Remote sensing in the IR spectral range •Overview • Trace...

Post on 22-Aug-2020

0 views 0 download

Transcript of Remote sensing in the IR spectral range •Overview • Trace...

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Remote sensing in the IR spectral range

• Overview

• Trace gas spectra

• Spectrometer concepts

• Trace gas measurements from different platforms

• Imaging satellite instruments

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

moleculesaerosols

Cloud droplets

rain droplets

Remote sensing in IR spectral range

Wavelengths from ~1 to 1000m

-vibrational + rotational transitions

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

In the IR spectral range, typically emission spectra are analysed

In some cases also absorption spectra of the solar radiation are measured

SWIR

NearIR

ThermalIR

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Usually IR spectra are given as function of wavenumberWavenumber = 1 / Wavenumber is usually given in 1 / cm

3.3 m5 m10 m20 m

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Infrared emission spectrum of the Earth atmosphere in the mid-infrared region (700–2250 cm−1) calculated with the radiative transfer model LBLRTM for mid-latitude conditions (summer, unpolluted scenario). The most important absorption bands of different trace gases (O3, CO, CO2, H2O, CH4, N2O) are indicated.

(Orphal et al., 2005)

~4.4m~15.3m

300K

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

The observed Intensity is:

= 0if only emission is observed Optical depth

-emission and absorption have to be considered

-typically no simple inversion (like in the UV/vis) is possible

-complex radiative transfer modelling has to be applied

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

dsdWithout the surface term and with :

for

For small optical depth the observed signal becomes proportional to the optical depth

=

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

),,(,,,, TpSTNNTp ijijij

N: Number densityT: Temperaturep: Pressure: absorption cross sectionS: Line width

: absorption coefficient

Optical depth

From the measured optical depth, the absorption coefficient, or finally the number density of a trace gas can be derived.

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Als Auswahlregeln bei der RotationsAls Auswahlregeln bei der Rotations--Schwingungsspektroskopie erhält man:Schwingungsspektroskopie erhält man:

1v 1J ,0

01Rotations-Schwingungsterme: S(v, J) v BJ J 12

Rotations-Schwingungspektroskopie

linear in quadratisch in J

Vibrationsquantenzahl Rotationsquantenzahl J

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Termschema:Termschema:

Eine Linie Eine Linie steht für einen steht für einen kombinierten kombinierten RotationsRotations--SchwingungsSchwingungs--übergang!übergang!

Rotations-Schwingungspektroskopie

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Man erhält ein Spektrum der folgenden Art:Man erhält ein Spektrum der folgenden Art:

Rotations-Schwingungspektroskopie

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

The rotational-vibrational spectra are determined by the molecules symmetry and complexity

Methyl ethyl ketone (13 atoms, nonsymmetric)

Benzene(12 atoms, symmetric)

Formaldehyde(4 atoms, non-linear)

Acetylene(4 atoms, linear)

Nitric oxide(heteronuclear, diatomic)

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Example of an absorption FTIR- measurement

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Subtraction sequence of an absorption measurement

Lecture on atmospheric remote sensing thomas.wagner@mpic.dehttp://www-imk.fzk.de:8080/imk2/mipas-b/bestfit.gif

Example of an emission FTIR- measurement

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

MIPAS-HNO3-observation

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Example: N2O-Isotopes

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

www2.nict.go.jp/kk/e414/shuppan/ kihou-journal/journal-vol49no2/4-06.pdf

From pressure broadening information on vertical profiles can be obtained

(but often (only) total columns are determined)

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Information content and the sensitivity of a remote sensing measurement can be described by so called averaging kernels. They are determined during the retrieval process:

The measured spectra are simulated using a) assumed atmospheric profilesb) a radiative transfer modelc) an instrument simulation modelThe atmospheric profile is varied until measured and simulated spectra agree.

For the comparison with other data sets (e.g. model results) theaveraging kernels have to be applied:

')',,(',,,),,(0

dzzyxModelzzyxAKzyxtMeasuremenTOA

ztmeasuremen

e.g. concentrationor total or partialcolumn density

e.g. concentrationor partial column density

Can be extended to 3 dimensions

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Averaging kernels: indicate height-dependent sensitivity

Lecture on atmospheric remote sensing thomas.wagner@mpic.dehttp://www.ifac.cnr.it/retrieval/documents/AK_report.pdf

HNO3 from MIPAS

Thermal IR

Averaging kernel for limb observations

Narrow kernels are ‚good‘

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Comparison to ozone sonde

Segers et al., ACP 2005

O3 from SCIAMACHY

(UV)

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Different types of spectrometers:

-Grating spectrometer: simple setup, medium spectral resolution, typical for early measurements, today: satellite instrument CRISTA

-Fourier Transform IR, e.g. MIPAS: complex system with moving parts, high spectral resolution (typical instruments today)

-Etalon spectrometers (e.g. CLAES): high spectral resolution in selected wavelength windows

-gas correlation filter radiometer (e.g. satellite instrument MOPITT)

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Michelson-Interferometer

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Monochromatic interference

Set up of an interferometer

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Fourier Transformation

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Atmospheric observations

-ground based measurements

-air-borne observations of IR emission

-satellite observations of direct sun light

-satellite observations of IR emission (limb)

-satellite observations of IR emission (nadir)

-satellite observations imagers (IR emission nadir)

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Schematic illustration of theinstrumental setup used. Thesolar/lunar tracker follows the course of the sun/moon and feeds a parallel light beam into the spectrometer. In the interferometer the light beam is splitted into the two rays by the beamsplitter.Several detectors are mounted which allow to record the whole spectral region from the IR at 700/cm (14 µm) up to the UV at 33000/cm (300 nm).

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Increase of free tropospheric CO from 1951 to 1985(ISSJ Jungfraujoch)

Early measurements were carried out with a grating spectrometer; the

spectral resolution was limited

A spectrum from 1985 mathematically degraded to the

resolution from 1951

Original spectrum from 1985 measured with a FTIR high

resolution spectrometer

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

CO and CH4 column above the Jungfraujoch station

1985 - 1996Mahieu et al., 1997

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Seasonal cycle of freetropospheric CO from 1950/51 and 1985-87

(ISSJ Jungfraujoch)

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

www.ifjungo.ch/reports/1999_2000/pdf/09.pdf

Original spectrum from 2000 measured with a FTIR high resolution spectrometer

Increase of several species from 1951 to 2000 (ISSJ Jungfraujoch)

Early measurements were carried outwith a grating spectrometer; the spectral resolution was limited

A spectrum from 2000 mathematically degraded to the resolution from 1951

H2OH2O H2O

CO2 CO2

arrows: CFC-12 (CCl2F2)

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

www.ifjungo.ch/reports/1999_2000/pdf/09.pdf

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

www.ifjungo.ch/reports/1999_2000/pdf/09.pdf

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

www.ifjungo.ch/reports/1999_2000/pdf/09.pdf

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Griesfeller, A.: Validierung von ENVISAT-Daten mit Hilfe von bodengebundenen FTIR-Messungen, Dissertation, FZK Report No. 7072, Forschungszentrum Karlsruhe, Germany, 2004.

During polar night NOx is converted into HNO3

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Atmospheric observations

-ground based measurements

-air-borne observations of IR emission

-satellite observations of direct sun light

-satellite observations of IR emission (limb)

-satellite observations of IR emission (nadir)

-satellite observations imagers (IR emission nadir)

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

MIPAS Balloon

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

MIPAS ClONO2-Messung

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

MIPAS Balloon

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

K. Weigel et al., CRISTA-NF measurements during AMMA, AMT 2010

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

K. Weigel et al., CRISTA-NF measurements during AMMA, AMT 2010

Measurements contaminated by clouds

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

K. Weigel et al., CRISTA-NF measurements during AMMA, AMT 2010

Measurements contaminated by clouds

Lecture on atmospheric remote sensing thomas.wagner@mpic.deK. Weigel et al., CRISTA-NF measurements during AMMA, AMT 2010

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Atmospheric observations

-ground based measurements

-air-borne observations of IR emission

-satellite observations of direct sun light

-satellite observations of IR emission (limb)

-satellite observations of IR emission (nadir)

-satellite observations imagers (IR emission nadir)

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

ATMOS instrument on the space shuttle

Atmospheric Trace Molecule Spectroscopy (ATMOS)

Four Missions:

-Spacelab: 1985-ATLAS-1: 1992-ATLAS-2: 1993-ATLAS-3: 1994

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Key profiles from ATMOS Spacelab 3 sunset occultation data.

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

The ACE satellite: IR sun occultation measurementshttp://www.ace.uwaterloo.ca/images/ACE_occultation.jpg

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

http://www.ace.uwaterloo.ca/images/ACE_occultation.jpg

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Bernath, Peter (2006), Atmospheric Chemistry Experiment (ACE): Analytical Chemistry from Orbit, Trends in Analytical Chemistry, Vol. 25, No. 7., pp. 647-654

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Bernath, Peter (2006), Atmospheric Chemistry Experiment (ACE): Analytical Chemistry from Orbit, Trends in Analytical Chemistry, Vol. 25, No. 7., pp. 647-654

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Carleer, M.R., et al. (2008), Validation of water vapour profiles from the Atmospheric Chemistry Experiment (ACE), Atmos. Chem. Phys.Discuss., 8, 4499-4559, 2008 (PDF)

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

From ACE, also high resolution solar spectra were generated

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Limb-Beobachtung

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

THE (Cryogenic Limb Array Etalon Spectrometer ) CLAES INSTRUMENTCLAES infers the amounts of gases in the stratosphere from the measurement of the unique infrared emission features by combining a telescope with an infrared spectrometer and solid state detectors, and cryogenically cooling the whole instrument below 150 Kelvin to minimise its own thermal infrared emissions. The spectrometer operates over the wavelength range 3.5 to 12.9 microns.Spectroscopy is performed by tilt scanning one of the four solid etalons between one or more of the nine blocking filters. The nine filters are centered at 2843, 1897, 1605, 1257, 925, 879, 843, 792 and 780 cm-1.

http://www.lmsal.com/9120/CLAES/mission.html

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

24 hours of ClONO2 (top) and HNO3 (bottom)data at 21 km as measured by CLAES in theArctic stratosphere for individual days between July 1992 and May 1993. (Roche et al., J. Atmos. Sci., 51, 2877-2902, Oct. 15, 1994.] )

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

http://www.crista.uni-wuppertal.de/images/space.png

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

CRISTA ist in der Ladebucht desSpace Shuttles eingebaut

CRISTA-SPAS has successfully completed two missions:

CRISTA 1 was launched on November 3, 1994 with STS-66 Atlantis.On November 12 the satellite was retrieved and two days later returned to Earth. The STS-66 payload alsoincluded the SSBUV experiment and the ATLAS-3instrument package.

CRISTA 2 was launched on August 7, 1997 with STS-85 Discovery.The Space Shuttle landed on August 19, 11:08 UT at NASA Kennedy Space Center, Florida.

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Measured CRISTA spectra of a single altitude scan in the tropical upper troposphere. Shaded spectral signatures originate from H2O emissions of weak lines.

Fig. 1 Viewing geometry of CRISTA

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

N20-Karte am 06. November 1994 in 30 km Höhe

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Assimilated water vapor field at 215 hPa on August 12, 1997.

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

MIPAS/ENVISAT

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

MIPAS on Envisat

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

http://www-imk.fzk.de/asf/ame/ClosedProjects/assfts/P_III_12_Glatthor_N.pdf

13.5km

16.4km

19.4km

40.3km

ClO emission

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

17.9.2002

20.9.2002

13.10.2002

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

www.copernicus.org/EGU/acp/acpd/4/6283/acpd-4-6283.pdf

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

16.01.2003

OClO from GOME-1

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Atmospheric observations

-ground based measurements

-air-borne observations of IR emission

-satellite observations of direct sun light

-satellite observations of IR emission (limb)

-satellite observations of IR emission/absorption (nadir)

-satellite observations imagers (IR emission nadir)

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

IR / MW: ideal case 1: surface is warmer than atmosphere:

=> only absorption has to be considered

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

IR / MW: ideal case 2: surface is colder than atmosphere:

=> only emission has to be considered

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

IR / MW: typical case: Tsurface and Tatmosphere are similar:

emission and absorption have to be considered

Clouds and aerosols further complicate the measurement

Radiative transfer simulations are needed

Typically the thermal contrast between the surface and the air directly above is small

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

High Resolution Infrared Radiation Sounder Version 2 (HIRS/2) on he TIROS Operational Vertical Sounder (TOVS)

Sensitivity of TOVS H2O observation for different IR wavelengths

Soden and Bretherton, 1996

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Engelen and Graeme, 2002

Retrieved water vapor between 1000 - 700 mb, 700 - 500 mb, and 500 - 300 mb from TOVS

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

http://www.atmosp.physics.utoronto.ca/MOPITT/MATR.pdf

MOPITT measures emitted (4.6 m) and and reflected (2.3 m) radiation

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

MOPITT instrument: Gas correlation technique

Transmission is varied

Gas cell Broad band radiometer

Signal =

emission

x

transmission

atmospheric emission

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

MOPITT instrument: Gas correlation technique

atmospheric emission: 0 atmospheric emission: x

Instrument transmission: 0

Instrument transmission: 0.5

Difference signal: 0

Difference signal: 0.5x

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

MOPITT instrument

LMC: length modulated gas correlation cell

PMC: pressure modulated gas correlation cell

Transmission convolved with the detector sensitivity (4.6 m) for different CO absorptions

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Global CO distribution from SCIAMACHY (bottom) and MOPITT (top)

Averaging kernels

Remedios et al., 2005

Buchwitz et al., 2004

20.09.2004

Lecture on atmospheric remote sensing thomas.wagner@mpic.dehttp://suzaku.eorc.jaxa.jp/GLI2/adeos/Project/Img.html

IMG Main Characteristics

Spectral Range ofMeasurement

714-303 cm (14 -3.3um)

Wave number resolution 0.1cm (apodized) Absolute accuracy ofmeasurement < = 1k

Stability of measurement <= 0.1k

Interferogram scan time <= 10sec Sampling perintergerogram <= 100,000

Mass < 115kg

Power consumption < 150w

Approximate Size within1000x800x500mm

Interferometric Monitor for Greenhouse Gases (IMG)(1996 – 1997)

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

IMG spectrum (in transmittance units) in the 600–2500 cm−1 spectral range recorded over South Pacific (−75.24, −28.82) on 4 April 1997, 04:00:42GMT (top). Radiative transfer simulations for absorption contributions due to strong (middle) and weak (bottom) absorbers are also provided.

Zoom next slide

Clerbaux et al., 2003

IMG:InterferometricMonitor for GreenhouseGases

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Detection of HNO3 from IMG data.

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

(a) Best ozone spectral fits for IMG observations above the Uccle (left plot) and Ny-Alesund (rightplot) sites. The selected scenes correspond to surface temperatures of 280 and 255 K, respectively. The dashed lines at ±107 W/(cm2 sr cm1) correspond to the value selected to constrain the retrievals.

(b) Retrieved ozone profiles in number density units and relative differences calculated with respect to the smoothed ozone sonde profiles at the two locations. The a priori profile is also shown.

Coheur et al., JGR 2005

IMGUccle Ny Alesund

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Global distributions of IMG CH4 and CO total columns for the April 1–10, 1997 IMG period. The data are averaged over the time periodand a 5° x 5° grid. The corresponding available NDSCmeasurements are represented by colored circles on each map.

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

AIRS:

Atmospheric IR Sounder

http://airs.jpl.nasa.gov

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

AIRS measures upwelling radiances in 2378 spectral channels in the infrared (IR) from 3.74 µm to 15.4 µm.

650 – 2700 cm^-1 wavenumbers, spectral resolution: 0.5 – 2cm-1

AIRS is a grating spectrometer

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Atmospheric Infrared Sounder (AIRS) originally designed to measure atmospheric water vapor and temperature for weather forecasting Also atmospheric CO and CO2 can be retrieved for the mid-troposphere(about 8 km above the surface)

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

TES observes atmospheric emissions in both limb and nadir geometry

http://tes.jpl.nasa.gov/

TES is a high-resolution,infrared, imaging Fourier-transform spectrometer with spectral coverage of 650 to 2250 cm-1 at a spectral resolution of 0.1 cm-1 (low resolution) or 0.025 cm--1

(high resolution)

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

From Beer, 2005

Tropospheric EmissionSpectrometer (TES)

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

First TES global map oftropospheric O3 (9/21/2004)

GEOS-CHEM modelfor 9/21/2004

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

CO Column from TES, 9-20-04

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

CO Column from MOPITT, 9-20-04

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Zhang et al., 2006

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Zhang et al., 2006

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Launched in 2006 on METOP-A.

A second and third instrument will be mounted on the METOP-B and C satellites with launches scheduled in August 2012 andOctober-November 2016.

Infrared Atmospheric Sounding Interferometer (IASI)

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Infrared Atmospheric Sounding Interferometer

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Clarisse et al., ACP 2008

Spectrum outside volcanic plume

Spectrum inside volcanic plume

Ratio spectrum

Detection of SO2 in volcanic plumes

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Detection of SO2 in volcanic plumes

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Clerbaux et al., ACP 2008

Detection of several trace gases in biomass burning plumes

Fires in east Siberia, May 2007

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

(Tropospheric) Ozone from IASI

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Atmospheric observations

-ground based measurements

-air-borne observations of IR emission

-satellite observations of direct sun light

-satellite observations of IR emission (limb)

-satellite observations of IR emission (nadir)

-satellite observations imagers (IR emission nadir)

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Nimbus-1Launch Date August 28, 1964

Operational Period Operational until September 23, 1964

Nimbus-1 High Resolution Infrared Radiometer (HRIR) image, taken at night over western Europe - note the distortion that enlarges Germany and Sweden relative to southern countries.

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

0.58-0.68µm 1.58 - 1.64µm 10.3 - 11.3µm

AVHRR, chan. 1

29 Apr 2006 at 1330 UTC

Dundee Satellite Receiving Station (http://www.sat.dundee.ac.uk)

AVHRR, chan. 3 AVHRR, chan. 4

Measurements of radiometers: Clouds are bright

Thermal IRVisible Near IR

Lecture on atmospheric remote sensing thomas.wagner@mpic.de

Short summary for IR atmospheric remote sensing:

-in the thermal infrared a large number of molecules can be measured

-instruments at different platforms and with different viewing geometries

-pressure broadening allows to retrieve height information (for stratosphere)

-instrumentation is often very complex (deep temperatures, interferrometers)

-from satellite, usually the sensitivity for trace gases in the boundary layer is low