RULE EXAMPLE EXPLANANTION multiplying like bases dividing ...

Post on 09-Jan-2022

1 views 0 download

Transcript of RULE EXAMPLE EXPLANANTION multiplying like bases dividing ...

1 ICM Unit 0 – Algebra Rules Lesson 1 – Rules of Exponents

RULE EXAMPLE EXPLANANTION

π‘Žπ‘š βˆ™ π‘Žπ‘› = π‘Žπ‘š+𝑛

A) π‘₯2 βˆ™ π‘₯6 = B) π‘₯4𝑦8π‘₯3𝑦𝑧2 =

When multiplying with like bases, keep the base and add the exponents.

π‘Žπ‘š

π‘Žπ‘›= π‘Žπ‘šβˆ’π‘› 𝑂𝑅

π‘Žπ‘›

π‘Žπ‘š=

1

π‘Žπ‘šβˆ’π‘›

π‘š > 𝑛

A) π‘₯8

π‘₯3=

B) π‘₯2𝑦5

π‘₯7𝑦6=

When dividing with like bases, keep the base and subtract the exponents.

(π‘Žπ‘š)𝑛 = π‘Žπ‘šπ‘›

A) (π‘₯5)3 =

Power to a Power – keep the base and multiply the exponents.

(π‘Žπ‘)π‘š = π‘Žπ‘šπ‘π‘š

A) (π‘₯5𝑦3)3 = B) (2π‘₯3𝑧4)4 =

Power to a Product – Raise everything in the parentheses to the power.

(π‘Ž

𝑏)

π‘š

=π‘Žπ‘š

π‘π‘š

A) (π‘₯2

𝑦4)2

=

B) (3π‘₯4𝑦5

4π‘₯2𝑦7)3

=

Power to a Quotient – Raise everything in the parentheses to the power.

π‘Žβˆ’π‘š =1

π‘Žπ‘š 𝑂𝑅

1

π‘Žβˆ’π‘š= π‘Žπ‘š

A) π‘₯2π‘¦βˆ’3

π‘§βˆ’5π‘₯6=

B) 2π‘₯βˆ’4

3π‘¦βˆ’2 =

Change a negative exponent to a positive exponent by moving the base to either the denominator or the numerator of a fraction.

𝑏0 = 1

A) (2π‘₯4)0 = B) 3π‘₯0𝑦5 =

Any base raised to the zero power equals 1.

Never leave a NEGATIVE EXPONENT or a ZERO EXPONENT in an answer in simplest form!!!!!

2 Examples: Simplify

1. (π‘₯3𝑦2)(π‘₯4𝑦4𝑧)

2. (3π‘₯3𝑦)(βˆ’5π‘₯2𝑦2)

3. π‘₯4π‘¦βˆ’5

π‘₯3𝑦

4. (2π‘₯βˆ’3𝑦4)

(π‘₯βˆ’6)(π‘¦βˆ’3)

5. (βˆ’3π‘Ž2𝑏2π‘βˆ’4

4π‘Žβˆ’6𝑏4π‘βˆ’8)βˆ’2

6. βˆ’(βˆ’π‘₯6)(βˆ’π‘₯3)2(π‘₯5)3

7. (βˆ’3π‘Ž3𝑏2)

3

3(π‘Žπ‘4)2

8. (3π‘Ž2π‘βˆ’5)

βˆ’2(2π‘Ž2𝑏)

4

(βˆ’6π‘Žβˆ’4)βˆ’2(3π‘Žβˆ’6𝑏3)2

3 ICM Unit 0 – Algebra Review Lesson 1 – Rational (Fractional) Exponents

Rule for Converting to Rational & Radical Notation

𝒙𝒂

𝒃 = βˆšπ’™π’‚π’ƒ

Write each expression in simplest radical form:

1. 21

2 2. 31

2 3. 91

2 4. 251

2

5. 71

3 6. 151

4 7. x1

2 8. yβˆ’1

2

9. a2

2 10. (9a)1

2 11. (16x5)βˆ’1

2 12. 275

3

Write each expression in exponential form:

13. √7 14. √6 15. √84

16. √185

17. √x23 18.

1

√53 19. 2 βˆ™ √15

4 20. √(3x)7

4 Write each expression in simplest radical form – leave only one radical sign in your answer:

21. x4

7 22. 4x2

3 23. (5x)1

6

24. y2

7 βˆ™ y5

7 25. 32

3 βˆ™ b1

3

26. 41

9 βˆ™ x2

9 βˆ™ y4

9

27. 7βˆ’23 28. 3x

βˆ’1

2 29. 21

2 βˆ™ a2

3 βˆ™ b5

6

30. (xβˆ’1

2 )βˆ’4

31. x1

2( 2x1

2 + x3

2) 32. (32x10)βˆ’1

5

5 ICM Unit 0 – Algebra Review Lesson 1 Homework SHOW ALL WORK Let a and b be real numbers and let m and n be integers.

Product of Powers Property π‘Žπ‘š βˆ™ π‘Žπ‘› = π‘Žπ‘š+𝑛 Negative Exponent Property π‘Žβˆ’π‘š =1

π‘Žπ‘š

Power of a Power Property (π‘Žπ‘š)𝑛 = π‘Žπ‘šπ‘› Zero Exponent Property π‘Ž0 = 1

Power of a Product Property (π‘Žπ‘)π‘š = π‘Žπ‘šπ‘π‘š Quotient of Powers Property π‘Žπ‘š

π‘Žπ‘› = π‘Žπ‘šβˆ’π‘› π‘Ž β‰  0

Rational Exponent Property π‘Žπ‘šπ‘› = √(π‘Žπ‘š)

𝑛= ( βˆšπ‘Ž

𝑛)

π‘š Power of a Quotient (

π‘Ž

𝑏)

π‘š=

π‘Žπ‘š

π‘Žπ‘› 𝑏 β‰  0

Evaluate the expression.

1. 42 βˆ™ 44

2. (5βˆ’2)3

3. 52

55

4. (3

7)

3

5. 22

2βˆ’9

6. (βˆ’9)(βˆ’9)3

Simplify the expression.

7. π‘Ž6 βˆ™ π‘Ž3

8. (π‘₯5)2

9. (4π‘Ž2𝑏3)5

10. π‘₯8

π‘₯6

11. π‘₯5

π‘₯8

12. π‘₯6

π‘₯6

13. (4π‘Ž3

2𝑏4)

2

14. (23π‘₯2)5

15. (π‘₯4𝑦7)βˆ’3

16. π‘₯11𝑦10

π‘₯βˆ’3π‘¦βˆ’1

17. βˆ’3π‘₯βˆ’4𝑦0

18. 5π‘₯3𝑦9

20π‘₯2π‘¦βˆ’2

19. π‘₯5

π‘₯βˆ’2

20. π‘₯5𝑦2

π‘₯4𝑦0

21. (π‘₯3)0

22. (10π‘₯5𝑦3)βˆ’3

23. π‘₯βˆ’1𝑦

π‘₯π‘¦βˆ’2

24. (4π‘₯2𝑦5)βˆ’2

25. 2π‘₯2𝑦

6π‘₯π‘¦βˆ’1

26. π‘₯𝑦9

3π‘¦βˆ’2βˆ™

βˆ’7𝑦

21π‘₯5

27. 18π‘₯𝑦

7π‘₯4βˆ™

7π‘₯5𝑦2

4𝑦

6 ICM Unit 0 – Review of Algebra Lesson 2 – Factoring I. Greatest Common Factor (GCF) β†’ if possible, always do this FIRST.

A. 24π‘Ž2𝑏 βˆ’ 18π‘Žπ‘2

B. 5π‘₯2𝑦 βˆ’ 20π‘₯𝑦2𝑧 + 35𝑦3𝑧2

C. 2π‘₯3𝑦𝑧3 βˆ’ 7π‘₯𝑦5𝑧2

II. Difference of Squares Factoring β†’ π’‚πŸ βˆ’ π’ƒπŸ = (𝒂 βˆ’ 𝒃)(𝒂 + 𝒃) *** Always check for a GCF first!!!!

A. π‘₯2 βˆ’ 9

B. π‘₯2 βˆ’ 49

C. π‘₯2 βˆ’ 36𝑦2

D. 16π‘₯2 βˆ’ 1

E. π‘₯2 + 25

F. βˆ’1 + π‘₯2

G. 24π‘₯5 βˆ’ 54π‘₯𝑦6

H. 4π‘₯2 βˆ’ 64

I. π‘₯4 βˆ’ 16

III. Sum and Difference of Cubes β†’SUM π‘Ž3 + 𝑏3 = (π‘Ž + 𝑏)(π‘Ž2 βˆ’ π‘Žπ‘ + 𝑏2)

β†’DIFFERENCE π‘Ž3 βˆ’ 𝑏3 = (π‘Ž βˆ’ 𝑏)(π‘Ž2 + π‘Žπ‘ + 𝑏2)

*** Always check for a GCF first!!!!

A. π‘₯3 βˆ’ 125

B. 27π‘₯3 βˆ’ 1 C. 64π‘₯3 βˆ’ 8𝑦3

D. 32π‘₯3 βˆ’ 500

E. βˆ’3π‘₯3 + 192𝑦3 F. π‘₯3 + 1

G. βˆ’32π‘₯3 βˆ’ 4𝑦3

H. 448π‘₯3 + 189 I. 8π‘₯6 + 27𝑦3

7

IV. Factoring Trinomials β†’ π‘₯2 + 𝑏π‘₯ + 𝑐 *** Always check for a GCF first!!!!

A. π‘₯2 + 9π‘₯ + 20

B. π‘₯2 βˆ’ 7π‘₯ + 10

C. π‘₯2 + 3π‘₯ βˆ’ 40

D. π‘₯2 βˆ’ 3π‘₯ βˆ’ 10

E. 2π‘₯2 βˆ’ 8π‘₯ βˆ’ 90

F. π‘₯4 βˆ’ 7π‘₯2 + 12

V. Factoring Trinomials β†’ 𝒂 π‘₯2 + 𝑏π‘₯ + 𝑐 *** Always check for a GCF first!!!!

A. 2π‘₯2 + 7π‘₯ + 6

B. 2π‘₯2 βˆ’ 9π‘₯ + 4

C. 3π‘₯2 + 5π‘₯ + 2

D. 6π‘₯2 βˆ’ 4π‘₯ βˆ’ 42

E. 6π‘₯2 + 11π‘₯𝑦 + 4𝑦2

F. 5π‘₯4 βˆ’ 17π‘₯2 + 14

VI. Factoring by Grouping 1. Check for GCF 2. Group 3. GCF of each group 4. Binomial GCF.

A. π‘₯3 βˆ’ 5π‘₯2 + 3π‘₯ βˆ’ 15

B. 4π‘₯2 + 20π‘₯ βˆ’ 3π‘₯𝑦 βˆ’ 15𝑦

C. 3π‘₯3 βˆ’ 6π‘₯2 + 15π‘₯ βˆ’ 30

D. π‘₯2 + π‘Žπ‘ βˆ’ π‘Žπ‘₯ βˆ’ 𝑏π‘₯

E. π‘₯3 + 2π‘₯2 βˆ’ 9π‘₯ βˆ’ 18

F. 9π‘₯3 + 36π‘₯2 βˆ’ 4π‘₯ βˆ’ 16

8 ICM Unit 0 – Algebra Review Lesson 3 – Simplifying Rational Expressions

Rational Function: Quotient of 2 polynomials written in simplest form with a denominator that cannot

be equal to zero (𝑬𝒙: 𝒙+𝟐

(π’™βˆ’πŸ)(𝒙+πŸ‘); 𝒙 β‰  𝟏 𝒐𝒓 βˆ’ πŸ‘)

A rational function is undefined when the denominator is equal to zero.

1) Factor the denominator completely. 2) Set each factor equal to zero and solve. 3) State what values make the function undefined.

Example: For what values of π‘₯ is the following function undefined? 𝑓(π‘₯) =π‘₯2βˆ’3π‘₯+2

π‘₯3βˆ’4π‘₯

1) Factor the denominator completely: 2) Set each factor equal to zero and solve: 3) State the undefined values: The function 𝒇(𝒙) will be undefined at 𝒙 =

**From this point on, we will assume that the replacement set of the variables in the fraction includes no numbers for which the denominator will be equal to zero.

Simplest Form: Answers to all fraction problems should be in simplest form. To put rational expressions in simplest form, factor everything completely (numerator and denominator) and then divide out (cross out) the common factors in the numerator and denominator.

Simplify:

1. π‘₯2+4π‘₯

π‘₯2βˆ’16

2. π‘₯2βˆ’9

(π‘₯+3)2

3. 3π‘₯3βˆ’π‘₯4

2π‘₯3βˆ’6π‘₯2

4. π‘₯2βˆ’4π‘₯βˆ’5

π‘₯2βˆ’5π‘₯βˆ’6

5. π‘₯5βˆ’3π‘₯4βˆ’4π‘₯3

π‘₯3βˆ’6π‘₯2+8π‘₯

6. π‘₯2βˆ’8π‘₯+16

4βˆ’π‘₯

9 Adding and Subtracting Rational Expressions Simplify:

1. 2

3+

3

5

2. 7π‘₯

12𝑦2 +4𝑦

6π‘₯2

3. 4

π‘₯+5+

3π‘₯+7

2π‘₯+10

4. βˆ’5𝑦

𝑦2βˆ’9+

𝑦

𝑦2+3𝑦

5. 2π‘₯

π‘₯2βˆ’25βˆ’

π‘₯

π‘₯2βˆ’10π‘₯+25

6. π‘₯βˆ’8

π‘₯2βˆ’6π‘₯+8βˆ’

π‘₯+6

π‘₯2+π‘₯βˆ’6

10 Multiplying and Dividing Rational Expressions Simplify:

1. 4π‘Ž

5π‘βˆ™

15𝑏

16π‘Ž

2. 7π‘Ž

9π‘βˆ™

63𝑏3

35π‘Ž2

3. 4π‘₯2𝑦

15π‘Ž3𝑏3Γ·

2π‘₯𝑦2

5π‘Žπ‘3

4. π‘₯+2

π‘₯+3Γ·

π‘₯2+π‘₯βˆ’12

π‘₯2βˆ’9

5. π‘₯2βˆ’3π‘₯βˆ’4

π‘₯3 βˆ™π‘₯2+2π‘₯

2π‘₯βˆ’8

6. π‘₯βˆ’2

π‘₯2+5π‘₯βˆ™

π‘₯2βˆ’25

2π‘₯βˆ’π‘₯2

Multiplying Polynomials Simplify:

1. (3π‘₯4𝑦 + 4π‘₯𝑦3 βˆ’ 12π‘₯ βˆ’ 5𝑦 + 4)(π‘₯2𝑦𝑧2)

2. (2π‘₯2𝑦3 βˆ’ 𝑧3)(βˆ’π‘₯𝑧8 βˆ’ π‘₯𝑦4𝑧2)

11 ICM Unit 0 – Algebra Review Lesson 3 Homework SHOW ALL WORK Simplify

1. 74

36

56

24

yx

yx 2.

105

862

x

xx 3.

152

4032

2

xx

xx

Multiply or divide (remember to factor when necessary).

4. 34

2

45

1862

2

2

xx

xx

xx

x 5.

153

20

124

12 22

x

xx

x

xx

6. 35

45

5

9

4

3

6

2

x

x

x

x 7.

6 24

9 20

5 25

3 62

x

x x

x

x

8. 7 14

4

12

2 42

3x

x

x

x

9.

3 21

3 28

5 20

2 82

x

x x

x

x

10. x x

x

x x

x

2 27 8

2 6

3 4

4 12

11.

25

35

14

10

3

4 2 2 3

xy

x y

xy

x y

Add or Subtract.

1. 4

1

8

3

x 2.

5

7

306

2

xx

3. x

x

3

4

12

7 4.

158

2

3

32

xy

y

y

5. 284

2

7

5

x

x

x

x 6.

2411

3

8

62

xy

y

y

12 ICM Unit 0 – Algebra Review Lesson 4 – Dividing Polynomials

13

14 ICM Unit 0 – Algebra Review Lesson 4 Homework SHOW ALL WORK

15 ICM Unit 0 – Algebra Review Lesson 5 – Radical Expressions

16

17

18

(√3 + √5)(√2 + 4√3)

5√6 βˆ’ 3√24 + √150

19 ICM Unit 0 – Algebra Review Lesson 5 Homework SHOW ALL WORK

20

21 ICM Unit 0 – Algebra Review Lesson 6 – Solving Radical Equations

There are four steps to solving a radical equation: 1) Isolate the radical. 2) Raise both sides to the power of the root. 3) Solve for x. 4) Check for extraneous solution(s). What is an EXTRANEOUS solution? A solution to the final equation but not to the original equation. Extraneous solutions can occur when solving a square root equation but not when solving linear, quadratic or exponential equations. Examples:

1. √π‘₯ = 8 2. √π‘₯ + 7 = 8 3. 2√π‘₯ + 6 = 14

4. βˆ’4√π‘₯ + 11 = 3 5. (π‘₯ βˆ’ 2)1

2 βˆ’ 2 = 2 6. 10 βˆ’ 3√2π‘₯ + 53

= βˆ’11

22

7. √10π‘₯2 βˆ’ 49 = 3π‘₯ 8. √2π‘₯ βˆ’ 6 = √5π‘₯ βˆ’ 15 9. √6π‘₯ βˆ’ 53

= √3π‘₯ + 23

10. √3π‘₯ + 7 = π‘₯ + 1 11. √15 βˆ’ 7π‘₯ = π‘₯ βˆ’ 1

12. √π‘₯ + 2 = 4 βˆ’ √π‘₯ 13. √π‘₯ + 3 = √π‘₯ + 4

14. √π‘₯ + 8 = √π‘₯ + √3 15. √π‘₯ + 3 = √π‘₯ + 1 + 1

23 ICM Unit 0 – Algebra Review Lesson 6 Homework

1. √π‘₯ βˆ’ 1 = 3 2. 2 = √

π‘₯

2

3. βˆšβˆ’8 βˆ’ 2π‘₯ = 0 4. (π‘₯ + 4)1

2 = 7

5. √π‘₯ βˆ’ 33

= 5 6. √2π‘₯ βˆ’ 6 = √3π‘₯ βˆ’ 14

7. √8π‘₯ = π‘₯ 8. √9 βˆ’ π‘₯3

= √1 βˆ’ 9π‘₯3

9. √3 βˆ’ 2π‘₯ = √1 βˆ’ 3π‘₯ 10. π‘₯ = (20 βˆ’ π‘₯)1

2

24 ICM Unit 0 – Algebra Review Lesson 7 – Solving Rational Equations When solving equations with variables in the denominator, you must check the solution to be sure the denominator will not

equal zero. The solution will be eliminated if the denominator is zero.

Solve:

1. 4

3=

4π‘₯+6

5π‘₯βˆ’3

2. 9

14+

3

π‘₯+2=

3

4

3. 4

π‘₯βˆ’2+

9

π‘₯2βˆ’4=

βˆ’2

π‘₯+2

4. 5π‘₯

π‘₯+1+

2

π‘₯=

5

1

5. π‘₯

2βˆ’

9βˆ’2π‘₯

π‘₯βˆ’7=

5

π‘₯βˆ’7

6. π‘₯

π‘₯+2βˆ’

π‘₯+2

π‘₯βˆ’2=

π‘₯+3

π‘₯βˆ’2

25 ICM Unit 0 – Algebra Review Lesson 7 Homework SHOW ALL WORK