Proline As a Catalyst in Organic Synthesis · 2014-02-05 · Slight Catalyst Modification:...

Post on 18-Jun-2020

1 views 0 download

Transcript of Proline As a Catalyst in Organic Synthesis · 2014-02-05 · Slight Catalyst Modification:...

Proline As a Catalyst in Organic Synthesis

Lead References:Dalko, P. I.; Moison, L.; Angew. Chem. Int. Ed. 2004, 43, 5138-5175.Notz, W.; Tanaka, F.; Barbas, C.F. Acc. Chem. Res., 2004, 37,580-591.List, B. Acc. Chem. Res. 2004, 37, 548-557.List, B. Tetrahedron 2002, 58, 5573-5590.

Ashwin BharadwajOctober 26, 2004

Why Proline is a Good Catalyst? Possible Reasons

Proline is the only natural amino acid with a secondary amine functionality, which raises thepKa value and better nucleophilicity as compared to other amino acids.

It can act as a nucleophile to carbonyl groups(iminium intermediate) or Michael acceptors(enamines).

It can be regarded as a bifuctional catalyst

The high stereoselectivity possibly due to its formation of organized transition states with many hydrogen bonding frameworks.

Proline is not the only molecule to promote catalysis, but it still seems to be one of the best in the diversity of transformations

Transformations Covered:Aldol Reactions

Mannich ReactioonsDiels Alder Reactions

Michael ReactionsOther Transformations

NH

O

OH

Modes of Proline Catalysis

NH

N

N N

CO2H

CO2HCO2-

O

H MO

H

Metal CatalysisBifunctional Cataysis

MeR R

Iminium Catalysis Enamine Catalysis

Initial Findings

O

O

MeR

O3 mol % L-proline

DMF, 20h, rt

OR

OHO

R= Me, 100%, 93% eeR= Et 71%, 99% ee

OR

Me

O

O

3 mol % L-proline

DMF, 72h, rt52%

O

Me

OH

O

74% eeUse of protic solvents diminishes selectivity

Other amino acids used lead to poor yield and selectivity

Hajos, J.; Parrish, D.; J. Org. Chem. 1974, 39, 1615.Eder, U.; Sauer, G.; Weichert, R.; Angew. Chem. Int. Ed, 1971, 10, 496.

Initial Studies on Catalyst Structure

O

O

MeMe

ONMe

O

OH

DMF

Me

HO

O

H

Me

O

racemic

"major product"

O

O

MeMe

O

O

O

MeMe

O

NH

O

OMe

DMF

DMF

O

Me

OH

O

O

racemic

NH

CO2Hno reaction

Hajos, J.; Parrish, D.; J. Org. Chem. 1975, 39, 1615.

L-Proline even in preliminary investigations showed the most promise!!!

Transtion States: Two Views

N

H

H

H O

OHO

Me

O

Houk, 2001-2003

1) N-H---O Hydrogen bond does not lower energy of T.S.

2) Favorable O--H----O Hydrogen bond

3) Reaction first order in Proline (kinetic data)

N-O2CH

Me

O

ON

CO2-

H

Agami 1986

1) Favorable enamine bond

2) N-H- anti to carboxylate

3) Second order in proline

Agami, C. Bull. Soc. Chim. Fr. 1988, 3, 499. Hoang, L.; Bahmanyar, S.; Houk, K.N., List, B. J. Am. Chem. Soc. 2003, 125, 16.

General Cycle: An Enamine Mediated Catalytic Cycle with L-Proline

R2

O

R1

NH

CO2H

R1

N

R2

CO2HYX

electrophile(aldehyde, ketone,....)

NO

O

R2R1

Y

X

H

N+O

O-

R2R1

Y

X

H

R1 XO

R2

YH

+ H2O

It is believed that exceptional enantioselectivity is due to proline to promote formation of highy organized transition stateswith an array of hydrogen bonding frameworks.

In all proline mediated reactions, proton transfer from amine or acid to alkoxide or imide is essential for charge stabalization of bond forming events

Initial Study: Two Good Catalysts

Me Me

O

H

O+

R

L- proline, 30 mol%

DMSO, 4h trMe

O OH

R

Me

O OH

NO2

Me

O OH

Me

O OH

Br

Me

O OH

R

Me

O OHCl

Me

O OH

Me

Me

NH

S

NH

Me Me

CO2H

O

OH1 2

DMTC

1: 68%, 76% ee2: 60%, 86% ee

1: 62%, 60% ee2: 60%, 89% ee

1: 74%, 65% ee2: 65%, 87% ee

1: 97%, 96% ee2: 61%, 94% ee

1: 54%, 77% ee2: 60%, 88% ee

1: 94%, 69% ee2: 71%, 74% ee

2 is a good catalyst for aromatic aldehydes but the reaction rate is slower

List, B.; J. Amer. Chem. Soc. 2000, 122, 2395.

Direct Asymmetric Aldol Reaction: Ketones and Aldehydes

R1

OR2 +

H R3

O (S)-Proline

10-30 mol%DMSO or DMF

rt, 2-72h

R1 R3

O

R2

OH

Me

O OH

62%, 72% ee

Me

O OH

Me

Me Me

O OH

Me

O OH O OH

Me

Me

97%, 96% ee

Me

Me

OH

85%, 99%ee

60%, > 20:1 dr, >99%ee 77%, 2.5 d.r, 95% ee

List.B.; Lerner, R.A.; Barbas, C.F. J. Amer. Chem. Soc. 2000, 122, 2395-2396List, B.; Pojarliev, P.; Castello, P. Org. Lett. 2001, 3, 573-575.

H

OX

General Scheme:

enantioselective

catalyst HH

O

Y

+

O

X

OH

Y

Enantioselective Aldehyde Aldol: Elusive

H

OMe

10 mol%

catalyst, DMF, 4°C H

O

Me

OHMe

Proline Catalyzed Aldehyde Aldol Dimerization

80% yield, 4:1 anti syn, 99% ee

Enantioseletive aldol coupling of nonequivalent aldehydes is formidable

Propensity for aldehydes to polymerize

Two discrete components must occur: a nucleophilic component and an electrophilic component

Problem solved for nonequivalent aldehydes solved by syringe pump addition to propionaldehyde

H

OR1 10 mol%

catalyst, DMF, 4°C H R2

O

R1

OH

Proline Catalyzed Aldehyde Aldol Dimerization

donor

H R2

O+

acceptor

H

O

Me

OHMe

H

O

Me

OH

H

O

Me

OH

H

O

Me

OH

H

O

Me

OHMe

H

O

Bu

OHMe

H

O

Bn

OHMe

80%, 4:1, 99% ee 88%, 3:1, 97% ee 87%, 14:1, 99% ee 81%, 3:1, 99% ee

87%, 24:1, 99% ee 80%, 24:1, 99% ee 87%, 14:1, 99% ee

Me

Me

Me

Me Me

MacMillan, D.W.C.; Northrup, A. B.; J. Am. Chem. Soc. 2002, 124, 6798-6799.

Intramolecular Aldol Reactions

OHC CHO

R1R

(S)-Proline

10 mol%, CH2Cl2

OHCOH

R

R1

OHCOH

OHCOH

OHCOH

OHCHO

OHCOH

Me Me

MeMe

95%, 10:1 dr, 99% ee 75%, >20:1 dr, 97% ee 74%, >20:1 dr, 98 ee%

95%, 10:1 dr, 99% ee88%, 1:1 dr, 99% ee

Me

MeMe

Angew. Chem., Int. Ed. Engl. 2003, 42, 2785-2788,

HMe

(S)-ProlineH

OH

Me

O

82% yield, 24:1 anti syn, 99% ee

OMe

Me

O

H+Me

Me

1) (R)-Proline

2) TBSOTf

40:1 dr99% ee

61%

H

OH

Me

OMe

Me

O

O

Me

Me MeOH

Prelactone B1) OtBu

OTMS

, BF3

2) HCl

1) H22) TBSOTf3) LiBH44) Swern

74%

N O

OO

Me

Me

Bn

N O

OO

MeBn

1) MgCl2, NaSbF6, Et3N

MeH

O

2) MeOH, TFA, 77%, 15:1 dr

Synthesis of Prelactone B

Pihko, P.M.; Erkkila, A.; Tetrahedron Lett. 2003, 44, 6798-6799.

OH

Slight Catalyst Modification: α,α−-Disubstituted Aldol Products

H

OMe

R

+X

OHC NH

N

5 mol%

TFA, DMSOrt

H

O

Me R

OH

H

O

Me Me

OH

H

O

Me Me

OH

H

O

Me Me

OH

H

O

Me Et

OH

H

O

Me Pr

OH

H

O

Me

OH

nonyl

X

NO2 CN Br

NO2 NO2 NO2

Anti/Syn ratio quite modest in the general range from 1:2:1 to 5.3:1.

Mase, N.; Tanaka, F.; Barbas, C.F. Angew. Chem. Int. Ed. 2004, 43, 2420-2423.

92%, 96% ee 95%, 92% ee 80%, 95% ee

91%, 96/68% ee92%, 89/66% ee96%, 91/68% ee

Anti-Diols from Hydroxyacetone

Me

O

OHH R

O+

(S)-Proline (20 mol%)

DMSORMe

O

OH

OH

c-hexMe

O

OH

OH

i-PrMe

O

OH

OH

Me

O

OH

OH

Me

O

OH

OH

PhMe

O

OH

OH

2-naphthMe

O

OH

OH

t--BuMe

O

OH

OH

Me

O

OH

OH

Ph

Me

Cl

OO

MeMe

40-95%

> 99% ee>20:1 anti:syn

> 99% ee>20:1 anti:syn

> 95% ee>20:1 anti:syn

> 67% ee3:2 anti:syn

83% ee1:1 anti:syn

62% ee3:1 anti:syn

38% ee1.7:1 anti:syn

40% ee2:1 anti:syn

Notz, W.; Sakithivel, K; Bui, T.; Barbas, C.F.; J. Amer. Chem. Soc. 2001, 123, 5260-5267.

Acetaldehyde: A Trimerization

Me H

O 50 mol%, L-Proline

THF, 0°C, 5 hr, 10%3

H

O

Me

OH

15%

Mechanism:

HN

CO2H

+Me H

O -H2O

+H2ON

CO2

Me

H

N

CO2HH

Me H

O

N

CO2HHO

MeMannich Condensation

Me H

OH

O

Me

OHHN

CO2H

+

Cordova, A.; Notz, W.; Barbas, C.F. J. Org. Chem. 2002, 67. 301-303.

Aldehyde Aldol to Activated Carbonyls

H

OR +

EtO2C CO2Et

O 20 mol% L-Proline

CH2Cl2, 3 hr, rtH CO2Et

OHCO2Et

O

R

H CO2Et

OHCO2Et

O

MeH CO2Et

OHCO2Et

O

EtH CO2Et

OHCO2Et

O

i-Pr

H CO2Et

OHCO2Et

O

allylH CO2Et

OHCO2Et

O

n-Hex

H CO2Et

OHCO2Et

O

Ph

Yields range from 90-97%and enantioselectivities range from 84-90% exceptfor R= Ph where it is 0.

Chem. Comm. 2002, 620.

N

R

H

HH

H O

OO

EtO2C CO2Et

H

Aldol Reaction MechanismR2 Me

O NH

O

OH

++ H2O

- H2OR2

Me

N+

O-O

H R2

Me

N

OHO

H

R1CHO

N

H O

O

H

H

R2

MeO

HR1

H

Calculated T.S.

Points: synclinal approach of aldehyde R1 in pseudoequatorial position Calculations in DMSO C-H----O ; 2.4 A

Me

N

OHO

H

R2

R1

OH

+ H2O

- H2OR2

R1

OH

NH

O

OH

+

Me

O

R2N

OO-O

H

R1

MeH

metal-free Zimmeraman-Traxler model

List, B.; J. Am. Chem. Soc. 2000, 122, 2395.List, B. Houk, K. J. Am. Chem. Soc. 2003, 125, 2475.

Possible Transition State: Mannich vs. Aldol

O

HR+ N

X

CO2H

N

X

Me

Me

H O

O

R

O

H

H

Aldol

Selectivity of electrophileprobably depends on non-bonding interactions

Mannich

N

X

Me

H O

O

R

N

H

H

MeO

R Me

O

X

NHAr

R Me

O

X

OH

Direct Three -Component Mannich Reaction

R1

O

R2

+H R3

O

NH2

OMe

+(S)-Proline

5-35 mol%DMSO

R3R1

O NHPMP

R2

Me

O NHPMP

35%, 96% ee

Me

O

Me

NHPMPMe Me

O NHPMP

Me

O NHPMP

OHNO2

Me

O

Me

NHPMPMe

OH

Me

O NHPMP

Me

Me

56%, 70% ee 80, 90% ee

57%, 17:1 dr, 65% ee56%, >20:1 dr, >99% ee 90%, 93% ee

List, B.; Pojarliev, P.; Biller, W.T.; Martin, H.J. J.Am. Chem. Soc. 2002, 124, 827-833

Functionalized α-Amino AcidsO

R1 R2

L-proline

20 mol%, DMSOrt

H

NPMP

CO2Et+

O

R1 R2

NHPMP

CO2Et

Me

O

Et

NHPMP

CO2Et Me

O

Me

NHPMP

CO2Et

O

Me Me

NHPMP

CO2Et

O NHPMP

CO2Et Me

O NHPMP

CO2Et

O

F

NHPMP

CO2Et

O

OH

NHPMP

CO2Et

72%, >19:1, 98% ee 47%, >19:1, >99% ee82%, 95% ee

81%, >19:1, >99% ee 79%, >19:1, >99% ee 77%, 61% ee

62%, >19:1, 99% ee

Cordova, A.; Notz, W.; Zhong, G.; Betancort, J.; Barbas, C. J. Am. Chem. Soc. 2002, 124, 1842.

Mannich Reaction Continued: Anti Products

H

OR + OEt

O

NPMP

H20 mol%, DMSO

NH

OMe

H

O

R

NHPMPOEt

O

H

O

Et

NHPMPOEt

O

H

O

i-Pr

NHPMPOEt

OH

O

n-Bu

NHPMPOEt

O

H

O

t-Bu

NHPMPOEt

O

H

O

n-Pent

NHPMPOEt

OH

O

Hex

NHPMPOEt

O

The dr for all of these products are >10:1 to 19:1 except when R=Et (1:1)ee generally ranges from 75-92% ee, however the yields are only moderate.

44% 52% 54%

57% 78% 65%

Tetrahedron Lett. 2002, 43, 7749.

proposed transition state

N

H

OMe

R

N

CO2Et

MeO

HR

HH

Mannich Applications: One Pot Cyanation

H

O

R

+H CO2Et

NPMP

1) L-Proline

THF, rt, 16-20h

2)Et2AlCN

NC CO2Et

OH

R

HNPMP

NC CO2Et

OH

i-Pr

HNPMP

NC CO2Et

OH

Bn

HNPMP

NC CO2Et

OH

(CH2)3OTBS

HNPMP

40%, 94% ee 62%, >99% ee 42%, >99% ee

Watanabe, S.; Cordova, A.; Tanaka, F.; Barbas, C.F. Org. Lett. 2002, 4, 4519-4522

Method for constructing three contiguous stereocenters

One-Pot Oxime Formation and Allylation

H

O

R

+H CO2Et

NPMP 1) L-Proline

THF, rt, 16-20h H CO2Et

O

R

HNPMP

H CO2Et

O

R

HNPMP

BnONH2HClDioxane and Pyridine

H CO2Et

N

R

HNPMPBnO

up to 78% yieldand 99% ee

OO

R NHPMP

In, THF/H2O (9:1)Br

dr = 1:1- 2:1up to 99% ee

Cordova, A.; Barbas, C.F.; Tetrahedron Lett. 2003, 1923-1926Bui, T.; Barbas, C.F. Tetrahedron Lett. 2000, 41, 6951-6954.

Asymmetric α-Amination of Aldehydes

R1

OR2

R1= H, alkylR2=alkyl, benzyl

+ NNBnO2C

CO2Bn

(S)-Proline

10 mol% thenNaBH4

NCO2Bn

R2

HNCO2Bn

HO

NCO2Bn

HNCO2Bn

HO NCO2Bn

HNCO2Bn

HON

CO2BnBu

HNCO2Bn

HO

NCO2Bn

Me

HNCO2Bn

HONCO2Bn

Bn

HNCO2Bn

HO

MeMe

Me99%, 96%ee93%, 95% ee

94%, 97% ee

97%, 96% ee95%, 96% ee

N

O

O

NR2 CO2Bn

NBnO2C H

Aminoxylation of KetonesO

R2R1NO

Ph+ (S)-Proline (10-30 mol%)

DMSO, 2-3h rt

O

R2R1

O

R2R1

ONHPh NPh

OH

7-11% eeup to 99% ee

O/N selectivity >100:1 to 8:22

OO

NHPh

OO

NHPh

OO

NHPh

OO

NHPh

O

OO

NHPh

NMe

OO

NHPh

All of these products formed in 70-85% yield and greater than 99% ee.

Hayashi, Y.; Yamaguchi, J.; Sumiya, T.; Shoji, M. Angew. Chem. Int. Ed. 2004, 43, 1112-1115.

O

Me Me

O

Aminooxylation of Aldehydes

H

OR

5 mol% L-proline

CHCl3, 4°CH

OO

RNH

PhNO

Ph+

NH

X

N

O

OO

H

H

Possible Transition State

Basicity of nitrogen allows O-nucleophilic addition

Oxidation of Aldehydes with Nitrosobenzene

H

OR

5 mol% L-proline

CHCl3, 4°C H

OO

RNH

PhNO

Ph+

H

OO

MeNH

Ph

H

OO

n-BuNH

Ph

H

OO

i-PrNH

Ph

H

OO

PhNH

PhH

OO

BnNH

Ph

H

OO

NH

PhH

OO

(CH2)3OTIPSNH

Ph

88%, 97% ee

79%, 98% ee

85%, 99% ee

95%, 97% ee 60%, 99% ee

76%, 98% ee99%, 96% ee

Brown, S. P.; Brochu, M. P.; Sinz, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125, 10808.

Asymmetric Conjugate Addition

R1

O

R2

+R4 NO2

R3

(S)-Proline

10-20 mol%DMSO, rt

R1 NO2

R2

R3

R4

O

MeNO2

PhO

MeNO2

ONO2

PhO

97%, 7% ee 95%, 19%ee, 10:1 dr 94%, 23% ee, >20:1 dr

List, B.; Martin, H.J. Org. Lett. 2001, 2, 2423

Catalyst modification improves ee

OHC

R1

R2

NO2

+

R1, R2 = alkyl, aryl NH N

O

THF, rtH

NO2

R1

R2O

56-78% ee, syn/anti 98:2

20 mol%

Alexakis, A.; Andrey, O. Org. Lett. 2002, 3611-3614. Alexakis, A.; Bernardelli, G. Org. Lett. 2003, 5, 2559-2561.

Tandem Mannich-Michael Reaction

NH

N

O

Me+NH

NL-Proline (50 mol%)

DMSO, 7dH

O

76%, 92% ee

NH

NNH

NH

General Scheme:

Me

O

R+

R

O

L-Proline (3 mol%)

DMSO/H2O

51-98%7-92% ee

Itoh, T.; Yokoya, M.; Miyauchi, K.; Nagata, K.; Ohsawa, A. Org. Lett. 2003, 5, 4301-4304.

Tandem Process: Much longer Reaction Time

Amine-Catalyzed Activation Modes: Diels-Alder

Iminium-activation of dienophile

R

O

R

NR'R' O

R

Enamine-activation of diene

R

O

R1

R'NH

R'

dienophile

N

R1

R'R'

diene

R2NO2

NR'R'

R2 R1NO2

R2 R1NO2

O

R

NO2

+ Me

O

R1

proline

THF or MeOH rt, 32%-75%

O

NO2

R1R

O

NO2

R1R

R = Ph, 4-MeOC6H4, 1-naphtyl, 2-CF3C6H4R1= Ph, 2-thienyl, 2-furyl

Me

O

R

2

proline

THF or H2O 25-40°C, 5-60h

47-80%

O

RR

O

RR

OMe OMe

R = Ph, 4-MeOC6H4, 1-naphtyl, 2-furyl, CO2Me

Enantioselectivities generally poor between11-47%

Ramachary, D.B.; Chowdari, N.D.; Barbas, C. Tetrahedron Lett. 2002, 6743-6746.Thayumanavan, R.;Dhevalapally, B.; Sakthivel, K.; Tanaka, F, Barbas, C.F. Tetrahedron Lett. 2002, 3817-3820

Diels Alder Reactions

A New Amine Catalyst

O

H

NH

O

PhMe

Me

+N

H

NMe

Me

MeO

Ph

Condenstion to the imminium ion lowers LUMO and allows catalysis

O

H + Lewis Acid

O

H + RNH

R•HCl

O

HLA

NR

R

A LUMO-lowering strategy:a reduction in π-bond activation

Ahrendt, K.A.; Borths, C.J.; Macmillan, D.W.C. J. Am. Chem. Soc. 2000, 122, 4243-4244.

Macmillan Diels-Alder Variation

R O

H

+20 mol% cat

23°C

CHO

X

R

X

endo adduct

CHOCHO

84%, 89% ee

Ph

90%, 83% eeCHO

Me

Me

75%, 90% eeexo:endo 1:5

CHO

OAc

72%, 85% eeexo:endo 1:11

CHO

82%,94% eeexo:endo 1:14

O

CHOMe

Ph

Ph75%,96% eeexo:endo 35:1

catalyst:NH

O

PhMe

Me

•HCl

Ahrendt, K.A.; Borths, C.J.; Macmillan, D.W.C. J. Am. Chem. Soc. 2000, 122, 4243-4244.

SN2 Alkylation: With Proline

OHC IEtO2C CO2Et

(S)-Proline (10%)

NEt3, > 75%

OHC

EtO2CCO2Et

ca. 20% ee

OHC I

EtO2C

EtO2C

(S)-Proline (10%)

NEt3, > 75% EtO2C CO2Et

OHCca. 60% ee

Vignola, N.; List, B. J. Am. Chem. Soc. 2003, 125, 450.

SN2 Alkylation Continued: Slight Catalyst Modification, Nice Improvement

General Scheme:

OHCY

XNH

MeCO2H

NEt3, - 30°C24h CHCl3

Y

OHC10 mol%

EtO2CEtO2C

OHC

BnO2CBnO2C

OHC OHC

TsN

OHC

EtO2CCO2Et

OHC

EtO2CCO2Et

92%, 95% ee 94%, 95% ee 94%, 96% ee

52%, 91% ee 70%, 86% ee

Vignola, N.; List, B. J. Amer. Chem. Soc. 2004, 126, 450-451.

Other Applications: Oxidations and Reductive Cleavage

(S)-Proline (10 mol%)Cu(OAc)2 (5 mol%)

PhCO3t-Bu, EtCO2H16h

O

OMe

39%, 61% ee

Levina, A.; Muzart, J.; Tetrahedron: Asymmetry 1995, 6, 147-156.

MeO (S)-Proline

ZrCl4, NaBH4, THFr.t., 3h

MeOH

rac 60%, 44%ee

Laxmi, Y.R.S.; Iyengar, D.S.; Synth. Commun. 1997, 27, 1731-1736

Conclusions

Proline is a versatile organic catalyst capable of promoting a variety of useful transformations including many which are enantioselective

Both enantiomers of proline are available which allows some flexibility

Catalyst: inexpensive, commercially available, non-toxic(Green Chemistry), recoverable

Many of the transformations discussed can be run at room temperature, even with wet solvents.Generally they are operationally simple processes.

Conditions are however specific per transformation(solvent, time, catalyst loading)