Quality aspects of urban and natural surface runoff GEX-22967 Interventions Bassin Versant Dr. Dirk...

Post on 17-Dec-2015

213 views 0 download

Tags:

Transcript of Quality aspects of urban and natural surface runoff GEX-22967 Interventions Bassin Versant Dr. Dirk...

Quality aspects of urban and natural surface runoff

GEX-22967 Interventions Bassin Versant

Dr. Dirk Muschalla

Dr.-Ing. Dirk Muschalla

Dirk Muschalla

Dr.-Ing. Dirk Muschalla

Literature

• Predicting Rainfall Erosion Losses : A Guide To Conservation, Agriculture Handbook Number 537, USDA– http://topsoil.nserl.purdue.edu/usle/AH_537.pdf

• W. James, W.C. Huber, R.E. Dickinson, and W.R.C. James «Water systems models HYDROLOGY», CHI, Guelph, Ontario, Canada (fourth printing 1999)– Chapters 4.8.1 - 4.8.4

Dr.-Ing. Dirk Muschalla

Quality aspects of urban surface runoff

Dr.-Ing. Dirk Muschalla

Urban hydrology cycle

2 3

1

7

5

4

8

1

4

8

8

6

7

2 3

1. Evapotranspiration

/precipitation

2. Runoff generation

3. Runoff concentration

4. Flow translation and

retention

5. Flow diversion and

storage

6. Overflow

7. Calculation of dry

weather flow and

pollution loads

8. Specific processes

Dr.-Ing. Dirk Muschalla

Urban runoff quality

Three methods:

1. Average loads or concentrations• Constant concentration of surface runoff• Direct or via annual load

2. Rating curve• Concentration proportional surface runoff

3. Buildup und wash-off• Dry periods: Buildup of “dust and dirt” (DD)• Period of runoff: complete or partly wash-off of DD

Dr.-Ing. Dirk Muschalla

Average loads / concentrations

Example ATV A128 (German guidleline document)– Annual 600 kg/ha COD– Annual precipitation 800 mm– Average runoff coefficent 0,7

lmgmm

hakgcR /

,

/107100

80070

600

Dr.-Ing. Dirk Muschalla

Rating curve

WFLOW = subcatchment runoff (e.g. m3/s)

POFF = constituent load washed of at time t (e.g. mg/s)

RCOEF= coefficent that includes corrrect units conversion

WASHPO = exponent

WASHPOWFLOWRCOEFPOFF

Dr.-Ing. Dirk Muschalla

Buildup

(Sartor and Boyd, 1972, Quelle:CHI 2006)

Dr.-Ing. Dirk Muschalla

Buildup

(Pitt, 1979, Quelle:CHI 2006)

Dr.-Ing. Dirk Muschalla

Buildup – measured Dust and Dirt

Type Land Use Pounds DD/dry day per 100 ft-curb

1 Single Family Residential 0.7

2 Multi Family Residential 2.3

3 Commercial 3.3

4 Industrial 4.6

5 Undeveloped Park 1.5

Accumulation in Chicago by APWA in 1969

Dr.-Ing. Dirk Muschalla

Buildup – measured Dust and Dirt

Parameter Single Family Residential

Multi Family Residential

Commercial Industrial

BOD5 5.0 3.6 7.7 3.0

COD 40.0 40.0 39.0 40.0

Total Coliforms

1.3 106 2.7 106 1.7 106 1.0106

Total N 0.48 0.61 0.41 0.43

Total PO4 0.05 0.05 0.07 0.03

Accumulation in Chicago by APWA in 1969Milligram of pollutant per gram of DDUnits for coliforms are MPN/gram

Dr.-Ing. Dirk Muschalla

Buildup Equations

DDLIMDD

tDDFACTDD DDPOW

Three different equations

1.Power-linear

2.Exponential

3.Michaelis-Menton

DD=Dust and Dirt (e.g. lb)

)1( tDDPOWeDDFACTDD

tDDFACT

tDDLIMDD

Dr.-Ing. Dirk Muschalla

Buildup

Dr.-Ing. Dirk Muschalla

Buildup

Dr.-Ing. Dirk Muschalla

Washoff

Rate of washoff (e.g.mg/sec) is proportional to remaining quantity

PSHETKdt

dPSHED

PSHED = quantity remaining on surfaceK = coefficient

Dr.-Ing. Dirk Muschalla

Washoff

tkePSHETtPSHED 0)(

)1()( 0tkePSHETtPOFF

PSHED(t) = quantity remaining on surface at time t

PSHED0 = initial amount of quantityPOFF = cumulativ amount washed of at

time t

Dr.-Ing. Dirk Muschalla

Washoff modification

rRCOEFK

PSHETrRCOEFdt

dPSHED WASHPO

» if increase of in runoff rate is sufficient, concentration can increase during the middle of

a strom even if PSHED is dimished «

Dr.-Ing. Dirk Muschalla

CSO– discharge receiving river

0

0.5

1

1.5

2

2.5

3

3.5

4

8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00

Ab

flu

ss [

m³/

s]

Einleitung + 1000m + 2000m + 3000m

Dr.-Ing. Dirk Muschalla

CSO – resulting BOD5 concentration

0

5

10

15

20

25

30

35

40

45

8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00

BS

B5 [

mg

/l]

Einleitung + 1000m + 2000m + 3000m

Dr.-Ing. Dirk Muschalla

Quantity (PSHED) on surface over time

0

1

2

3

4

5

6

7

8

9

185 192 199 206 213 220 227 234 241 248 255 262 269 276

Tage

P(t

) [k

g B

SB

5/ha

]

Pmax=3, K1=0.12 Pmax=6, K1=0.12 Pmax=9, K1=0.12 Pmax=6, K1=0.06 Pmax=6, K1=0.18

0

1

2

3

4

5

6

7

8

9

1 8 15 22 29 36 43 50 57 64 71 78 85 92

Tage

P(t

) [k

g B

SB

5/ha

]

Dr.-Ing. Dirk Muschalla

Quantity (PSHED) on surface over time

0

1

2

3

4

5

6

7

8

9

185 192 199 206 213 220 227 234 241 248 255 262 269 276

Tage

P(t

) [k

g B

SB

5/ha

]

Pmax=3, K1=0.12 Pmax=6, K1=0.12 Pmax=9, K1=0.12 Pmax=6, K1=0.06 Pmax=6, K1=0.18

0

1

2

3

4

5

6

7

8

9

93 100 107 114 121 128 135 142 149 156 163 170 177 184

Tage

P(t

) [k

g B

SB

5/ha

]

Dr.-Ing. Dirk Muschalla

Quantity (PSHED) on surface over time

0

1

2

3

4

5

6

7

8

9

185 192 199 206 213 220 227 234 241 248 255 262 269 276

Tage

P(t

) [k

g B

SB

5/ha

]

Pmax=3, K1=0.12 Pmax=6, K1=0.12 Pmax=9, K1=0.12 Pmax=6, K1=0.06 Pmax=6, K1=0.18

Dr.-Ing. Dirk Muschalla

Rainfall event

0

0,3

0,6

0,9

1,2

1,5

1,8

16:30 16:55 17:20

Nie

der

sch

lag

[m

m]

hN hNeff

Dr.-Ing. Dirk Muschalla

Hydro- and Pollutograph

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

16:30 16:55 17:20

Ab

flu

ss [

m³/

s]

0

0,015

0,03

0,045

0,06

0,075

0,09

0,105

0,12

BS

B5

[kg

/(h

a*m

in)]

Abfuss SchmutzfrachtK2=2.0, w=0.6

Dr.-Ing. Dirk Muschalla

POFF over time

0

0,3

0,6

0,9

1,2

1,5

1,8

2,1

16:30 16:55 17:20 17:45

Po

ten

tial

BS

B5 [

kg/h

a]

SchmutzfrachtK2=2.0, w=0.6

Dr.-Ing. Dirk Muschalla

M (V) diagram

1.0 2.0 3.0

0.2

0.6

1.0

Relative Frachtsummenkurven für BSB5

S BSB5 1.680 [kg/ha], max. BSB5 0.087 [kg/(ha*min)] S BSB5 1.917 [kg/ha], max. BSB5 0.107 [kg/(ha*min)] S BSB5 1.952 [kg/ha], max. BSB5 0.116 [kg/(ha*min)]

S BSB5 0.996 [kg/ha], max. BSB5 0.055 [kg/(ha*min)] S BSB5 1.379 [kg/ha], max. BSB5 0.077 [kg/(ha*min)] S BSB5 1.580 [kg/ha], max. BSB5 0.089 [kg/(ha*min)]

Abtragskoeffizient K2

Fo

rmfa

kto

r w

S BSB5 1.320 [kg/ha], max. BSB5 0.071 [kg/(ha*min)] S BSB5 1.663 [kg/ha], max. BSB5 0.090 [kg/(ha*min)] S BSB5 1.825 [kg/ha], max. BSB5 0.100 [kg/(ha*min)]

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

Abfluss

BS

B5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

Abfluss

BS

B5

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

Abfluss

BS

B5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

Abfluss

BS

B5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

Abfluss

BS

B5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

Abfluss

BS

B5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

Abfluss

BS

B5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

Abfluss

BS

B5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

Abfluss

BS

B5

Dr.-Ing. Dirk Muschalla

Quality aspects of natural surface runoff

Dr.-Ing. Dirk Muschalla

Upland processes

Upland Processes

Dr.-Ing. Dirk Muschalla

Hydrology

Erosion

Plant Growth

Nutrient Cycling

Pesticide Dynamics

Agricultural Management

Upland Processes

Dr.-Ing. Dirk Muschalla

Root Zone

Shallow (unconfined)

Aquifer

Vadose (unsaturated)

Zone

Confining Layer

Deep (confined) Aquifer

Precipitation

Evaporation and Transpiration

Infiltration/plant uptake/ Soil moisture redistribution

Surface Runoff

Lateral Flow

Return Flow

Revap from shallow aquifer

Percolation to shallow aquifer

Recharge to deep aquifer

Flow out of watershed

Hydrologic Balance

Dr.-Ing. Dirk Muschalla

2 10840

0

9

6

3

12

Month

LAI

126

Plant Growth

Dr.-Ing. Dirk Muschalla

NO3- NH4

+

Soil Organic Matter

NO2-

manures, wastes and

sludge

ammonium fixationclay

mineralization

immobilization

nitrification

immobilization

Symbiotic fixation

NO3

-

anaerobicconditions

N2

N2O

NH3Atmospheric N fixation

leaching

fertilizer fertilizer

Harvest

denitrification

ammonia volatilizati

on

runoff

Nitrogen Cycle

Dr.-Ing. Dirk Muschalla

Soil Organic Matter

H2PO4-

HPO4-2

manures, wastes and

sludge

mineralization

immobilization

fertilizer

Harvest

manures, wastes, and

sludge

Adsorbed and fixed Inorganic

Fe, Al, Ca, and clay

runoff

Phosphorous Cycle

Dr.-Ing. Dirk Muschalla

Foliar Application

Degradation

Washoff

Infiltration

Leaching

Runoff

Surface Application

Degradation

Pesticide dynamics

Dr.-Ing. Dirk Muschalla

Erosion

Effects on environmental quality and productivity

• Loss of organic matter, clay and nutrients reduces productivity

• Damage to plants

• Formation of rills and gullies affects management

• Sedimentation in waterways, diversions, terraces and ditches

• Delivery of nutrients to surface water

Dr.-Ing. Dirk Muschalla

Types of soil erosion

Dr.-Ing. Dirk Muschalla

Soil water erosion process

Soil

Sediment LoadSediment Transport

Detachment

Deposition

Dr.-Ing. Dirk Muschalla

Deposition

Transport capacity=

sediment load

Sediment production less than transport

capacity

Deposition because sediment production exceeds transport capacity

Hill slopeTransport capacity

Sediment load

Dr.-Ing. Dirk Muschalla

Erosion plot

©Ali Fares

Dr.-Ing. Dirk Muschalla

Erosion plot

©Ali Fares

Dr.-Ing. Dirk Muschalla©Ali Fares

Dr.-Ing. Dirk Muschalla

©Ali Fares

Dr.-Ing. Dirk Muschalla

USLEUniversal Soil Loss

EquationWischmeier, W.H. and D.D. Smith. 1978.

Predicting rainfall erosion losses. USDA Agriculture Handbook 537, U.S. Department of

Agriculture.

Dr.-Ing. Dirk Muschalla

USLEUniversal Soil Loss Equation

• A = average annual soil loss (tons/acre year)• R = rainfall and runoff erosivity index• K = soil erodibility factor• L = slope length factor• S = slope steepness factor• C= crop/management factor• P = conservation or support practice factor

PCLSKR A

Dr.-Ing. Dirk Muschalla

USLEUniversal Soil Loss Equation

• Empirical model: – Analysis of observations– Seeks to characterize response from these data.

• Based on:– Rainfall pattern, soil type, topography, crop system and

management practices.

• Predicts:– Long term average annual rate of erosion

• Subroutine in models such as:– SWRRB (Williams, 1975), EPIC (Williams et al., 1980), ANSWERS

(Beasly et al., 1980), AGNPS (Young et al., 1989)

Dr.-Ing. Dirk Muschalla

R (rainfall and runoff erosivity index)

• Erosion index (EI) for a given storm:– Product of the kinetic energy of the falling

raindrops and its maximum 30 minute intensity.

• R factor = S EI over a year / 100

Dr.-Ing. Dirk Muschalla

Average annual values of the rainfall erosion index (R).

Dr.-Ing. Dirk Muschalla

K (soil erodibility)

• Susceptibility of a given soil to erosion by rainfall and runoff.

• Depend on: – Texture, structure, organic matter content, and

permeability.

A =R x K x LS x C x P

Dr.-Ing. Dirk Muschalla

Soil-erodibility nomograph

Dr.-Ing. Dirk Muschalla

LS (slope length-gradient)

Ratio of soil loss under given conditions to that at a site with the "standard" slope and slope length.

A =R x K x LS x C x P

Dr.-Ing. Dirk Muschalla

Standard USLE plot

– 22.1m (72.6 ft) long– 9% slope– 4m (13.12 ft) wide.

©Ali Fares

Dr.-Ing. Dirk Muschalla

Topographic LS factor

Dr.-Ing. Dirk Muschalla

C (crop/management)

Ratio of soil loss from land use under specified conditions to that from continuously fallow and tilled land.

A =R x K x LS x C x P

Crop FactorGrain Corn 0.40

Silage Corn, Beans & Canola 0.50Cereals (Spring & Winter) 0.35

Seasonal Horticultural Crops 0.50Fruit Trees 0.10

Hay and Pasture 0.02

Tillage FactorFall Plow 1.00

Spring Plow 0.90Mulch Tillage 0.60Ridge Tillage 0.35Zone Tillage 0.25

No-Till 0.25

Dr.-Ing. Dirk Muschalla

P (conservation practices)

• Ratio of soil loss by a support practice to that of straight-row farming up and down the slope.

A =R x K x LS x C x P

 Support Practice P Factor

Up & Down Slope 1.00

Cross Slope 0.75

Contour farming 0.50

Strip cropping, cross slope 0.37

Strip cropping, contour 0.25

Dr.-Ing. Dirk Muschalla

MUSLE

Modified Universal Soil Loss Equation

V = surface

qp = is the peak flow rate

K = erodibility factor

C = crop management factor

P = the erosion control practice factor

LS = slope length and steepness factor.

PCLSK )q (V 11.8 = Y 0.56p

Dr.-Ing. Dirk Muschalla

MUSLE

Modified Universal Soil Loss Equation

The MUSLE was developed by replacing the rainfall-energy factor in the USLE with a runoff energy factor

K, LS, C and P are the standard USLE factors

MUSLE is e.g. used in SWAT

PCLSK )q (V 11.8 = Y 0.56p

Dr.-Ing. Dirk Muschalla

CONTOUR STRIP CROPPING

Crawford CO

Dr.-Ing. Dirk Muschalla

Dr.-Ing. Dirk Muschalla

Terracing & Contour Farming

Dr.-Ing. Dirk Muschalla

Contour cropping Strip cropping

Buffer strips Vegitated creeks