ Contains low rate signals and Path Overhead (POH)√ Location: rows #1 ~ #9, columns #10 ~ #270

9

MSOH

AU-PTRPayload

RSOH

270 Columns

HP

OH

1

package

package

low rate signal

LPOH, TU-PTR

LPOH, TU-PTR

9 rows

Data package

Internal Use

Section OverheadSection Overhead

Fulfills the section layer OAM functions

9

270 Columns

9 rows

Types of Section Overhead

1. RSOH monitor the regenerator section

2. MSOH monitor the multiplexing section

Location:1. RSOH: rows #1 ~ #3,

columns #1 ~ #92. MSOH: rows #5 ~ #9, columns

#1 ~ #9

123

56789

MSOH

AU-PTR Information Payload

RSOH

Internal Use

AUAU--PTRPTR

9

MSOH

AU-PTR Information Payload

RSOH

270 Columns

9 rows4

Indicates the first byte of VC4

► Location: row #4, columns #1 ~ #9

Internal Use

SDH MultiplexingSDH Multiplexing

SDH Multiplexing includes:

√ Low to high rate SDH signals (STM-1 STM-N)√ PDH to SDH signals (2M, 34M & 140M STM-N)√ Other hierarchy signals to SDH Signals (ATM STM-N)

Some terms and definitions:► Mapping► Aligning► Multiplexing

Internal Use

SDH Multiplexing StructureSDH Multiplexing Structure

STM-1 AU-4

TU-3

AUG-1

TUG-3 VC-3 C-3

VC-4 C-4

TU-12 VC-12 C-12

TUG-2

×1 ×1

×3

×1

×7

×3

139264 kbit/s

34368 kbit/s

2048 kbit/s

Pointer processing

Multiplexing

MappingAligning

AUG-4

AUG-16

AUG-64

STM-4

STM-16

STM-64

×1

×1

×1

×4

×4

×4

Internal Use

SDH Tributary Multiplexing (140M)SDH Tributary Multiplexing (140M)

140 Mbit/s to STM-N

140M Rate adaptation

Add HPOH

C4

9

1 260125 μs

1

Next page

Mapping

VC4

1

9

125μs1 261

HPOH

Internal Use

SDH Tributary Multiplexing (140M)SDH Tributary Multiplexing (140M)

AddAU-PTR

AddSOH

Aligning

AU-PTR

AU-4

10 270

×1

AUG-1

MultiplexingAUG-N

1 270

RSOH

MSOH

InfoPayloadAU-PTR

9

STM-1

1 270X N

9

STM-N

AddSOH

One STM-1 frame can load only one 140Mbit/s Signal

Internal Use

SDH Tributary Multiplexing (34M)SDH Tributary Multiplexing (34M)

34 Mbit/s to STM-N

34M Rate Adaptation

Add LPOH

C3

1 849

125μs

1 1

9

VC3

LPOH

125μs1 85

Next page

Mapping

Internal Use

SDH Tributary Multiplexing (34M)SDH Tributary Multiplexing (34M)

1st align

Fillgap

×3

86

TU-3

1

H1H2H3

1

9

Aligning

1 861

9

H1H2H3

R

TUG-3

Multiplexing

POH

R R

VC-4

9

11 2613

Same procedureas 140M

Internal Use

SDH Tributary Multiplexing (2M)SDH Tributary Multiplexing (2M)

2 Mbit/s to STM-N

2M Nextpage

125μs

1 4

C12

1

9

LPOH

VC121 4

1

9

RateAdaptation

Add LPOH

Add TU-PTR

Mapping Aligning

TU12

1 41

9

TU-PTR

Internal Use

SDH Tributary Multiplexing (2M)SDH Tributary Multiplexing (2M)

×3

1 12

TUG-2

1

9

×7

Multiplexing

R R

TUG-3

1 86

1

9

Multiplexing Same procedureas 34M

Internal Use

QuestionsQuestions

1. What are the main parts of the SDH Frame structure?

2. What is the transmission speed of STM-4? How to calculate it?

Internal Use

GlossaryGlossary

► Mapping - A process used when tributaries are adapted into VCs by adding POH information

► Aligning - This process takes place when a pointer is included in a Tributary Unit (TU) or an Administrative Unit (AU), to allow the 1st byte of the VC to be located

► Multiplexing - This process is used when multiple low-order path signals are adapted into a higher-order path signal, or when high-order path signals are adapted into a Multiplexing Section

Internal Use

GlossaryGlossary

C = ContainerVC = Virtual ContainerTU = Tributary UnitAU = Administrative UnitTUG = Tributary Unit GroupAUG = Administrative Unit GroupSTM = Synchronous Transfer Module

Internal Use

Chapter1 SDH Overview

Chapter2 Frame Structure & Multiplexing

Methods

Chapter3 Overhead & Pointers

Chapter4 Logical Functional Blocks

Internal Use

Part 3 Section Overheads Part 3 Section Overheads

D3∆D2∆∆D1

F1∆E1∆∆B1

J0A2A2A2A1A1A1

AU-PTR

E2M1S1D12D11D10D9D8D7D6D5D4

K2K1B2B2B2

RSOH

MSOH

∆ = Media dependent bytesSTM-1

Internal Use

A1 and A2 BytesA1 and A2 Bytes

Framing Bytes – Indicate the beginning of the STM-N frame

The A1, A2 bytes are unscrambled

A1 = f6H (11110110), A2 = 28H (00101000)

In STM-N: (3XN) A1 bytes, (3XN) A2 bytes

STM-N STM-N STM-N STM-N STM-N STM-N

Finding frame head

Internal Use

A1 and A2 BytesA1 and A2 Bytes

Framing

Nextprocess

FindA1,A2

OOF

LOF

N

Y

AIS

over 3ms

Internal Use

D1 ~ D12 BytesD1 ~ D12 Bytes

Data Communications Channels (DCC) Bytes

RS-DCC – D1 ~ D3 – 192 kbit/s (3X64 kbit/s)

MS-DCC – D4 ~ D12 – 576 kbit/s (9X64kbit/s)

TMNDCC channel

NE NE NENE

OAM Information: Operation, Administration and maintenance

Internal Use

E1 and E2 BytesE1 and E2 Bytes

Digital telephone channelE1-RS, E2-MS

E1 and E2

NE NE NENE

Orderwire Bytes

E1 – RS Orderwire Byte – RSOH orderwire message

E2 – MS Orderwire Byte – MSOH orderwire message

Internal Use

B1 ByteB1 Byte

Bit interleaved Parity Code (BIP-8) Byte –A parity code (even parity), used to check the

transmission errors over the RSB1 BBE is represented by RS-BBE( performance event)

Tx

2#STM-N

Rx

1#STM-NCalculateB1, B2

1#STM-N

2#STM-N

Verify B1 B2

STM-NA1 00110011A2 11001100A3 10101010A4 00001111

B 01011010

BIP-8

Internal Use

B2 ByteB2 Byte

Bit interleaved Parity Code (MS BIP-24) Byte

This bit interleave parity NX24 code is used to check the bit errors over the MS

B2 BBE is represented by MS-BBE( performance event)

The mechanism of B2 is same like B1

Internal Use

M1 ByteM1 Byte

Tx Rx

Traffic

GenerateMS-FEBBE

Find B2 bit errorsGenerate MS-BBE

Return M1

Multiplexing Section Remote Error Indication Byte A return message from Rx to Tx ,when Rx find B2 bit errorsA count of BIP-24xN (B2) bit errorsTx generate corresponding performance event MS-FEBBE

Internal Use

K1 and K2( b1K1 and K2( b1--b5) b5)

Automatic Protection Switching (APS ) bytes

Transmitting APS protocol

Used for network multiplexing protection switch function

Internal Use

K2 (b6 ~ b8)K2 (b6 ~ b8)

Rx detects K2 (b6-b8)="111" generate MS-AIS alarm

Rx detects K2 (b6-b8)="110" generate MS-RDI alarm

GenerateMS-AIS

Start

DetectK2(b6-

b8)

Return MS-RDI

GenerateMS-RDI

111

110

Internal Use

S1 ByteS1 Byte

Synchronization Status Message Byte (SSMB): S1 (b5~ Synchronization Status Message Byte (SSMB): S1 (b5~ b8)b8)Value indicates the sync. levelValue indicates the sync. level

G.813 (Sync. Equipment Timing Clock)G.813 (Sync. Equipment Timing Clock)1011

Do not use for sync.Do not use for sync.1111

SSUSSU--B (G.812 local)B (G.812 local)1000SSUSSU--A (G.812 transit)A (G.812 transit)0100

G.811 PRCG.811 PRC0010

Quality unknown (existing sync. Network)Quality unknown (existing sync. Network)0000

Meaningbits 5 ~ 8

Internal Use

Path OverheadsPath Overheads

N1

K3

F3

H4

F2

G1

C2

B3

J1 VC-n Path Trace Byte

Path BIP-8

Path Signal Label

Path Status

Path User Channel

TU Multiframe Indi

Path User Channel

AP Switching

Network Operator

Higher Order Path OverheadHigher Order Path Overhead

1 2 3 4 5 6 7 8 9 10

Internal Use

Path trace byte: J1Path trace byte: J1

Next process

Detect J1

Match

HP-TIM

YN

> The first byte of VC-4> User-programmable> The received J1 should

match with the expected J1

Internal Use

B3 ByteB3 Byte

Next process

Verify B3

correct

HP-BBE

YN

> Path bit paritycode byte (even parity code)

> Used to detect bit errors

Mechanism is same like B1and B2

Internal Use

Signal label byte: C2Signal label byte: C2

> Specifies the mapping type in the VC-N

> 00 H Unequipped02 H TUG structure13 H ATM mapping

The received C2 should match with the expected C2

Detect C2

00H

HP-UNEQMatch

HP-SLMNext process

Insert AIS downward

N Y

NY

Internal Use

Path Status Byte: G1Path Status Byte: G1

Detect receiving VC4

HP-UNEQHP-TIMHP-SLM

Return HP-RDI

HP-BBE

ReturnHP-REI

Next process

N Y

N Y

Return performance message from Rx to Tx

> HP-REI b1 ~ b4

> HP-RDI b5

Internal Use

Path OverheadsPath Overheads

VC-12VC-12VC-12VC-12

K4N2J2V51

9

1 4

500μs VC-12 multiframe

Low Order Path OverheadLow Order Path Overhead

Internal Use

Path Overhead BytesPath Overhead Bytes

V5> First byte of the multiframe> Indicated by TU-PTR> Functions: Error checking, Signal Label and Path Status of VC-12

b1 ~ b2 Error Performance Monitoring (BIP-2)b3 Return Error detected in VC-12 (LP-REI)b4 Return Failure declared in VC-12 (LP-

RFI)b5 ~ b7 Signal Label for VC-12b8 Indicate Defect in VC-12 path (LP-RDI)

Internal Use

Path Overhead BytesPath Overhead Bytes

Next process

Verify b1 b2

match

LP-BBE

YN

Detect V5

Return LP-REI (b3)

Detect b5-b7

000

LP-UNEQMatch

LP-SLMNext

process

N Y

NY

Return LP-RDI (b8)

Internal Use

PointersPointers

Pointers

AU-PTR TU-PTR

Internal Use

AUAU--PTRPTR

RSOH

H1YYH2FF H3H3H3

H1YYH2FFH3H3H3

MSOH

RSOH

MSOH

0— — 1— — ------ 86— —

696— — 697— — ------782— —

0— — 1— — ------ 86— —

1 9 270

1

4

91

4

9

125us

250us

522— —435— — 436— — ------ 521— —

523— — -----608— —

Negativejustification

Positivejustification

Internal Use

TUTU--PTRPTR

V4V3V2V1

VC-12VC-12VC-12VC-12

1

9

500μs VC-12 multiframe

TU POINTERSTU POINTERS

11 44

Internal Use

QuestionsQuestions

Which byte is used to monitor the MS-AIS and MS-RDI?

What is the mechanism for R-LOF generation?

Which bytes implement the RS(MS/HP) error monitoring?

Internal Use

Chapter1 SDH Overview

Chapter2 Frame Structure & Multiplexing

Methods

Chapter3 Overhead & Pointers

Chapter4 Logical Functional Blocks

Internal Use

Part 4 Common SDH NE Part 4 Common SDH NE

TM (Terminal Multiplexer)Two ports device: Line Port (Optical Port), Tributary PortUsed in the terminal station of a networkCross-connect function: TU LU

TMTM

E1E1

E3E3

E4E4

STMSTM--MM

STMSTM--NN WW

Note: M<NNote: M<NHuaHua WeiWeiDefaultDefault

Internal Use

Common SDH NECommon SDH NE

ADM (Add and Drop Multiplexer)Three ports device: Tributary Port, Line Port West (Left), Line Unit

East (Right)Used as an intermediate station, the most important NE typeCross-connect function: TU LU (W/E), LU (W) LU (E)

ADMADM

E1E1

E3E3

E4E4

STMSTM--MM

STMSTM--NNEE

Note: M<NNote: M<N

STMSTM--NN WW

Internal Use

Common SDH NECommon SDH NE

Applications of TM & ADMApplications of TM & ADM

ADMADM

E1E1

E3E3

E4E4

STMSTM--MM

STMSTM--NNEE

Note: M<NNote: M<N

STMSTM--NNWW

TM ADM ADM TM

chain

ADM

ADM

ADM ADM

ring

Internal Use

Common SDH NECommon SDH NE

REGTwo ports device: LU (W) & LU (E)

Used due to the long distance between MultiplexersO/E, Signal regenerating

REGREGWW EE

STMSTM--NN STMSTM--NN

Internal Use

Common SDH NECommon SDH NE

DXCMulti-port deviceUsed to interconnect larger number of STM-N signalsCan be used for the grooming (consolidating & segregating)

of STM-NsUsed in complex & backbone networkDXC m/n (m ≥ n) m represent highest cross-connect raten represent lowest cross-connect rate

140Mb/s155Mb/s

42.5Gb/s622Mb/s34Mb/s8Mb/s2Mb/s64kb/srate653210m or n

Internal Use

SDH Logical Functional BlocksSDH Logical Functional Blocks

ITU-T recommends a unified basic functional block standard

Internal Use

Logical Functional Block for SDH Logical Functional Block for SDH EquipmentEquipment

STM A B C D E F

F

FG

GH HI

NP

G.703

G.703

140Mb/s

2Mb/s34Mb/s

Note: Taking 2Mb/sas example

SPI RST

TTF

MSPMST MSA

HPCPPI

PPI

LPA

LPA

HPT

HPTLPT LPC HPA

OHA OHA InterfaceSEMF MCF

Q InterfaceF Interface

D4—D12 D1—D3

External SynchronousSignal Interface

HOA

HOI

LOI

w

L

JK

M

SETS SETPI

Internal Use

SPI Functional BlockSPI Functional Block

SPI: Synchronous Physical InterfaceImplements interface functionO/E, extracts timing signal from

STM-NMonitors corresponding alarm

SPI

ReceivingA B

O/EExtractTimingSignal

Receive FailR-LOS

TransmittingB A

E/O

Internal Use

RST Functional BlockRST Functional Block

RST: Regenerator Section Termination

Processes RS overheadsProcesses RSOH in Rx

directionWrites RSOH in Tx direction

Receiving

B C

R-LOSPut all “1” at C

FramingA1, A2

FailR-OOF, R-LOFAll “1” at C

NormalUnscramble

Process E1, D1~D3

Verify B1RS-BBE

Internal Use

RST Functional BlockRST Functional Block

TransmittingC B

WritesRSOH

Calculates B1

Add E1D1-D3

ScramblesSTM-N frame

Internal Use

MST Functional BlockMST Functional Block

MST: Multiplex SectionTermination

Processes MSOHReceiving

C D

Extract APS

K1, K2 (b1-b5)Detect

K2 (b6-b8)

110MS-RDI

111MS-AIS

All “1” at D

DetectB2

AbnormalMS-BBE

OverflowMS-EXC (B2)All “1” at D

Internal Use

MST Functional BlockMST Functional Block

TransmittingD→C

Write MSOH

Receiving MS-BBEReturn M1 MS-REI

Receiving MS-AISReturn K2 110 MS-RDI

Internal Use

MST Functional BlockMST Functional Block

MST RST SPI MSTRSTSPI

RS (regenerator section)MS (multiplex section)

Concept of RS, MS

Internal Use

MSP Functional BlockMSP Functional Block

MSP: Multiplex Section Protection Implements MS layer protection switchSwitch conditions: R-LOS, R-LOF, MS-AIS alarm

Main

Stand-by

TM TM

Network topology Functional Block

MSA

MSA

MSP

MSP

MST MST

MST MST

Main Signal Path

Stand-by Signal Path

Internal Use

MSA Functional BlockMSA Functional Block

MSA: Multiplexing Section Adaptation

Implements AUG to VC-4 or VC-4 to AUG conversion

ReceivingE F

De-interleavedAUG N×AU-4

ReadAU-PTR

H1H2H3 are all “1”AU-AIS

All “1” at F

Invalid pointer or 8 NDFAU-LOP

All “1” at F

Internal Use

MSA Functional BlockMSA Functional Block

TransmittingF E

WritesAU-PTR

Byte interleavedN×AU- 4 AUG

Internal Use

Functional BlocksFunctional Blocks

HPC: High-Order Path Cross-connection

HPT: High-Order Path TerminationProcesses HPOH in VC-4

Internal Use

Verify B3Invalid HP-BBE

HPT Functional BlockHPT Functional Block

ReceivingF G

Detect J1Mismatch

HP-TIM

Detect C2Mismatch

HP-SLM00H: HP-UNEQ

All “1” at G

Transmit H4to HPA

All “1” at G

Internal Use

HPT Functional BlockHPT Functional Block

TransmittingG F

Write HO-POH Receiving HP-BBEReturn HP-REI (G1)

Receiving HP-TIM, HP-SLM, HP-UNEQReturn HP-RDI (G1)

Internal Use

Functional BlockFunctional Block

HOI: High-Order Interface (HPT, LPA, PPI)140 M --- VC-4

HOA: High-Order Assemble (HPT, HPA)VC-12 --- VC-4

LPC: Low-Order Path ConnectionFor VC-12 & VC-3 Cross-connect MatrixOnly chooses route, does not process signals

LPT: Low-Order Path AdaptationReal-Time Monitoring of Low-Order VC-12

Internal Use

Functional BlockFunctional Block

LPA: Low-Order Path AdaptationImplements pack/unpack and restores original signalPDH <---> C

PPI: PDH Physical InterfaceExtract PDH tributary signal timingCode pattern conversionInterface between device and PDH line

Internal Use

PPI Functional BlockPPI Functional Block

PPI

ReceivingL MJ K

Code patternconversion

TransmittingM LK J

Code patternconversion

Extract timing

No input signalT-ALOS,EX-TLOS

Internal Use

HPA Functional BlockHPA Functional Block

ReceivingG H

De-interleavedC4 63XTU-12

ReadTU-PTR

V1V2V3 are all “1”TU-AIS

All “1” at H

Invalid pointer or 8 NDFTU-LOP

All “1” at H

HPA: High order Path Adaptation

Implements C4 to VC-12 conversion

Internal Use

HPA Functional BlockHPA Functional Block

TransmittingH G

TransmittingH G

Write PointerTU-PTR, VC-12 TU12

Write PointerTU-PTR, VC-12 TU12

Byte InterleaveTU12 C-4

Byte InterleaveTU12 C-4

Internal Use

LPT Functional BlockLPT Functional Block

LPT

ReceivingH I

Detect V5LP-BBE

LP-SLM, LP-UNEQ

TransmittingI H

Write LO-POHReceive LP-BBE, Return LP-REI

Receive LP-SLM, UNEQ, Return LP-RDI

LPT: Low-Order Path TerminationProcess LO-POH

Internal Use

Auxiliary Functional BlocksAuxiliary Functional Blocks

SEMF: Synchronous Equipment Management FunctionMonitoring center of the whole equipmentImplements OAM of local equipment and other equipment

MCF: Message Communication FunctionProvides D1~D3 Interface for communication

Implements network management termination interface to equipment: f/Qx

Internal Use

Auxiliary Functional BlocksAuxiliary Functional Blocks

SETS: Synchronous Equipment Timing SourceProvides local timing clock signal to other functional

blocksProvides timing clock signal to other equipment

SETPI: Synchronous Equipment Timing Physical InterfaceProvides external interface of SETSExternal timing clock signal and output timing clock

signalOHA: Overhead Access

Processes order wire messages E1, E2, F1

Internal Use

Alarm Flow ChartAlarm Flow Chart

TU-AIS

AU-AIS HPHP--UNEQUNEQ HP-TIM HP-SLMAU-LOP

R-LOS R-LOF

MSMS--AISAISMSMS--EXCEXC

Internal Use