Quality and Additive Manufacturing…What You Need to...

Post on 04-Feb-2018

215 views 1 download

Transcript of Quality and Additive Manufacturing…What You Need to...

Quality and Additive Manufacturing…What You Need to Know and LearnShane Collins 4-14-17

IntroductiontoAdditiveManufacturingUniqueaspectsofAdditiveManufacturingSignificantQualityConcerns

Quality Concerns for Additive ManufacturingAgenda

Introduction to Additive Manufacturing

• Foundedin2005forAdditiveManufacturingofmetalcomponents.

• AS9100certifiedsince2006.• ITARregistered.• NADCAPaccreditationinprocess

• LocatedinVenturaCountyinSouthernCalifornia.• AcquiredbyInsightEquityin2014.• Currentlymanufacturingstructuralflighthardwarefortwosatelliteproducerswithpowderbedfusion.

MB CalRAM Overview

Space Systems Loral Antenna TowerHundreds of parts per satellite, but each part is unique

Additive Manufacturing or 3D Printing

AMProcessCategories

Material Jetting

• AM process in which droplets of build material are selectively deposited

– Wax or Photopolymers– Multiple nozzles – Single nozzles– Includes

• Objet• 3D Systems Projet• Stratasys Solidscape machines• Several Direct Write machines• XJET• Etc.

Vat Photopolymerization Process

• An additive manufacturing process in which liquid photopolymer in a vat is selectively cured by light-activated polymerization.

– Stereolithography– DLP– Micro-SLA

Material Extrusion

• AM process in which material is selectively dispensed through a nozzle or orifice.

– Based on Stratasys FDM machines

– DIY community

Sheet Lamination

• An additive manufacturing process in which sheets of material are bonded to form an object.

– Paper (LOM)• Using glue

– Plastic• Using glue or heat

– Metal• Using welding or bolts• Ultrasonic AM…

Binder Jetting

• AM process in which a liquid bonding agent is selectively deposited to join powder materials.

– Zcorp– Voxeljet– ProMetal/ExOne– …

Directed Energy Deposition

• AM process in which focused thermal energy is used to fuse materials by melting as they are being deposited

DMGMori

Powder Bed Fusion

• An additive manufacturing process in which thermal energy selectively fuses regions of a powder bed

– SLS®, SLM®, DMLS®, EBM®, BluePrinter, etc. – Polymers, Metals & Ceramics

Conventional AM Prototype Uses

Rapid Prototyping• Wind Tunnel Models• Form-Fit-Function

Models• Experimental Rigs• Desktop Models

Indirect AM for Production Applications

Surfacerepairusingdirectedenergydeposition.MIL-STD-3049

3Dprintedmoldsforsandcastingusingmaterialjetting.

3Dprintedinvestmentcastpatternsusingmaterialjettingandvatphotopolymerization

Production AM Platform Categories

Polymers Metals

PolymerPBF

MaterialExtrusion

LaserPBF

ElectronPBF

DirectedEnergyDeposition

HybridDED/CNC

ProcessTechnology

ProductionMaterials

Applications

Polyamides

PAEKs

Ultem®

Polyamide12

17-4PH15-5PH316LToolSteelTi6-4Ti6-4ELITiCPIN718IN625HASXAlSi10MgCoCrMo

CoCrMoTi6-4Ti6-4ELITiCPIN718TiAl

Ti6-4Ti6-4ELITiCPTi6-2-4-213-817-4PH304316L4104204047IN625IN718ToolSteel

SameasDED?

DuctsBracketsFixturesUAVparts

BracketsCompositeTooling

NearNetShapeParts

PartPreforms

PartRepair/LargeParts

TBD

ImplementationProgressofHighDensityNylon12SelectiveLaserSintering(SLS)

• Nylon12SLSwasfirstAdditiveManufacturing(AM)processimplemented;adoptionisinearlystagesandusecontinuestogrow

AsofOct2013Part#’s/Veh.

TotalParts/Veh.

6Part#’s7TotalParts

7Part#’s7TotalParts

3Part#’s3TotalParts

18Part#’s22TotalParts

24Part#’s31TotalParts

15Part#’s223TotalParts

ThousandsofAMPartsFlyingonNGASAirVehicles

Nylon12SLSDesign

AllowablesDatabase&Associated

Specifications

UCAS-D

Global Hawk

FireScout

Triton

Firebird

SpecialPrograms

NorthropGrummanOakRidgePresentation

*About20,000partsmadebylasersinteringarealreadyflyinginmilitaryandcommercialaircraftmadebyBoeing,including32differentcomponentsforits787Dreamlinerplanes.

*Jerry Clark, Boeing

Laser Sintered Nylon Parts for F/A-18 began ~ 2001

X-47B Air Mixer (2010)Ti 6-4

Boeing 777 LED Light Housing (2006)

17-4 SS

Early Examples of Metal Powder Bed Fusion for Production Applications

Laser Sintering Material Extrusion

Stratasys Fortus

Cincinnati BAAM

EOS

3D Systems

AM Production Technology-Polymers

Direct

Powder Bed Fusion

IndirectMetal Powder ConsolidationAnd Sand Cast Patterns

ExOne

Voxeljet

Directed Energy Depositon

Hybrid Systems

AM Production Technology-Metals

Concept LaserEOS

3D Systems

SLM Solutions Renishaw

Realizer

Farsoon Additive Industries

Trumph

Arcam

A Sampling of Metal Powder Bed Fusion Machines

When to Use Additive Manufacturing

ScheduleReduction

ExpensiveChips

LowVolume

TolerancebyFeature

HighComplexity

Barriers to Additive Manufacturing3DCADIsAvailable

MaterialandProcessStandardsExists

DesignAllowableDatabaseExists

SupplyChainExistsfortheAMProcess

MaterialSubstitutionsAreAllowed

DesignChangeAuthorityExists

NDEIsAvailableforTechnology

AdditiveManufacturing

TraditionalManufacturing

NO

NO

NO

NO

NO

NO

NO

InterpretDrawingsor3DScanYES

NO

CreateInternalSpecificationsYES

NO

Non-StructuralPointSpecificationYES NO

YESTimetoDevelop

Vendors NO

AMPartPropertiesEquivalenttoWroughtYES NO

NO

The Promise of Additive Manufacturing

LightweightStructures

CompetitiveAdvantage

Unique Quality Aspects of Additive Manufacturing

PowderbedfusionMaterialextrusion

Metal Powder Bed Fusion Combines

Welding PowderConsolidation

NumericalMachine

Control

PBF

SDO Involved

Welding PowderConsolidation

NumericalMachine

Control

PBF

AWSASMEY14.46

ASTM

IEEE

ISOTC44

ISOTC261

MPIF

NEPA

SAEAMS-AM

NADCAP

PBF Inputs Affecting Quality

Quality Concerns both Internal and with Supply Chain

MachineSet-up

DataPreparation PBFProcess Machine

TurnaroundPost

Processing

• Digitalproductdefinition

• CADModification• Support

Generation• Machinecontrol

softwareconfigurationmanagement

• Pre-buildchecklist

• InstallPlatform• Fillingpowder

reservoir• Recycle

strategy• Machine

fitness

• Selectalloyspecificsettings

• Loadexposures• Warmupbuild

platform• Startbuilding

process• Document

buildingprocess

• Cleanprocesschamber

• Powdercontaminationcontrol

• Emptycollectorreservoir

• Cleanmachine

• StressRelief• Removeparts

fromplatform• HIP• Thermal

Processing• Coatings• Witnesscoupon

testing

BeamOverlap

OMtopviewafterscan

Beampower,Hatchspace,Scanspeed,Layerthickness

• ThinsectionOMshowfulldensity• Mechanicalpropertiesmeetspecificationminimum• Createfixedbaselinemachinesettingsfor

ManufacturingPlan

Layer-wise Welding Produces Unique Microstructure

PowderConsolidation

MicrostructureMechanicalProperties

PartAttributes

ExposureParameters

ScanStrategyandThermal

Treatments

ThinWalls,Overhangs,HollowAreas

PBF Parameters Determine Porosity and Part Buildability

SurfaceSlowbeam Fastbeam

New Layer

NitrogenTemp Yield (ksi) ULT (ksi) Elong % R.A. % S/N

RT 129 165 28 35 RFH-ZRT 127 165 32 46 RRH-ZRT 125 165 31 44 LRH-ZRT 130 166 29 45 LFH-ZAve 127.8 165.3 30.0 42.5RT 138 179 25 34 LRVRT 135 179 26 29 RFVRT 134 181 26 30 LFVRT 134 178 29 32 RRVAvg 135.3 179.3 26.5 31.3

ArgonTemp Yield (ksi) ULT (ksi) Elong % R.A. % S/N

RT 125 166 29 41 1-ZRT 123 165 27 42 2-ZRT 122 165 29 41 3-ZRT 123 166 27 33 4-ZAve 123.3 165.5 28.0 39.3RT 130 174 28 28 5RT 130 174 28 25 6RT 130 175 27 30 7RT 129 173 29 28 8Avg 129.8 174.0 28.0 27.8

Affect of Purge Gas on 17-4 SS Properties

ObservetheanisotropicbehaviorbetweentensilebarsbuiltinX,YvsZdirection.

Powder Affects Part Quality

Particlesizedistribution,powdermorphology,powderrheology

Recoater generatingceramicinclusionsinusedpowder

PBF Feedstock Diagram

• Usedpowderisallowedtoberecycled.• Theproportionofvirginpowdertousedpowder

shouldberecordedonthecomponenttravelerwithcorrespondinglotnumbers.

• Componentpurchasermayspecifynumberoftimesusedpowdercanberecycled.

• Outofspecificationpowdershouldbescrappedandnopowderdopingallowed.

• Stratificationofvirginandusedpowderinthefeedbinnotrecommendedforproductionapplications.

Internal Cavity Challenges with PBF

Smallholedefinitionandremainingsinteredparticles.

Down-facingsurfacesoninternalchannels.Internalsupportswouldnotberemovable.

FeedstockAnalysisAndTestingLab

AdvancedSubtractiveMfg.

ComputerTomography

UltrasonicPowderRemoval

Powder Bed Fusion Supply Chain Management

AbrasiveFlowMachining

HotIsostaticPressing

HeatTreatment

MultipleOSPpresentparttrackingchallenges

Challenges with Material Extrusion

Beadturnspronetohaveporosity.

Smallvariationindiameterofplasticfilamentcaninduceporositybetweenlayers.

Digital Product Definition

Significant Quality Concerns

No Standard AM Callouts

ASTM F42 Working to Develop Standards for AM

42

X-rayinspectionsperASTME1742– 2TsensitivityAMS2635– GradeA

P.O.21451 AlSi10Mg LOC.:80NO X TOP 25X

1000 µm

P.O.21451 AlSi10Mg LOC.:80NO Y TOP 25X

1000 µm

ASTM F42 Working to Develop Standards for AM

43

Questions

Additive Manufacturing Health and Safety

Health and Safety in AM for Aerospace and Defense

AMProcessCategories FeedstockTypes HealthandSafetyImpact

DirectedEnergyDeposition Metalwire,metalpowders Dust,fireandexplosion

MaterialExtrusion Polymerwire,gels,concrete Vapors

MaterialJetting Liquidpolymers Vapors

VatPhotopolymerization Liquidpolymers Vapors,skinirritation

BinderJetting Organicpowders,metalpowders,ceramicpowders,polumerpowders Dust,fireandexplosion

PowderBedFusion Metalpowders,polymerpowders Dust,fireandexplosion

SheetLamination Ceramicsheets,metalsheets General H&S

Is 3D Printing Safe – A Study at Penn State University

PresentedatSolidFreeformFabricationbyTimSimpson

Particle Counters and VOC Detection

Particle Emissions from Material Extrusion 3D Printers

ChartsarefromMastersThesisbyWilliamMcDonnell

Volatile Organic Compounds

ChartsarefromMastersThesisbyWilliamMcDonnell

From 3D Printers to Metallic Part Production

Powder Bed Fusion

Directed Energy Depositon

Hybrid Systems

TypicalAMAlloysTitanium

Ti 6Al-4VTi 6-2-4-2TiAl

AluminumAlSi10Mg

SteelNi-Fe17-4316L

NickelIN625IN718HasX

TypicalAMPolymers

PA-11PEIPEKKPEEK

Health and Safety Affects of Powders

AirborneDustsSkin,eyeandrespiratoryirritants

ChemicalHazardsReactivemetalpairsandthermites

CombustibleDustsFirePrimaryandsecondaryreactions

ImperialRefinery;Savannah,GA,2008;fromwww.csb.gov

Theexplosiontriangle:Airbornedustconcentrationsalongwithanoxygenrichenvironmentandanignitionsource.

Personal Protection for Handling Metal Powders

WhentoWear• Loadingpowderintomachine• Unloadingfinishedparts• Changinggasflowfilters• Sievingpowderoffline• Mixingpowders

Headandfaceshield

Respirator

Fireretardantfabric

Weldinggloves

Conductivefootwearwithsteeltoe

Fireretardantfabric

Fire Codes for AM Powders

• NFPA484StandardforCombustibleMetals• Aluminum,TitaniumandMagnesiumconsidered

combustible

• NFPA68StandardonExplosionProtectionbyDeflagratingVenting

• Ceilingblowoutpanelshouldbeconsideredforaluminumandtitanium

• NFPA654StandardforthePreventionofFiresandDustExplosionsfromtheManufacturing,ProcessingandHandlingofCombustibleParticulateSolids

• Keepallareascleanandfreefromspills

My Decade of Experience Working with Powder Bed Fusion

• Accidentshaveoccurredwhenworkinstructionswerenotfollowedcorrectly.• Changingfilters• Vacuuminsideofchamber• Disengagingmachinesafetyswitches

• Accidentshaveoccurredwhenancillaryequipmentwasnotmaintainedproperly.• Groundingstrapsonvacuums• Wearingofvacuumhosetips• Vacuumsnotcleanedoutregularlyandmixingpowders

• Sievingequipmentinstalledincorrectly• Noproperground• Noinertgasatmosphere

• Handlingofmetalpowderbedfusionfeedstocksusuallydonotproducedustclouds.

• Dustdoesbuilduponfloorsandtablesincloseproximitytomachinesoverafewdaysandrequireconsistentcleaning.

• Dependingonthetypeofmachine,filterchangescanbedangerous.• I’veneverbeeninorseenanyfiresmorethanasmolderingfilter.

Other Safety Considerations for Metal Powders

AsphyxiationduetoshieldgasaccumulationinworkroomDrophazardforbuildplatesHandlacerationsfromsupportmaterialremovalFormationofhydrogengasduringwireEDMprocessforaluminumRemainingpowderinsupportsoraccumulatedscrappowderignitedbysandingorgrinding.

Questions