Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private...

Post on 14-Jul-2020

1 views 0 download

Transcript of Private Information Retrieval in Distributed Storage Systems Using … · 2018-05-07 · Private...

Private Information Retrieval in Distributed Storage

Systems Using an Arbitrary Linear Code

Siddhartha Kumar1 Eirik Rosnes1 Alexandre Graell i Amat2

1Simula@UiB, Norway

2Chalmers University of Technology, Sweden

Institut Mittag-Leffler16th May, 2017

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Introduction

· · · · · ·

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 1 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Introduction

· · · · · ·

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 1 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Introduction

· · · · · ·

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 1 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Introduction

· · · · · ·

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 1 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Introduction

· · · · · ·

Q(1) Q(k) Q(k+1) Q(n)

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 1 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Introduction

· · · · · ·

r1 rk rk+1 rn

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 1 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Timeline of PIR

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 2 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Timeline of PIR

n−se

rver

PIR

Chor et al. (1995)

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 2 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Timeline of PIR

n−se

rver

PIR

PIRus

ing

Batch

Codes

Ishai et al. (2004)

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 2 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Timeline of PIR

n−se

rver

PIR

PIRus

ing

Batch

Codes

PIRforDSS

s

Shah et al. (2014)

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 2 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Timeline of PIR

n−se

rver

PIR

PIRus

ing

Batch

Codes

PIRforDSS

s

MDS

code

dPIR

Tajeddine and El Rouayheb (2016)

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 2 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Timeline of PIR

n−se

rver

PIR

PIRus

ing

Batch

Codes

PIRforDSS

s

MDS

code

dPIR

Opt

imal

MDS

PIR

Banawan and Ulukus (2016)

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 2 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

In this talk (to be presented at ISIT 2017)

Contribution

• Extend Tajeddine and El Rouayheb’s PIR protocol to an arbitrary linear codeddata of rate R > 1/2.

• Show that the protocol can be optimized using the structure of the linear code.

Outcome

• Non-MDS codes can also achieve the lower bound on the communication cost(cPoP).

Parallel Work

• [Freij-Hollanti et al., 2016] designed a protocol• Works over arbitrary linear coded data.• Multiple nodes can collude.

• Our protocol yields better cPoP.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 3 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

In this talk (to be presented at ISIT 2017)

Contribution

• Extend Tajeddine and El Rouayheb’s PIR protocol to an arbitrary linear codeddata of rate R > 1/2.

• Show that the protocol can be optimized using the structure of the linear code.

Outcome

• Non-MDS codes can also achieve the lower bound on the communication cost(cPoP).

Parallel Work

• [Freij-Hollanti et al., 2016] designed a protocol• Works over arbitrary linear coded data.• Multiple nodes can collude.

• Our protocol yields better cPoP.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 3 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

In this talk (to be presented at ISIT 2017)

Contribution

• Extend Tajeddine and El Rouayheb’s PIR protocol to an arbitrary linear codeddata of rate R > 1/2.

• Show that the protocol can be optimized using the structure of the linear code.

Outcome

• Non-MDS codes can also achieve the lower bound on the communication cost(cPoP).

Parallel Work

• [Freij-Hollanti et al., 2016] designed a protocol• Works over arbitrary linear coded data.• Multiple nodes can collude.

• Our protocol yields better cPoP.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 3 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

In this talk (to be presented at ISIT 2017)

Contribution

• Extend Tajeddine and El Rouayheb’s PIR protocol to an arbitrary linear codeddata of rate R > 1/2.

• Show that the protocol can be optimized using the structure of the linear code.

Outcome

• Non-MDS codes can also achieve the lower bound on the communication cost(cPoP).

Parallel Work

• [Freij-Hollanti et al., 2016] designed a protocol• Works over arbitrary linear coded data.• Multiple nodes can collude.

• Our protocol yields better cPoP.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 3 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

In this talk (to be presented at ISIT 2017)

Contribution

• Extend Tajeddine and El Rouayheb’s PIR protocol to an arbitrary linear codeddata of rate R > 1/2.

• Show that the protocol can be optimized using the structure of the linear code.

Outcome

• Non-MDS codes can also achieve the lower bound on the communication cost(cPoP).

Parallel Work

• [Freij-Hollanti et al., 2016] designed a protocol• Works over arbitrary linear coded data.• Multiple nodes can collude.

• Our protocol yields better cPoP.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 3 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

In this talk (to be presented at ISIT 2017)

Contribution

• Extend Tajeddine and El Rouayheb’s PIR protocol to an arbitrary linear codeddata of rate R > 1/2.

• Show that the protocol can be optimized using the structure of the linear code.

Outcome

• Non-MDS codes can also achieve the lower bound on the communication cost(cPoP).

Parallel Work

• [Freij-Hollanti et al., 2016] designed a protocol• Works over arbitrary linear coded data.• Multiple nodes can collude.

• Our protocol yields better cPoP.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 3 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

In this talk (to be presented at ISIT 2017)

Contribution

• Extend Tajeddine and El Rouayheb’s PIR protocol to an arbitrary linear codeddata of rate R > 1/2.

• Show that the protocol can be optimized using the structure of the linear code.

Outcome

• Non-MDS codes can also achieve the lower bound on the communication cost(cPoP).

Parallel Work

• [Freij-Hollanti et al., 2016] designed a protocol• Works over arbitrary linear coded data.• Multiple nodes can collude.

• Our protocol yields better cPoP.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 3 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Distributed Storage System (DSS)

• A file X(m): a β × k matrix over a GF(qℓ).

• Each row is encoded using an (n, k) linear systematic code C over GF(q).

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 4 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Distributed Storage System (DSS)

• A file X(m): a β × k matrix over a GF(qℓ).

• Each row is encoded using an (n, k) linear systematic code C over GF(q).

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 4 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Distributed Storage System (DSS)

· · ·

· · ·

· · ·

· · ·

.

.

.

.

.

.

.

.

.

• A file X(m): a β × k matrix over a GF(qℓ).

• Each row is encoded using an (n, k) linear systematic code C over GF(q).

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 4 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Distributed Storage System (DSS)

· · ·

· · ·

· · ·

· · ·

.

.

.

.

.

.

.

.

.

k

β

• A file X(m): a β × k matrix over a GF(qℓ).

• Each row is encoded using an (n, k) linear systematic code C over GF(q).

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 4 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Distributed Storage System (DSS)

· · ·

· · ·

· · ·

· · ·

.

.

.

.

.

.

.

.

.

k

β

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

• A file X(m): a β × k matrix over a GF(qℓ).

• Each row is encoded using an (n, k) linear systematic code C over GF(q).

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 4 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Distributed Storage System (DSS)

· · ·

· · ·

· · ·

· · ·

.

.

.

.

.

.

.

.

.

k

β

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

n

• A file X(m): a β × k matrix over a GF(qℓ).

• Each row is encoded using an (n, k) linear systematic code C over GF(q).

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 4 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Distributed Storage System (DSS)

· · · · · ·

......

......

• A file X(m): a β × k matrix over a GF(qℓ).

• Each row is encoded using an (n, k) linear systematic code C over GF(q).

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 4 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Distributed Storage System (DSS)

· · · · · ·

......

......

k systematic nodes n − k parity nodes

fch

unks

• A file X(m): a β × k matrix over a GF(qℓ).

• Each row is encoded using an (n, k) linear systematic code C over GF(q).

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 4 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Privacy Model

• Query matrix Q(j) of size d × βf is sent to j-th node.

• Node j sends back response rj of length d.

• Let s ∈ {1, . . . , n} be a spy node in the DSS.

rj

Q(j)

Perfect information-theoretic PIR

This scheme achieves perfect information-theoretic PIR if and only if

Privacy : H(m|Q(s)) = H(m)

Recovery : H(X(m)|r1, r2, . . . , rn) = 0,

where H(·) denotes the entropy function.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 5 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Privacy Model

• Query matrix Q(j) of size d × βf is sent to j-th node.

• Node j sends back response rj of length d.

• Let s ∈ {1, . . . , n} be a spy node in the DSS.

rj

Q(j) Q(j) =

( )

Perfect information-theoretic PIR

This scheme achieves perfect information-theoretic PIR if and only if

Privacy : H(m|Q(s)) = H(m)

Recovery : H(X(m)|r1, r2, . . . , rn) = 0,

where H(·) denotes the entropy function.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 5 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Privacy Model

• Query matrix Q(j) of size d × βf is sent to j-th node.

• Node j sends back response rj of length d.

• Let s ∈ {1, . . . , n} be a spy node in the DSS.

rj

Q(j)rj =

( )

= Q(j)

Content in the node

Perfect information-theoretic PIR

This scheme achieves perfect information-theoretic PIR if and only if

Privacy : H(m|Q(s)) = H(m)

Recovery : H(X(m)|r1, r2, . . . , rn) = 0,

where H(·) denotes the entropy function.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 5 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Privacy Model

• Query matrix Q(j) of size d × βf is sent to j-th node.

• Node j sends back response rj of length d.

• Let s ∈ {1, . . . , n} be a spy node in the DSS.

rj

Q(j)rj =

( )

= Q(j)

Content in the node

Perfect information-theoretic PIR

This scheme achieves perfect information-theoretic PIR if and only if

Privacy : H(m|Q(s)) = H(m)

Recovery : H(X(m)|r1, r2, . . . , rn) = 0,

where H(·) denotes the entropy function.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 5 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Efficiency of PIR protocols

Communication Price of Privacy (cPoP)

Total amount of downloaded data per unit of retrieved data,

θ =nd

βk.

• For the considered protocol, θ ≥ 1/(1 − R) , θLB [Chan et al., 2015].

• For a general protocol (single spy node),

θ ≥ θcap , 1 +k

n+

k2

n2+ · · · +

kf−1

nf−1[Banawan and Ulukus, 2016].

• When number of files (f) is very large, θcap = θLB.

• When more than one nodes collude, an explicit lower bound is currently unknown.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 6 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Efficiency of PIR protocols

Communication Price of Privacy (cPoP)

Total amount of downloaded data per unit of retrieved data,

θ =nd

βk.

• For the considered protocol, θ ≥ 1/(1 − R) , θLB [Chan et al., 2015].

• For a general protocol (single spy node),

θ ≥ θcap , 1 +k

n+

k2

n2+ · · · +

kf−1

nf−1[Banawan and Ulukus, 2016].

• When number of files (f) is very large, θcap = θLB.

• When more than one nodes collude, an explicit lower bound is currently unknown.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 6 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Efficiency of PIR protocols

Communication Price of Privacy (cPoP)

Total amount of downloaded data per unit of retrieved data,

θ =nd

βk.

• For the considered protocol, θ ≥ 1/(1 − R) , θLB [Chan et al., 2015].

• For a general protocol (single spy node),

θ ≥ θcap , 1 +k

n+

k2

n2+ · · · +

kf−1

nf−1[Banawan and Ulukus, 2016].

• When number of files (f) is very large, θcap = θLB.

• When more than one nodes collude, an explicit lower bound is currently unknown.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 6 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Efficiency of PIR protocols

Communication Price of Privacy (cPoP)

Total amount of downloaded data per unit of retrieved data,

θ =nd

βk.

• For the considered protocol, θ ≥ 1/(1 − R) , θLB [Chan et al., 2015].

• For a general protocol (single spy node),

θ ≥ θcap , 1 +k

n+

k2

n2+ · · · +

kf−1

nf−1[Banawan and Ulukus, 2016].

• When number of files (f) is very large, θcap = θLB.

• When more than one nodes collude, an explicit lower bound is currently unknown.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 6 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Efficiency of PIR protocols

Communication Price of Privacy (cPoP)

Total amount of downloaded data per unit of retrieved data,

θ =nd

βk.

• For the considered protocol, θ ≥ 1/(1 − R) , θLB [Chan et al., 2015].

• For a general protocol (single spy node),

θ ≥ θcap , 1 +k

n+

k2

n2+ · · · +

kf−1

nf−1[Banawan and Ulukus, 2016].

• When number of files (f) is very large, θcap = θLB.

• When more than one nodes collude, an explicit lower bound is currently unknown.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 6 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Basic Idea

x1 x2 x1 + x2

y1 y2 y1 + y2

(1) (2) (3)

• Files X(1) = (x1, x2) and X(2) = (y1, y2).

• Data encoded using an (3, 2) SPC code.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 7 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Basic Idea

x1 x2 x1 + x2

y1 y2 y1 + y2

(1) (2) (3)

• Files X(1) = (x1, x2) and X(2) = (y1, y2).

• Data encoded using an (3, 2) SPC code.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 7 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Basic Idea

x1 x2 x1 + x2

y1 y2 y1 + y2

(1) (2) (3)

• Files X(1) = (x1, x2) and X(2) = (y1, y2).

• Data encoded using an (3, 2) SPC code.

Non PIR scheme for retrieving X(1):

Queries:

q1 =(

1 0)

, q2 =(

1 0)

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 7 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Basic Idea

x1 x2 x1 + x2

y1 y2 y1 + y2

(1) (2) (3)

• Files X(1) = (x1, x2) and X(2) = (y1, y2).

• Data encoded using an (3, 2) SPC code.

Non PIR scheme for retrieving X(1):

Queries:

q1 =(

1 0)

, q2 =(

1 0)

Nodes’ responses:

r1 =(

1 0)

(

x1

y1

)

= x1, r2 =(

1 0)

(

x2

y2

)

= x2

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 7 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Basic Idea

x1 x2 x1 + x2

y1 y2 y1 + y2

(1) (2) (3)

• Files X(1) = (x1, x2) and X(2) = (y1, y2).

• Data encoded using an (3, 2) SPC code.

PIR scheme for reterieving x1:

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 7 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Basic Idea

x1 x2 x1 + x2

y1 y2 y1 + y2

(1) (2) (3)

• Files X(1) = (x1, x2) and X(2) = (y1, y2).

• Data encoded using an (3, 2) SPC code.

PIR scheme for reterieving x1:

Queries:

q1 =(

u1 u2

)

, q2 =(

u1 u2

)

, q3 =(

u1 u2

)

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 7 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Basic Idea

x1 x2 x1 + x2

y1 y2 y1 + y2

(1) (2) (3)

• Files X(1) = (x1, x2) and X(2) = (y1, y2).

• Data encoded using an (3, 2) SPC code.

PIR scheme for reterieving x1:

Queries:

q1 =(

u1 + 1 u2

)

, q2 =(

u1 u2

)

, q3 =(

u1 u2

)

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 7 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Basic Idea

x1 x2 x1 + x2

y1 y2 y1 + y2

(1) (2) (3)

• Files X(1) = (x1, x2) and X(2) = (y1, y2).

• Data encoded using an (3, 2) SPC code.

PIR scheme for reterieving x1:

Queries:

q1 =(

u1 + 1 u2

)

, q2 =(

u1 u2

)

, q3 =(

u1 u2

)

Nodes’ responses:

r1 =(

u1 + 1 u2

)

(

x1

y1

)

= u1x1 + u2y1 + x1 = I1 + x1

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 7 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Basic Idea

x1 x2 x1 + x2

y1 y2 y1 + y2

(1) (2) (3)

• Files X(1) = (x1, x2) and X(2) = (y1, y2).

• Data encoded using an (3, 2) SPC code.

PIR scheme for reterieving x1:

Queries:

q1 =(

u1 + 1 u2

)

, q2 =(

u1 u2

)

, q3 =(

u1 u2

)

Nodes’ responses:

r1 =(

u1 + 1 u2

)

(

x1

y1

)

= u1x1 + u2y1 + x1 = I1 + x1

r2 =(

u1 u2

)

(

x2

y2

)

= I2, r3 =(

u1 u2

)

(

x1 + x2

y1 + y2

)

= I1 + I2

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 7 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

A Brief Overview

• Queries to systematic nodes: Q(l) = U + V (l).

• Queries to parity nodes: U .

• V (l) depends upon the columns of a binary matrix E (β regular).

• Each row of E represents an erasure pattern that is correctable by a shortenedcode C̃ of C. 1 represents erasure.

• β = d̃min − 1. d̃min is the minimum distance of C̃.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 8 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

A Brief Overview

• Queries to systematic nodes: Q(l) = U + V (l).

• Queries to parity nodes: U .

• V (l) depends upon the columns of a binary matrix E (β regular).

• Each row of E represents an erasure pattern that is correctable by a shortenedcode C̃ of C. 1 represents erasure.

• β = d̃min − 1. d̃min is the minimum distance of C̃.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 8 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

A Brief Overview

• Queries to systematic nodes: Q(l) = U + V (l).

• Queries to parity nodes: U .

• V (l) depends upon the columns of a binary matrix E (β regular).

• Each row of E represents an erasure pattern that is correctable by a shortenedcode C̃ of C. 1 represents erasure.

• β = d̃min − 1. d̃min is the minimum distance of C̃.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 8 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

A Brief Overview

• Queries to systematic nodes: Q(l) = U + V (l).

• Queries to parity nodes: U .

• V (l) depends upon the columns of a binary matrix E (β regular).

• Each row of E represents an erasure pattern that is correctable by a shortenedcode C̃ of C. 1 represents erasure.

• β = d̃min − 1. d̃min is the minimum distance of C̃.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 8 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Query Construction: (5, 3) Linear code C

C =

(

x11 x12 x13 x11 + x12 x12 + x13

x21 x22 x23 x21 + x22 x22 + x23

)

H = (P |I) =

(

1 1 0 1 00 1 1 0 1

)

Example

• We have: n = 5, k = 3, f = 1.

• Code C̃ has parity-check matrix H̃ = P . β = d̃min − 1 = 2.

U =

(

u1,1 u1,2

u2,1 u2,2

u3,1 u3,2

)

, E =

(

1 0 11 1 00 1 1

)

Q(1) =

(

u1,1 + 1 u1,2

u2,1 u2,2 + 1u3,1 u3,2

)

, Q(2) =

(

u1,1 u1,2

u2,1 + 1 u2,2

u3,1 u3,2 + 1

)

, Q(3) =

(

u1,1 u1,2 + 1u2,1 u2,2

u3,1 + 1 u3,2

)

.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 9 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Query Construction: (5, 3) Linear code C

C =

(

x11 x12 x13 x11 + x12 x12 + x13

x21 x22 x23 x21 + x22 x22 + x23

)

H = (P |I) =

(

1 1 0 1 00 1 1 0 1

)

Example

• We have: n = 5, k = 3, f = 1.

• Code C̃ has parity-check matrix H̃ = P . β = d̃min − 1 = 2.

U =

(

u1,1 u1,2

u2,1 u2,2

u3,1 u3,2

)

, E =

(

1 0 11 1 00 1 1

)

Q(1) =

(

u1,1 + 1 u1,2

u2,1 u2,2 + 1u3,1 u3,2

)

, Q(2) =

(

u1,1 u1,2

u2,1 + 1 u2,2

u3,1 u3,2 + 1

)

, Q(3) =

(

u1,1 u1,2 + 1u2,1 u2,2

u3,1 + 1 u3,2

)

.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 9 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Query Construction: (5, 3) Linear code C

C =

(

x11 x12 x13 x11 + x12 x12 + x13

x21 x22 x23 x21 + x22 x22 + x23

)

H = (P |I) =

(

1 1 0 1 00 1 1 0 1

)

Example

• We have: n = 5, k = 3, f = 1.

• Code C̃ has parity-check matrix H̃ = P . β = d̃min − 1 = 2.

U =

(

u1,1 u1,2

u2,1 u2,2

u3,1 u3,2

)

, E =

(

1 0 11 1 00 1 1

)

Q(1) =

(

u1,1 + 1 u1,2

u2,1 u2,2 + 1u3,1 u3,2

)

, Q(2) =

(

u1,1 u1,2

u2,1 + 1 u2,2

u3,1 u3,2 + 1

)

, Q(3) =

(

u1,1 u1,2 + 1u2,1 u2,2

u3,1 + 1 u3,2

)

.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 9 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Query Construction: (5, 3) Linear code C

C =

(

x11 x12 x13 x11 + x12 x12 + x13

x21 x22 x23 x21 + x22 x22 + x23

)

H = (P |I) =

(

1 1 0 1 00 1 1 0 1

)

Example

• We have: n = 5, k = 3, f = 1.

• Code C̃ has parity-check matrix H̃ = P . β = d̃min − 1 = 2.

U =

(

u1,1 u1,2

u2,1 u2,2

u3,1 u3,2

)

, E =

(

1 0 11 1 00 1 1

)

Q(1) =

(

u1,1 + 1 u1,2

u2,1 u2,2 + 1u3,1 u3,2

)

, Q(2) =

(

u1,1 u1,2

u2,1 + 1 u2,2

u3,1 u3,2 + 1

)

, Q(3) =

(

u1,1 u1,2 + 1u2,1 u2,2

u3,1 + 1 u3,2

)

.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 9 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Query Construction: (5, 3) Linear code C

C =

(

x11 x12 x13 x11 + x12 x12 + x13

x21 x22 x23 x21 + x22 x22 + x23

)

H = (P |I) =

(

1 1 0 1 00 1 1 0 1

)

Example

• We have: n = 5, k = 3, f = 1.

• Code C̃ has parity-check matrix H̃ = P . β = d̃min − 1 = 2.

U =

(

u1,1 u1,2

u2,1 u2,2

u3,1 u3,2

)

, E =

(

1 0 11 1 00 1 1

)

Q(1) =

(

u1,1 + 1 u1,2

u2,1 u2,2 + 1u3,1 u3,2

)

, Q(2) =

(

u1,1 u1,2

u2,1 + 1 u2,2

u3,1 u3,2 + 1

)

, Q(3) =

(

u1,1 u1,2 + 1u2,1 u2,2

u3,1 + 1 u3,2

)

.

Privacy : H(m|Q(s)) = H(m)

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 9 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

File Retrieval: (5, 3) Linear code C

C =

(

x11 x12 x13 x11 + x12 x12 + x13

x21 x22 x23 x21 + x22 x22 + x23

)

H = (P |I) =

(

1 1 0 1 00 1 1 0 1

)

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 10 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

File Retrieval: (5, 3) Linear code C

C =

(

x11 x12 x13 x11 + x12 x12 + x13

x21 x22 x23 x21 + x22 x22 + x23

)

H = (P |I) =

(

1 1 0 1 00 1 1 0 1

)

Example

• We have: n = 5, k = 3, f = 1, β = d̃min − 1 = 2.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 10 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

File Retrieval: (5, 3) Linear code C

C =

(

x11 x12 x13 x11 + x12 x12 + x13

x21 x22 x23 x21 + x22 x22 + x23

)

H = (P |I) =

(

1 1 0 1 00 1 1 0 1

)

Example

• We have: n = 5, k = 3, f = 1, β = d̃min − 1 = 2.

r1 = Q(1) ( x11

x21) =

(

u11+1 u12

u21 u22+1u31 u32

)

( x11

x21) =

(

u11x11+u12x21+x11

u21x11+u22x21+x21

u31x11+u32x21

)

=(

I1+x11

I4+x21

I7

)

r2 = Q(2) ( x12

x22) =

(

u11 u12

u21+1 u22

u31 u32+1

)

( x12

x22) =

(

u11x12+u12x22

u21x12+u22x22+x12

u31x12+u32x22+x22

)

=(

I2

I5+x12

I8+x22

)

r3 = Q(3) ( x13

x23) =

(

u11 u12+1u21 u22

u31+1 u32

)

( x13

x23) =

(

u11x13+u12x23+x23

u21x13+u22x23

u31x13+u32x23+x13

)

=(

I3+x23

I6

I9+x13

)

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 10 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

File Retrieval: (5, 3) Linear code C

C =

(

x11 x12 x13 x11 + x12 x12 + x13

x21 x22 x23 x21 + x22 x22 + x23

)

H = (P |I) =

(

1 1 0 1 00 1 1 0 1

)

Example

• We have: n = 5, k = 3, f = 1, β = d̃min − 1 = 2.

r4 = Q(4)(

x11+x12

x21+x22

)

=(

u11 u12

u21 u22

u31 u32

)

(

x11+x12

x21+x22

)

=(

I1+I2

I4+I5

I7+I8

)

r5 = Q(5)(

x12+x13

x22+x23

)

=(

u11 u12

u21 u22

u31 u32

)

(

x12+x13

x22+x23

)

=(

I2+I3

I5+I6

I8+I9

)

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 10 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

File Retrieval: (5, 3) Linear code C

C =

(

x11 x12 x13 x11 + x12 x12 + x13

x21 x22 x23 x21 + x22 x22 + x23

)

H = (P |I) =

(

1 1 0 1 00 1 1 0 1

)

Example

• We have: n = 5, k = 3, f = 1, β = d̃min − 1 = 2.

r4 = Q(4)(

x11+x12

x21+x22

)

=(

u11 u12

u21 u22

u31 u32

)

(

x11+x12

x21+x22

)

=(

I1+I2

I4+I5

I7+I8

)

r5 = Q(5)(

x12+x13

x22+x23

)

=(

u11 u12

u21 u22

u31 u32

)

(

x12+x13

x22+x23

)

=(

I2+I3

I5+I6

I8+I9

)

• Yields cPoP θ = 3·52·3

= 2.5.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 10 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

File Retrieval: (5, 3) Linear code C

C =

(

x11 x12 x13 x11 + x12 x12 + x13

x21 x22 x23 x21 + x22 x22 + x23

)

H = (P |I) =

(

1 1 0 1 00 1 1 0 1

)

Example

• We have: n = 5, k = 3, f = 1, β = d̃min − 1 = 2.

r4 = Q(4)(

x11+x12

x21+x22

)

=(

u11 u12

u21 u22

u31 u32

)

(

x11+x12

x21+x22

)

=(

I1+I2

I4+I5

I7+I8

)

r5 = Q(5)(

x12+x13

x22+x23

)

=(

u11 u12

u21 u22

u31 u32

)

(

x12+x13

x22+x23

)

=(

I2+I3

I5+I6

I8+I9

)

• Yields cPoP θ = 3·52·3

= 2.5.

Recovery : H(X(m)|r1, r2, . . . , rn) = 0

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 10 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Optimizing cPoP

β = β + 1find erasure patterns

correctable by C̃find β regular matrix, E E exists?

yes

noβ − 1

• cPoP for our protocol: θ = n/β.

• When C is an MDS code, dmin = d̃min = n − k + 1, and the PIR scheme reducesto the one in given [Tajeddine El Rouayheb].

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 11 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Optimizing cPoP

β = β + 1find erasure patterns

correctable by C̃find β regular matrix, E E exists?

yes

noβ − 1

• cPoP for our protocol: θ = n/β.

• When C is an MDS code, dmin = d̃min = n − k + 1, and the PIR scheme reducesto the one in given [Tajeddine El Rouayheb].

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 11 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Optimizing cPoP

β = β + 1find erasure patterns

correctable by C̃find β regular matrix, E E exists?

yes

noβ − 1

• cPoP for our protocol: θ = n/β.

• When C is an MDS code, dmin = d̃min = n − k + 1, and the PIR scheme reducesto the one in given [Tajeddine El Rouayheb].

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 11 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Optimizing cPoP

β = β + 1find erasure patterns

correctable by C̃find β regular matrix, E E exists?

yes

noβ − 1

• cPoP for our protocol: θ = n/β.

• When C is an MDS code, dmin = d̃min = n − k + 1, and the PIR scheme reducesto the one in given [Tajeddine El Rouayheb].

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 11 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Optimizing cPoP

β = β + 1find erasure patterns

correctable by C̃find β regular matrix, E E exists?

yes

noβ − 1

• cPoP for our protocol: θ = n/β.

• When C is an MDS code, dmin = d̃min = n − k + 1, and the PIR scheme reducesto the one in given [Tajeddine El Rouayheb].

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 11 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Optimizing cPoP

β = β + 1find erasure patterns

correctable by C̃find β regular matrix, E E exists?

yes

noβ − 1

• cPoP for our protocol: θ = n/β.

• When C is an MDS code, dmin = d̃min = n − k + 1, and the PIR scheme reducesto the one in given [Tajeddine El Rouayheb].

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 11 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Optimizing cPoP

β = β + 1find erasure patterns

correctable by C̃find β regular matrix, E E exists?

yes

noβ − 1

• cPoP for our protocol: θ = n/β.

• When C is an MDS code, dmin = d̃min = n − k + 1, and the PIR scheme reducesto the one in given [Tajeddine El Rouayheb].

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 11 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Numerical results

Code dmin d̃min θnon−opt θFH θopt θLB

C1 : (5, 3) (example) 2 3 2.5 5 2.5 2.5C2 : (11, 6) 4 4 3.6667 3.6667 2.75 2.2C3 : (12, 8) Pyramid 4 4 4 4.5 3 3C4 : (16, 10) LRC 5 5 4 4.8 3.2 2.6667C5 : (18, 12) Pyramid 5 5 4.5 4.5 3 3C6 : (154, 121) LRC 4 6 30.8 52.18 4.9677 4.6667C7 : (187, 121) LRC 7 16 12.4667 32.45 3.0656 2.8333

• θFH is the cPoP of linear coded PIR protocol of Freij-Hollanti et al.

• For all codes, θopt is close to the lower bound θLB.

• The non-MDS codes C1, C3, and C5 achieve the lower bound θLB.

• The codes C2, C4, C6, and C7 achieve the best cPoP.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 12 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Numerical results

Code dmin d̃min θnon−opt θFH θopt θLB

C1 : (5, 3) (example) 2 3 2.5 5 2.5 2.5C2 : (11, 6) 4 4 3.6667 3.6667 2.75 2.2C3 : (12, 8) Pyramid 4 4 4 4.5 3 3C4 : (16, 10) LRC 5 5 4 4.8 3.2 2.6667C5 : (18, 12) Pyramid 5 5 4.5 4.5 3 3C6 : (154, 121) LRC 4 6 30.8 52.18 4.9677 4.6667C7 : (187, 121) LRC 7 16 12.4667 32.45 3.0656 2.8333

• θFH is the cPoP of linear coded PIR protocol of Freij-Hollanti et al.

• For all codes, θopt is close to the lower bound θLB.

• The non-MDS codes C1, C3, and C5 achieve the lower bound θLB.

• The codes C2, C4, C6, and C7 achieve the best cPoP.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 12 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Numerical results

Code dmin d̃min θnon−opt θFH θopt θLB

C1 : (5, 3) (example) 2 3 2.5 5 2.5 2.5C2 : (11, 6) 4 4 3.6667 3.6667 2.75 2.2C3 : (12, 8) Pyramid 4 4 4 4.5 3 3C4 : (16, 10) LRC 5 5 4 4.8 3.2 2.6667C5 : (18, 12) Pyramid 5 5 4.5 4.5 3 3C6 : (154, 121) LRC 4 6 30.8 52.18 4.9677 4.6667C7 : (187, 121) LRC 7 16 12.4667 32.45 3.0656 2.8333

• θFH is the cPoP of linear coded PIR protocol of Freij-Hollanti et al.

• For all codes, θopt is close to the lower bound θLB.

• The non-MDS codes C1, C3, and C5 achieve the lower bound θLB.

• The codes C2, C4, C6, and C7 achieve the best cPoP.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 12 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Numerical results

Code dmin d̃min θnon−opt θFH θopt θLB

C1 : (5, 3) (example) 2 3 2.5 5 2.5 2.5C2 : (11, 6) 4 4 3.6667 3.6667 2.75 2.2C3 : (12, 8) Pyramid 4 4 4 4.5 3 3C4 : (16, 10) LRC 5 5 4 4.8 3.2 2.6667C5 : (18, 12) Pyramid 5 5 4.5 4.5 3 3C6 : (154, 121) LRC 4 6 30.8 52.18 4.9677 4.6667C7 : (187, 121) LRC 7 16 12.4667 32.45 3.0656 2.8333

• θFH is the cPoP of linear coded PIR protocol of Freij-Hollanti et al.

• For all codes, θopt is close to the lower bound θLB.

• The non-MDS codes C1, C3, and C5 achieve the lower bound θLB.

• The codes C2, C4, C6, and C7 achieve the best cPoP.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 12 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Numerical results

Code dmin d̃min θnon−opt θFH θopt θLB

C1 : (5, 3) (example) 2 3 2.5 5 2.5 2.5C2 : (11, 6) 4 4 3.6667 3.6667 2.75 2.2C3 : (12, 8) Pyramid 4 4 4 4.5 3 3C4 : (16, 10) LRC 5 5 4 4.8 3.2 2.6667C5 : (18, 12) Pyramid 5 5 4.5 4.5 3 3C6 : (154, 121) LRC 4 6 30.8 52.18 4.9677 4.6667C7 : (187, 121) LRC 7 16 12.4667 32.45 3.0656 2.8333

• θFH is the cPoP of linear coded PIR protocol of Freij-Hollanti et al.

• For all codes, θopt is close to the lower bound θLB.

• The non-MDS codes C1, C3, and C5 achieve the lower bound θLB.

• The codes C2, C4, C6, and C7 achieve the best cPoP.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 12 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Take-home messages

• Generalized the PIR protocol proposed by Tajeddine and El Rouayheb for a DSSwith a single spy node and where data is linearly coded with R > 1/2.

• Presented an algorithm to optimize the cPoP of the protocol. The optimizationleads to a cPoP close to its theoretical lower bound.

• Interestingly, for certain (non-MDS) codes, the lower bound on the cPoP can beachieved.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 13 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Take-home messages

• Generalized the PIR protocol proposed by Tajeddine and El Rouayheb for a DSSwith a single spy node and where data is linearly coded with R > 1/2.

• Presented an algorithm to optimize the cPoP of the protocol. The optimizationleads to a cPoP close to its theoretical lower bound.

• Interestingly, for certain (non-MDS) codes, the lower bound on the cPoP can beachieved.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 13 / 13

Introduction System Model Construction Optimizing cPoP Numerical Results Summary

Take-home messages

• Generalized the PIR protocol proposed by Tajeddine and El Rouayheb for a DSSwith a single spy node and where data is linearly coded with R > 1/2.

• Presented an algorithm to optimize the cPoP of the protocol. The optimizationleads to a cPoP close to its theoretical lower bound.

• Interestingly, for certain (non-MDS) codes, the lower bound on the cPoP can beachieved.

PIR in Distributed Storage Systems Using an Arbitrary Linear Code | S. Kumar, E. Rosnes and A. Graell i Amat 13 / 13