Problem 11. Azimuthal-Radial Pendulum€¦ · Problem Statement Fix one end of a horizontal elastic...

Post on 26-Aug-2020

0 views 0 download

Transcript of Problem 11. Azimuthal-Radial Pendulum€¦ · Problem Statement Fix one end of a horizontal elastic...

Problem 11. Azimuthal-

Radial PendulumBy: Aarij Atiq

1

Problem Statement

Fix one end of a horizontal elastic rod to a rigid

stand. Support the other end of the rod with a

taut string to avoid vertical deflection and

suspend a bob from it on another string. In the

resulting pendulum the radial oscillations

(parallel to the rod) can spontaneously convert

into azimuthal oscillations (perpendicular to the

rod) and vice versa. Investigate the

phenomenon.

2

Outline of report

1• Preliminary Observations

2• Theory

3

• Experiments

• Experimental Set-up, and Results

• Conclusion

3

Construction of system

Elastic

material

(constant

(k)Length (l)

Taut string

Mass (m)

4

Diagram – Top View5

Diagram Top View6

Observation Video7

Radial oscillations Azimuthal oscillations

The pendulum behaves like a

conical pendulum with an

oscillating fulcrum

Investigation- Conditions of the

Experiment

8

The pattern isn’t observed when

disturbed in the phi direction

Investigation-Conditions 9

Behaves like a simple

conical pendulum when

disturbed in the 𝛼 direction

Continued…10

Behaves like a simple

conical pendulum when

disturbed in the 𝛼 direction

Effect achieved due to the

contraction of the string

Theory-Assumptions of the Model11

Ignoring the minimal deflection of

the rod in the z-direction

Assuming that 𝑙2 remains constant

(no contraction of the string)

Assuming that the rod traces a

circular motion 𝛼

𝛼

𝜙L

𝑙𝑦

𝑧

Defining the generalized co-ordinates12

𝛼

𝜙L

𝑙𝑀𝑦

𝑥𝑧

𝑥 = 𝐿𝑐𝑜𝑠 𝛼 + 𝑙𝑠𝑖𝑛 𝜃 cos 𝜃𝑦 = 𝐿𝑐𝑜𝑠 𝛼 + 𝑙𝑠𝑖𝑛 𝜃 sin 𝜙

𝑧 = −𝐿𝑐𝑜𝑠 𝜃

ሶ𝑥 = −𝐿𝑠𝑖𝑛 𝛼 ሶ𝛼 + 𝑙(− sin 𝜃 sin(𝜙) ሶ𝜙+ cos Φ cos(Θ) ሶΘ

ሶ𝑦 = 𝐿𝑐𝑜𝑠 𝛼 ሶ𝛼 + 𝑙 sin Θ cos Θ ሶΦ +

sin Φ cos(Θ) ሶΘ)

ሶ𝑧 = 𝑙𝑠𝑖𝑛(Θ) ሶΘ

Lagrangian of the System13

Kinetic Energy:

1

2𝑀 ሶ𝑥2 + ሶ𝑦2 + ሶ𝑧2 +

1

2

1

3𝑀𝐿2 ሶ𝛼

Potential Energy:

−𝑀𝑔𝐿𝑐𝑜𝑠 θ +1

2𝑘𝛼2

Lagrangian= K.E-P.E

Velocity of

the bob

Velocity of

the rod

Potential

Energy of

bob

Elastic potential

of the rod

Euler-Lagrange Equations14

𝑑

𝑑𝑡(𝜕𝐿

𝜕 ሶθ)=

𝜕𝐿

𝜕θ𝑑

𝑑𝑡(𝜕𝐿

𝜕 ሶ𝜙)=

𝜕𝐿

𝜕ϕ𝑑

𝑑𝑡(𝜕𝐿

𝜕 ሶ𝛼)=

𝜕𝐿

𝜕𝛼

(1)

(2)

(3)

𝑀𝐿 ሷ(𝑦 cos 𝛼 − ሷ𝑥sin(𝛼)) = −𝑘𝛼 +1

3𝑀𝐿2 ሷ𝛼

ሷ𝑦 = ሷ𝑥 tan ϕ

𝑀𝑙 ሷ𝑥 cos ϕ cos Θ +𝑀𝑙 ሷ𝑦 sin ϕ cos θ+ ሷ𝑧𝑠𝑖𝑛𝑛 θ = −𝑀𝑔𝑙𝑠𝑖𝑛(θ)

Governing EquationsCan be written as 2nd order

differential equations describing

the accelereation in the

(alpha),(theta) and (phi)

directions

Experimental Set-up

Rigid stand

Strings

Bobs of variable masses

Camera

Release mechanism for

bob

Camera

15

Experimental Set-up16

Displacement-Time Graphs17

-300

-200

-100

0

100

200

300

0 10 20 30 40 50 60 70 80 90

X-D

isp

lac

em

en

t

Time (s)-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90

Y-D

isp

lac

em

en

t

Time (s)

Azimuthal

oscillationsOscillations decay

and become

indistinguishable

Fourier Analysis18

0

200

400

600

800

1000

1200

1400

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

Am

plit

ud

e(c

m)

Frequency(Hz)

Two bands corresponding to the

Azimuthal and Radial Oscillations

Comparing the Amplitudes19

Amplitude Ratio= 𝑀𝑎𝑥 𝑎𝑚𝑝𝑙𝑡𝑢𝑑𝑒 𝑖𝑛 𝑋 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝑀𝑎𝑥 𝑎𝑚𝑝𝑙𝑡𝑢𝑑𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑌 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

-200

-150

-100

-50

0

50

100

150

200

1 7

13

19

25

31

37

43

49

55

61

67

73

79

85

91

97

103

109

115

121

127

133

139

145

151

157

163

169

175

181

187

193Tim

e45°

x y

Obtained using the Max

function in Excel

Phase Portrait20

-300.00

-200.00

-100.00

0.00

100.00

200.00

300.00

-1500 -1000 -500 0 500 1000 1500

X-v

elo

city

X-Position

Phase Portrait

Shows non-

chaotic, periodic

motion for the

general case

Experiment- release angle21

30°

90°

-300

-200

-100

0

100

200

300

-600 -500 -400 -300 -200 -100 0 100

Y-P

osi

tio

n

X-position-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

-300 -200 -100 0 100 200 300

Y-A

xis

X-Axis

60°

Bigger angles => higher transitions

rate

60°

Initial Angles22

-150.00

-100.00

-50.00

0.00

50.00

100.00

150.00

-250.00 -200.00 -150.00 -100.00 -50.00 0.00 50.00 100.00 150.00 200.00

Y-P

ost

ion

X-Position

45°

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

-12.00 -10.00 -8.00 -6.00 -4.00 -2.00 0.00 2.00 4.00 6.00 8.00 10.00

Y-P

ost

ion

X-Position

30°

45° 30°

Smaller angles => Lower transitions rate

Change in Mass (light)23

30g

-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

-300 -200 -100 0 100 200 300

Y-P

osi

tio

n

X-Position

30g

-20

-15

-10

-5

0

5

10

15

20

-25 -20 -15 -10 -5 0 5 10 15 20 25

Y-P

osi

tio

n

X-Position

15g

15g

Change in Mass (heavy)24

-60

-40

-20

0

20

40

60

80

100

-400 -300 -200 -100 0 100 200 300 400 500

Y-P

osi

tio

n

X-Postion

100g

100g

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

-30 -20 -10 0 10 20 30

Y-P

osi

tio

n

X-Position

200g

200g

Effect of Mass on the Elasticity of rod25

-60

-40

-20

0

20

40

60

80

100

-400 -300 -200 -100 0 100 200 300 400 500

Y-P

osi

tio

n

X-Postion

100g

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

-400 -300 -200 -100 0 100 200 300 400 500

Phase Portrait

Phase Portrait show Chaos in

the system during the

Transitional Period

Effect of mass on the elasticity of rod26

*

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

-30 -20 -10 0 10 20 30

Y-P

osi

tio

n

X-Position

200g

The heavy mass limits the

movement of rod, leaving an

almost rigid rod that can

rotate(but not bend)

https://www.youtube.com/watch?v=1BhCXEd1zM4

-150.00

-100.00

-50.00

0.00

50.00

100.00

150.00

-30.00 -20.00 -10.00 0.00 10.00 20.00 30.00

Phase Portrait

Harmony and periodicity

returns to the system when the

rod is completely restricted

Length of the String27

-200.00

-150.00

-100.00

-50.00

0.00

50.00

100.00

150.00

200.00

-250.00 -200.00 -150.00 -100.00 -50.00 0.00 50.00 100.00 150.00 200.00X-A

xis

Y-Axis

10 cm

-1000.00

-800.00

-600.00

-400.00

-200.00

0.00

200.00

400.00

600.00

800.00

-1000.00 -800.00 -600.00 -400.00 -200.00 0.00 200.00 400.00 600.00 800.00 1000.00

X-A

xis

(pix

els

)

Y-Axis

30cm

Conclusion-Preliminary28

Pendulum only

works when

disturbed in

the Radial

Direction

Succesfully described the Initial Conditions

of the pendulum system

Conclusion-Theory29

The bob has 3

degrees of

Freedom which

complicate the

modelSuccesfully Modeled and defined

the System Mathematically

Conclusion-Experiments(Describing

Frequencies)30

-300

-200

-100

0

100

200

300

0 10 20 30 40 50 60 70 80 90

X-D

isp

lac

em

en

t

Time (s)-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90

Y-D

isp

lac

em

en

t

Time (s)Azimuthal

oscillations

Oscillations decay

and become

indistinguishable

0

200

400

600

800

1000

1200

1400

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

Am

plit

ud

e(c

m)

Frequency(Hz)

Verified through Fourier

Transform

Conclusion-Experiments31

-300

-200

-100

0

100

200

300

-600 -500 -400 -300 -200 -100 0 100

-300.000

-250.000

-200.000

-150.000

-100.000

-50.000

0.000

50.000

100.000

150.000

200.000

250.000

-300.000 -200.000 -100.000 0.000 100.000 200.000 300.000

X-A

xis

Y-Axis

-150.00

-100.00

-50.00

0.00

50.00

100.00

150.00

-300.00 -200.00 -100.00 0.00 100.00 200.00

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

-15.00 -10.00 -5.00 0.00 5.00 10.00

Investigated

and Explained

relations of the

system to 3

critical

parameters

Thankyou!

32

Relevant Parameters

Length of the string

Elasticity of the rod

Weight of the bob

Initial Angles

33

Theory- Conservation of energy

The radial oscillations of the bob disturb the equilibrium of the elastic rod causing to move in the direction of the bob’s motion.

Since the rod is fixed on one end, it traces a circular path (azimuthal oscillations)

The restoring force of the rod acts against the motion of the bob.

This sets up a chain of energy transfer where the motion of the bob is transferred into the azimuthal perturbations of the rod

34

35

-25

-20

-15

-10

-5

0

5

10

15

20

25

0 10 20 30 40 50

Dis

pla

ce

me

nt(

cm

)

Time(s)

X-displacement

36