Precise Motion Control of Linear Pulse Motor based on ...yu.ac.kr/~jipark/files/iastedohp.pdf ·...

Post on 10-Aug-2020

0 views 0 download

Transcript of Precise Motion Control of Linear Pulse Motor based on ...yu.ac.kr/~jipark/files/iastedohp.pdf ·...

IASTED MIC 2000

1Automatic Control Lab. YNU, Korea

Precise Motion Control of Linear Pulse Motor based on Disturbance

Compensation using Neural Network

2000. 2. 14.

Young Gun Kwon, Jung-il Park

School of Electrical and Electronic Engineering,Yeungnam University, Korea

IASTED MIC 2000

2Automatic Control Lab. YNU, Korea

Purpose

• Propose a neural network-based learning controller

– Finding the current commands to reduce the ripple of error occurred when we control a linear pulse motor

IASTED MIC 2000

3Automatic Control Lab. YNU, Korea

Introduction

• Importance of a linear motor

• What is a linear motor?

• What is a linear pulse motor(LPM)?

– Merits of LPM

– Difficulties in controlling LPM using conventional control algorithm

IASTED MIC 2000

4Automatic Control Lab. YNU, Korea

• Excitation methods of LPM– Micro-step control to reduce force ripple

• Force ripple – Due to nonlinear factor or unmodeled

dynamics

• Studies for reducing force ripple – Finding the accurate model via either

experiments or theoretical studies for dynamics of a LPM

IASTED MIC 2000

5Automatic Control Lab. YNU, Korea

• Purpose of this paper :

– Getting a better performance by finding the current commands considering nonlinear factor and unmodeled dynamics

– Introducing the neural network-based current controller considering these factors at a time

• Validity of the proposed controller

– confirmed by motion control experiments

IASTED MIC 2000

6Automatic Control Lab. YNU, Korea

Principle of Hybrid type LPM

N S

Permanent magnet

Electromagnet

N S

Permanent magnet

Electromagnet

N S

Permanent magnet

Electromagnet

N S

Permanent magnet

Electromagnet

(a) (b)

(c) (d)

IASTED MIC 2000

7Automatic Control Lab. YNU, Korea

Neural network-based current controller

• Linear motor model

• Generating force

eL FFdtdxB

dtxdM =++2

2

(1)

( )

+

−= BABAe ix

pix

pKxiiF ππ 2cos2sin,, (2)

IASTED MIC 2000

8Automatic Control Lab. YNU, Korea

• Current commands

– If we use the current commands in equation (3), the force ripple is generated by unmodeled dynamics.

– Propose a neural network-based current control scheme

=

−= x

pix

pi BA

ππ 2cos,2sin(3)

IASTED MIC 2000

9Automatic Control Lab. YNU, Korea

• Structures of neural network applied in control fields

– Feedback error learning type

– Direct inverse model learning type

– Indirect model learning type

IASTED MIC 2000

10Automatic Control Lab. YNU, Korea

Structure of proposed controller

setpoint y

OutputPlantT H K

2HRM0205-1020L

err MotorDriver

xia

ib

++ A, /A

B, /B

PIDcontroller

CurrentCommand

+

-

++

NeuralNetwork1

++

uPID

uNN1

uIN

NeuralNetwork2

ibia

IASTED MIC 2000

11Automatic Control Lab. YNU, Korea

Structure of used neural networksetpoint(t)

output(t)

out_velocity(t)

velocity(t)

LPF

uNN1

(a) Neural network 1

IASTED MIC 2000

12Automatic Control Lab. YNU, Korea

setpoint(t)

setpoint(t-1)

Output(t)

Output(t-1)

IA

IB

IB

IA

(b) Neural network 2

IASTED MIC 2000

13Automatic Control Lab. YNU, Korea

Specifications of neural network

– Bipolar sigmoid activation function

– Momentum term

– Standard back-propagation algorithm

IASTED MIC 2000

14Automatic Control Lab. YNU, Korea

• The j-th hidden layer output

( ) ∑=

===N

kkjkjjj Qjxvgh

0,,2,1;; Lψψ (4)

• i-th output of output layer

( ) ∑=

===Q

jjijiii Mihwfy

0,,2,1;; Lψψ (5)

• Cost function

( )∑=

=M

iPIDUE

1

2

21 (6)

IASTED MIC 2000

15Automatic Control Lab. YNU, Korea

( ) ( )

( ) ( ) ( )nhnnwwEnwnw

jyiij

ijijij

ηδ

η

+=

∂∂

−=+1(7)

( ) ( )i

iPIDyi

fUwhereψψδ

∂∂

=,

( ) ( )

( ) ( ) ( )nxnnvvEnvnv

khjjk

jkjkjk

ηδ

η

+=

∂∂

−=+1(8)

( )j

jM

iijyihj

gwwhere

ϕϕ

δδ∂

∂=∑

=1,

IASTED MIC 2000

16Automatic Control Lab. YNU, Korea

Experimental environments• Methods of experiments

– Using DSP board to implement control algorithm• TMS320C31

– Motion speed • High speed : 4.5mm/sec

• Low speed : 0.2mm/sec

IASTED MIC 2000

17Automatic Control Lab. YNU, Korea

• Specifications of experimental system

– LPM(2HRM0205-1020L) • Pitch length : 0.8mm

• Stroke : 1m

– PWM current driver

– Linear scale resolution : 20㎛

– DSP board : TMS320C31 • Sampling time : 2.5msec

IASTED MIC 2000

18Automatic Control Lab. YNU, Korea

Structure of experimental system

PCDSP

DAC

DAC

Counter

Driver LPM scale A B/A /B

IASTED MIC 2000

19Automatic Control Lab. YNU, Korea

Block diagram of current driver

LPMPWM

L298NStep

motor driver

LA25-NPCurrentdetector

inputIa, Ib

+

-

PI

IASTED MIC 2000

20Automatic Control Lab. YNU, Korea

Experiment results• Initial conditions of NN1 :

– learning rate =0.3

– momentum coefficients =0.9

• Initial conditions of NN2

– learning rate =0.1

– momentum coefficients =0.9

• Initial weights :– chosen as values from –0.1 to +0.1

IASTED MIC 2000

21Automatic Control Lab. YNU, Korea

Desired velocity profile

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

Velo

city

[mm

/sec

]Time [sec]

0 4 8 12 16 20 24 28 32 36 400.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 x10-3

Velo

city

[m/s

]

Time [sec]

Low speed High speed

IASTED MIC 2000

22Automatic Control Lab. YNU, Korea

Results at low speed

0 4 8 12 16 20 24 28 32 36 40-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10 x10-3

Erro

r [m

]

Time [sec]0 4 8 12 16 20 24 28 32 36 40

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10 x10-3

Erro

r [m

]

Time [sec]

Open loop controller only FF+PI controller

IASTED MIC 2000

23Automatic Control Lab. YNU, Korea

Results at low speed

0 4 8 12 16 20 24 28 32 36 40-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10 x10-3

Erro

r [m

]

Time [sec]0 4 8 12 16 20 24 28 32 36 40

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10 x10-3

Erro

r [m

]

Time [sec]

NN2+PI+FF controllerNN1+PI+FF controller

IASTED MIC 2000

24Automatic Control Lab. YNU, Korea

Results at low speed

0 5 10 15 200.00

0.02

0.04

0.06

0.08

0.10

0.12x10-3

MSE

Learning iteration

0.0050.050PI+FF+NN2

0.0100.075PI+FF+NN1

0.0200.075PI + FF

0.0400.095Open loop

Offset error

(mm)

Peak to peak

error(mm)Controller

Mean squared error, PI+FF+NN2 controller

Performance comparison of each controller at low speed

IASTED MIC 2000

25Automatic Control Lab. YNU, Korea

Results at high speed

0 1 2 3 4 5 6 7 8 9 10

-0.1

0.0

0.1

0.2

0.3 x10-3

Erro

r [m

]

Time [sec]0 1 2 3 4 5 6 7 8 9 10

-0.1

0.0

0.1

0.2

0.3 x10-3

Erro

r [m

]

Time [sec]

Open loop controller only PI+FF controller

IASTED MIC 2000

26Automatic Control Lab. YNU, Korea

Results at high speed

0 1 2 3 4 5 6 7 8 9 10

-0.1

0.0

0.1

0.2

0.3 x10-3

Erro

r [m

]

Time [sec]

PI+FF+NN2 controller

IASTED MIC 2000

27Automatic Control Lab. YNU, Korea

Performance comparison of each controller at high velocity

Controller

Peak to

peak

error(mm)

Offset

error(mm)

Open loop 0.17 0.100

PI+FF 0.13 0.030

PI+FF+NN2 0.10 0.025

IASTED MIC 2000

28Automatic Control Lab. YNU, Korea

Conclusions• Introduced neural network of feedback

error learning type changes a current command to improve position accuracy.

• Neural network works efficiently for reducing the position ripple error.

• We must develop better neural network to operate for periodic error.