Scientific need, design and construction of a muon telescope for the Pierre Auger Observatory

Post on 13-Jan-2016

25 views 0 download

Tags:

description

Scientific need, design and construction of a muon telescope for the Pierre Auger Observatory - PowerPoint PPT Presentation

Transcript of Scientific need, design and construction of a muon telescope for the Pierre Auger Observatory

Scientific need, design and construction of a muon telescope for the Pierre Auger

Observatory

R. Alfaro Molina3, M. A. Diózcora Vargas Trevino5, J. C. D'Olivo1, H. Márquez-Falcón6, G. A. Medina-Tanco1, E. Nahmad-Achar1, G. Paic1 , M. E. Patino Salazar1, H. Salazar Ibarguen4, Federico Sanchez1, A. Sandoval3, J. F. Valdes Galicia2, S. Vergara Limon5, L. M. Villasenor6, A. Redondo Gonzalez7, N. Pacheco Gómez7, L. del Peral7, X. Bertou8, I. Allekotte8

(1) Instituto de Ciencias Nucleares , Universidad Nacional Autónoma de México, México, D.F., C.P. 04510.(2) Instituto de Geofísica, Universidad Nacional Autónoma de México, México, D.F., C.P. 04510.(3) Instituto de Física, Universidad Nacional Autónoma de México, México, D.F., C.P. 04510.(4) Instituto de Física, Universidad de Puebla, México, Puebla, C.P. 72570.(5) Facultad de Ciencias de la Electrónica, Grupo de Robótica, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur C. U., Edif. 182, C.P. 72570, Puebla, México.(6) Universidad Michoacana de San Nicolás Hidalgo Morelia, Mich., C.P. 58040, México.(7) Universidad de Alcalá, España(8) Inst. Balseiro, Bariloche, Argentina

Scientific need, design and construction of a muon telescope for the Pierre Auger

Observatory

R. Alfaro Molina3, M. A. Diózcora Vargas Trevino5, J. C. D'Olivo1, H. Márquez-Falcón6, G. A. Medina-Tanco1, E. Nahmad-Achar1, G. Paic1 , M. E. Patino Salazar1, H. Salazar Ibarguen4, Federico Sanchez1, A. Sandoval3, J. F. Valdes Galicia2, S. Vergara Limon5, L. M. Villasenor6, A. Redondo Gonzalez7, N. Pacheco Gómez7, L. del Peral7, X. Bertou8, I. Allekotte8

(1) Instituto de Ciencias Nucleares , Universidad Nacional Autónoma de México, México, D.F., C.P. 04510.(2) Instituto de Geofísica, Universidad Nacional Autónoma de México, México, D.F., C.P. 04510.(3) Instituto de Física, Universidad Nacional Autónoma de México, México, D.F., C.P. 04510.(4) Instituto de Física, Universidad de Puebla, México, Puebla, C.P. 72570.(5) Facultad de Ciencias de la Electrónica, Grupo de Robótica, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur C. U., Edif. 182, C.P. 72570, Puebla, México.(6) Universidad Michoacana de San Nicolás Hidalgo Morelia, Mich., C.P. 58040, México.(7) Universidad de Alcalá, España(8) Inst. Balseiro, Bariloche, Argentina

AMIGA & AMIGA & HEATHEAT

BASELINE BASELINE AugerAuger

Enhanced spectral region to be covered

G. Medina-Tanco

160000

Auger baseline design

Auger enhancements

AMIGA

2 SD graded infills

Buried muon counter scintillators

HEAT3 higher elevation FD telescopes

• Lower the full efficiency threshold of Auger down to 0.1 EeV

• Improve primary discrimination in the 2nd Knee & ankle region

G. Medina-Tanco

160000

HEAT + AMIGA layout & Auger

AMIGA layout

Graded infill SD arrayGraded infill SD array

1. Full efficient @ E > 1017 eV 5.9 km2 – 24 tanks – 433 m

2. Full efficient @ E > 3.5x1017 eV 23.5 km2 – 42 tanks – 750 m

+ buried muon scintillators:+ buried muon scintillators:

30m2 per tankdepth: ~ 2-3mMode: counters

G. Medina-Tanco

AMIGA SD-station [ (+e±) + ] & Scintillator [ ]

2-3m

Muon counter

Regular Auger water Cerenkov tank

EASEAS

groundground

G. Medina-Tanco

Scintillator strips are extruded polystyrene doped with fluors:

PPO (1%) and POPOP (0.03%)

Co-extruded TiO2 reflective coating

WLS fibers: Kuraray Y-11 175 ppm

1.2 mm diameter

Fiber is glued into groove and covered with reflective foil

AMIGA: muon counters – scintillator strips

Scintillator area at each station: 30 m2

Multianode PMTs64 pixels

M64 (Hamamatsu)

AMIGA: muon counters – scintillator strips

G. Medina-Tanco

Geant4 – Parent: muon - E = 5 GeV

~ 1.8 g/cm3

~ 3 m x

y

z

e-

e-

e-

e-

F. Sanchez & GMT

few mm

x

y

Geant4 – Parent: photon - E = 5 GeV

x

y

z

~ 2.5-3.0 m

~ 1.8 g/cm3

F. Sanchez & GMT

Geant4 – /e+/- Longitudinal profile

0.5 GeV 1.0 GeV

5.0 GeV 10.0 GeV

3 m F. Sanchez & GMT

3 m 3 m50 cm50 cm 50 cm50 cm

50 cm50 cm50 cm50 cm

1018 eV

Region of interest for the shielded muon counters

log E [GeV]

E d

N/d

E [

m-2]

EeV protons: distribution functions @ 200 m from core

This is where BATATABATATA enters into the picture

G. Medina-Tanco

Detector layoutDetector layout

BATATA: punch-through characterization system

y

x

e

2 m

~30 cm

~30 cm

~2.0 m

2 m

PMT + electronics

x

y

G. Medina-Tanco

t1=0 t2

t3

l

ll

|n3|=ct3

|n2|=ct2

n

Surface trigger array

G. Medina-Tanco

WHOLE BATATA ARRAY

l

ll

3

ls1

s3

s2

SDSD

G. Medina-Tanco

End-to-end simulationEnd-to-end simulation

End-to-end BATATA simulations

EAS

Core

Auger tank

200m

10m

10m

xy BATATA planes

AIRES

Geant4

10m

F. Sanchez & GMT (2007)

Trigger 3 tanks

End-to-end BATATA simulations:

Temporal & spatial unthinnings are applied

F. Sanchez & GMT (2007)

KurarayPreliminar simulation

KurarayPreliminar simulation

End-to-end simulationsEnd-to-end simulationsScint.Strip + optical fiber Scint.Strip + optical fiber

characterization & calibrationcharacterization & calibration

End-to-end simulationsEnd-to-end simulationsScint.Strip + optical fiber Scint.Strip + optical fiber

characterization & calibrationcharacterization & calibration

Actual measurementsActual measurements

180 cm180 cm100 cm100 cm

20 cm20 cm

In order to implement a realistic trigger threshold in the BATATA simulations, we are calibrating at present energy deposit vs signal (mV) via simulated optical photons at the PMT window.

In order to implement a realistic trigger threshold in the BATATA simulations, we are calibrating at present energy deposit vs signal (mV) via simulated optical photons at the PMT window.

End-to-end BATATA simulations

Trigger on energy deposit is applied

F. Sanchez & GMT (2007)

AMIGA application of BATATA simulation machine

Side viewSide view Top viewTop view

Tilted viewTilted view

Zoomed side viewZoomed side view

ee

ee

G. Medina-Tanco

Attenuation length

Muon surface efficiency & time of flight difference to PMT

Electromagnetic particles

Data analysis

Track discrimination:

End-to-end simulationsNN analysis

Multiparametric analysis

E. Nahmad & F. Sanchez & GMT (2007)

Front end electronics for one channel with a differential output LVDSFront end electronics for one channel with a differential output LVDS

1

2

3

64

AD8009

OUT OUT

MAX9201

C

O

N

E

C

T

O

R

DB0 DB7

WR

A0

A1

REF

PMT

H7564B

OUT A

DAC-TLC7226C

OUT B

OUT C

OUT D

IN 1A

G

G

VDD

C

O

N

E

C

T

O

R

D

I

F

SN55LVDS31

1Y

1ZG=10

Amplifier discriminator

Setup of the discriminator level

G. Medina-TancoS. Vergara, E. PatiS. Vergara, E. Patiño, M. A. D. Vargas Trevino & G. Paicño, M. A. D. Vargas Trevino & G. Paic

Electronics: front-end 64 channels board

S. Vergara, E. Patiño, M. A. D. Vargas Trevino & G. Paic

DAQ: Huberto Salazar (BUAP)

Luis Villaseñor (UMSNH)

Other applications

• Punch-through characterization • Measurement of the angular distribution functions at ground for , e±, • Check temporal (& spatial ?) un-thinning• Low energy directional background: sky maps

Astrophysics Space weather CR-climate connections

G. Medina-Tanco

Casing – another idea

y = 2 m

x = 2 m ~0.4 m ? ~0.15 m ?

inspection lids

Silicon filing ?

Simplest. But: Too large? Too heavy?

Casing requirements1. Buried life expectance: 5 yr2. Water-tight3. Corrosion free4. Salt resistant5. Maximum working temperature: 50 oC (at the electronic box)6. Can be opened and re-sealed in a non-destructive way (desirably) under field conditions.7. Sturdy enough as to survive shipping, handling and burying.8. Material: TBD9. Color: white or aluminum -- must be reflective10. Dimensions:

a. footprint 2m x 2.5 m ;b. Thickness:

1. scintillator section: ~1.2 cm (interior)2. Optical fiber bending section: 1.2 cm (interior)3. Electronic housing section: ~20 cm (internal)

1. Lid thickness: < 2 - 3 mm (?) -- x & y planes must be as much in physical contact as possible.2. Base thickness: TBD

11. Water-tight openings for circular and flat cables. Location must take into account optimal flat cable bending.

12. Support for cookie, PMT and (vertical) electronic board (must be rigid at T~50 oC)13. Optical fiber bending section must not collapse under a pressure of at least 600 g/cm2. A filling may be

used. Potting (rigid or fluid) may not be desirable). With fungicide.14. Longitudinal displacement of scintillator bars must be blocked. 15. Electronics / optical coupling inspection lid to be used under field conditions (w/o tightness compromise).16. Handles for crane17. Ensure the perpendicularity of x & y18. Ensure that different planes are aligned among themselves

Gustavo Medina-Tancogmtanco@nucleares.unam.mx

BATATA: current status

Design - General design: FROZEN (except exact depths of planes 1 & 2)

- Operating strategy: FROZENEnd-to-end simulations: 90% - Ongoing: calibration w/measurementsElectronics: 50% - Ongoing: frontend printing/assembling & FPGA Scintillator - 32m2 from Fermilab – built & delivered in TXoptical fiber - FROZEN – BicronPMT - FROZEN – 64 pix PMTCasing - started: CCADET - ICN - IG (UNAM)Solar power supply - Univ. de Alcalácontrol & processing software - Ongoing: ICN-UNAM / Univ. de AlcaláData analysis software: 70% - 2 startegies: multiparam. analysis & N-NetworksSD array: - Installation in Nov/2007: IB/BUAP/UMSNH/UNAM

Design - General design: FROZEN (except exact depths of planes 1 & 2)

- Operating strategy: FROZENEnd-to-end simulations: 90% - Ongoing: calibration w/measurementsElectronics: 50% - Ongoing: frontend printing/assembling & FPGA Scintillator - 32m2 from Fermilab – built & delivered in TXoptical fiber - FROZEN – BicronPMT - FROZEN – 64 pix PMTCasing - started: CCADET - ICN - IG (UNAM)Solar power supply - Univ. de Alcalácontrol & processing software - Ongoing: ICN-UNAM / Univ. de AlcaláData analysis software: 70% - 2 startegies: multiparam. analysis & N-NetworksSD array: - Installation in Nov/2007: IB/BUAP/UMSNH/UNAM

80%

G. Medina-Tanco

Tentative Chronogram

Assembly: November 2007Delivery: February 2007Installation: March 2008Operation starts: April 2008Stable operation: May 2008

Tentative Chronogram

Assembly: November 2007Delivery: February 2007Installation: March 2008Operation starts: April 2008Stable operation: May 2008

BATATA: (dynamical) cronogram

G. Medina-Tanco