Precision control of single molecule electrical junctions Iain Grace & Colin Lambert.

Post on 28-Dec-2015

214 views 0 download

Tags:

Transcript of Precision control of single molecule electrical junctions Iain Grace & Colin Lambert.

Precision control of Precision control of single molecule single molecule

electrical junctionselectrical junctions

Iain Grace & Colin Lambert

(b)

I0 Iw

CollaboratorsCollaborators

University of LiverpoolUniversity of Liverpool• W. Haiss• R. Nicholls• R. Schiffron

Durham UniversityDurham University• C. Wang• M. Bryce• A. Batsanov

Smeagol teamSmeagol team• A. R. Rocha • S. Sanvito• V. Garcia Suarez• J. Ferrer• S. Bailey• C. Lambert

Modelling of Molecular Electronics at Modelling of Molecular Electronics at LancasterLancaster

Controlling transport through single moleculesControlling transport through single molecules

Molecule Synthesis ~ Durham UniversityMolecule Synthesis ~ Durham University

•M. Bryce & C. Wang

O

O

O

O

R R

R RO O

O

O

O

O

R

R

R

R

S SNC CN

27 R = C6H13

HN

O

O

O

O

R R

R RO O

O

O

O

O

R

R

R

R

S SNC CN

28 R = C6H13

N N

Molecule CharacterizationMolecule Characterization• STM measurements• Cranfield ~ G. Ashwell, W. Tyrell• Liverpool ~ W. Haiss, R. Nicholls

Device fabrication ~ QinetiQDevice fabrication ~ QinetiQ Scalable technologyScalable technology

Gold contacts

Theory ~ Lancaster UniversityTheory ~ Lancaster University• I. Grace, T. Papadopolous, C. Finch• S. Sirichantaropass , V. Garcia Suarez• C. Lambert

(b)

I0 Iw

Experimental Details ~ I(t) MethodExperimental Details ~ I(t) MethodX-Ray Crystallogaphy structure

Length ~ 2nm

IW ~ Measured current through the molecule

W. Haiss et al, Phys. Chem. Chem. Phys., 2004, 6, 4330.

Tilting MoleculesTilting Molecules

No temperature dependence~ molecule is rigid~ for non-rigid molecules there is a strong temperature dependence

Theory on molecule tiltingTheory on molecule tiltingKornilovitch et al, PRB 64, 195413 (2001)Geng et al, App. Phys. Lett. 85, 5992 (2004)

Theoretical ModellingTheoretical Modelling

Relax geometry of the isolated molecular wire ( SIESTA DFT code)

Extend the molecule to include surface layers of gold

Using SIESTA extract a tight binding Hamiltonian describing the extended

molecule

Compute zero-bias transport with a greens function scattering approach.

)(2 2

ETh

eG

Employ a simpler form of the SMEAGOL code~ developed to study very long molecules (10nm) efficiently

Theoretical tilt dependenceTheoretical tilt dependenceHollow site

Top site

Artificially shifted LUMO resonances

Surfaces of constant LDOSSurfaces of constant LDOS

Increasing the tilt angle alters the strength of the contact coupling

Molecule GeometryMolecule Geometry

Geometry A ~ α = 0

Geometry B ~ α = 60

Rings are free to rotate about the molecule axis

Rotational DependenceRotational DependenceRotate the whole molecule about its axis by an angle Φ

ConclusionsConclusions

• Developed a theoretical method, based on the SMEAGOL code, to

compute efficiently the zero bias conductance of molecular wires.

• Good agreement with the measured magnitude of conductance.

• The behaviour of the tilt dependence of the conductance is determined by geometry of the molecule between the contacts.