RF Coil Design Optimization in Cervical Carotid Imaging

Post on 12-Jan-2016

47 views 0 download

Tags:

description

RF Coil Design Optimization in Cervical Carotid Imaging. Rock Hadley MIRL Symposium Sundance September 13, 2002. Go Take A Hike!. Available Carotid Coils. 4-channel commercial Neurovascular volume coil. home-built bilateral 4-element carotid Phased-array coil. - PowerPoint PPT Presentation

Transcript of RF Coil Design Optimization in Cervical Carotid Imaging

RF Coil Design Optimization in Cervical Carotid Imaging

Rock Hadley

MIRL Symposium

Sundance

September 13, 2002Go Take

A Hike!

4-channel commercial Neurovascular volume coil

home-built bilateral 4-elementcarotid Phased-array coil

Available Carotid Coils

• bilateral 4-element carotid PA coil

• 300% SNR improvement over anterior neck coil

• commercial anterior neck coil

Dedicated Carotid Coils

Coil Comparisons

0 20 40 60 80 100 120 1400

50

100

150

200

250Torso PA Chest Dual PA Head Dual PA GE Head Carotid PA Inverted Dual PANVPA1 NVPA2a NVPA2b NVPA3

image slice number

circle ofWillis

carotid bifurcation

aortic arch

rela

tive

SN

R

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500bz contour

cross-sectional contour plots

Magnetic Field of a Circular Loop

axial-component(signal component)

magnitude(all field components)

coil

signalshadow

coilaxis

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

1

2

3

4

5

6

7

8

9

10

11

12

vessel depth (cm)

optim

ized

coi

l rad

ius

(cm

) 45cm vessel length25cm vessel length5cm vessel length 1cm vessel length

long vesselsopt coil radius = vessel depth

very short vesselsopt coil diameter = vessel depth

Coil Design Issues

coil x

coil axis

vessel

surface

depth

aortic arch bifurcation circle of Willis

Simulation Model

= 0.3, r = 73 (muscle)

= 0, r = 1 (air)

figure of merit = average SNR along entire vessel(weighting of specific vessel points optional)

0

1

2

3

4

5

6

7

8

x 10-7

vessel length(cm)

vess

el d

epth

(cm

)

0 5 10 15 20

0

1

2

3

4

5

6

7

8 0

1

2

3

4

5

6

7

8

x 10-7

vessel length(cm)

vess

el d

epth

(cm

)

0 5 10 15 20

0

1

2

3

4

5

6

7

8 0

1

2

3

4

5

6

7

8

x 10-7

vessel length(cm)

vess

el d

epth

(cm

)

0 5 10 15 20

0

1

2

3

4

5

6

7

8

-1

0

1

2

3

4

5

6

7

8

9

x 10-7

vessel length(cm)

vess

el d

epth

(cm

)

0 5 10 15 20

0

1

2

3

4

5

6

7

8 0

2

4

6

8

10

x 10-7

vessel length(cm)

vess

el d

epth

(cm

)

0 5 10 15 20

0

1

2

3

4

5

6

7

80

2

4

6

8

10

12

14x 10

-7

vessel length(cm)

vess

el d

epth

(cm

)

0 5 10 15 20

0

1

2

3

4

5

6

7

80

2

4

6

8

10

12

14

16

18

x 10-7

vessel length(cm)

vess

el d

epth

(cm

)

0 5 10 15 20

0

1

2

3

4

5

6

7

8

0

0.5

1

1.5

2

2.5

x 10-6

vessel length(cm)

vess

el d

epth

(cm

)

0 5 10 15 20

0

1

2

3

4

5

6

7

8

0

0.5

1

1.5

2

2.5

3

3.5

x 10-6

vessel length(cm)

vess

el d

epth

(cm

)

0 5 10 15 20

0

1

2

3

4

5

6

7

8

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5x 10

-6

vessel length(cm)

vess

el d

epth

(cm

)

0 5 10 15 20

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

x 10-6

vessel length(cm)

vess

el d

epth

(cm

)

0 5 10 15 20

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

x 10-6

vessel length(cm)

vess

el d

epth

(cm

)

0 5 10 15 20

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

x 10-6

vessel length(cm)

vess

el d

epth

(cm

)

0 5 10 15 20

0

1

2

3

4

5

6

7

8

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5x 10

-6

vessel length(cm)

vess

el d

epth

(cm

)

0 5 10 15 20

0

1

2

3

4

5

6

7

8

0

0.5

1

1.5

2

2.5

3

x 10-6

vessel length(cm)

vess

el d

epth

(cm

)

0 5 10 15 20

0

1

2

3

4

5

6

7

8

0

0.5

1

1.5

2

x 10-6

vessel length(cm)

vess

el d

epth

(cm

)

0 5 10 15 20

0

1

2

3

4

5

6

7

80

5

10

15x 10

-7

vessel length(cm)

vess

el d

epth

(cm

)

0 5 10 15 20

0

1

2

3

4

5

6

7

8 0

2

4

6

8

10x 10

-7

vessel length(cm)

vess

el d

epth

(cm

)

0 5 10 15 20

0

1

2

3

4

5

6

7

8

-1

0

1

2

3

4

5

6

x 10-7

vessel length(cm)

vess

el d

epth

(cm

)

0 5 10 15 20

0

1

2

3

4

5

6

7

8

-1

0

1

2

3

4

x 10-7

vessel length(cm)

vess

el d

epth

(cm

)

0 5 10 15 20

0

1

2

3

4

5

6

7

8 -0.5

0

0.5

1

1.5

2

2.5

3

3.5

x 10-7

vessel length(cm)

vess

el d

epth

(cm

)

0 5 10 15 20

0

1

2

3

4

5

6

7

8 -0.5

0

0.5

1

1.5

2

2.5

x 10-7

vessel length(cm)

vess

el d

epth

(cm

)

0 5 10 15 20

0

1

2

3

4

5

6

7

8-5

0

5

10

15

20

25x 10

-8

vessel length(cm)

vess

el d

epth

(cm

)

0 5 10 15 20

0

1

2

3

4

5

6

7

8

-0.5

0

0.5

1

1.5

2

2.5x 10

-7

vessel length(cm)

vess

el d

epth

(cm

)

0 5 10 15 20

0

1

2

3

4

5

6

7

80

0.5

1

1.5

2

2.5x 10

-7

vessel length(cm)

vess

el d

epth

(cm

)

0 5 10 15 20

0

1

2

3

4

5

6

7

8

Simulation Model

Example Simulation

optimal coil array radius (cm) position (cm)

coil 1 3 3

coil 2 2 8

coil 3 2 12

coil 4 2 16

coil 5 4 22

• 24 cm vessel length- 6 cm depth at aortic arch

- 3 cm depth at carotid bifurcation

- 9 cm depth at circle of Willis

• Results:

0 5 10 15 20 25

0

2

4

6

8

10

12

14

vessel position (cm)

vess

el d

ep

th (

cm)

aorticarch

circleof

Willis

flatsurface

bifurcation

simulated vessel structure

Coil1

Coil2

Coil3

Coil4

Coil5

0 5 10 15 20 250

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

vessel length (cm)

rela

tive

SN

R

optimum SNR for a 6,3,9 x 25cm length vessel

0 5 10 15 20 250

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

vessel length (cm)

rela

tive

SN

R single 10 cm radius coil

0 5 10 15 20 250

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

vessel length (cm)

rela

tive

SN

R5 coil array single 10 cm radius coil

Simulation Results

Conclusions

• This simulation tool provides a method for the study of optimum coil arrays for various carotid artery anatomy

• Number of channels needed for optimal carotid imaging is about 16 – 20 channels

Future Work

• Minimize magnetic and electric coupling between coils to determine proper coil overlap

• Adapt to non-planer surfaces to more closely match the anatomy of the shoulders, head, and neck

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500bz contour

Coil Properties

magnetic field of a circular loop(cross-sectional contour plots)

axial-component(signal component)

magnitude(all field components)

coil

signalshadow

coilaxis

1 2 3 4 5 6 7 8 9 100.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1optcoil.results.24fov.639realvessel

# of coils

max

SN

R

Simulation Results

RF Coil Design Optimization in Cervical Carotid Imaging

Rock Hadley

MIRL Symposium

Sundance

September 13, 2002

Go Take

A Hike!

1 2 3 4 5 6 7 8 9 100

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

coil radius (cm)

rela

tive

nois

e (a

rbitr

ary

units

)

sample noise ohmic noise combined noise

commercial neurovascularvolume coil

home-built bilateral 4-elementcarotid Phased-array coil

Coil Options for Carotid Imaging

Methods: Neurovascular Coil

Dual PA Coil

/4 triaxbalun cables

C1

C2

LL

C1

C2

C2

C2

C2

C2

D1

C3C3

Coil layout

Gap on backside of copper substrate

(Hayes et al. Magn Reson Med 18:309-319, 1991)

Methods: Ladder Coil Set UP

coil 3 / 5 slabs

coil 2 / 3 slabs

coil 1 / 4 slabs

+ GE standard head coil (GE Head)+ Commercial Neurovascular PA coils (NVPA)

Torso PA Chest Dual PA Inverted Dual PA

Carotid PA Head Dual PA

0 5 10 15 20 250

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

vessel length (cm)

rela

tive

SN

R

5 coil array single 10 cm radius coil

Purpose

• Develop a coil for MRA screening from the aortic arch to the top of the head

• Use dedicated coil elements for each section of specific anatomy

• Ability to use the same coil for high-resolution imaging of suspect regions