Power Hardware-in-the-Loop and the KIT Energy Smart Home ... · KIT Energy Smart Home Lab...

Post on 17-Jul-2020

2 views 0 download

Transcript of Power Hardware-in-the-Loop and the KIT Energy Smart Home ... · KIT Energy Smart Home Lab...

Sebastian Hubschneider

Power Hardware-in-the-Loop and the KIT Energy Smart Home Lab Environment

Introduction Sebastian Hubschneider, M.Sc., Research Associate

Karlsruhe Institute of TechnologyInstitute of Electric Energy Systems and High-Voltage Technology

20 academic employees

Fields of research

AC/DC grids (system management, grid stability, smart grids, …)

HVDC systems (inverters, fault correction, partial underground cabling, …)

Electrical components (redox-flow, inductive charging, cables, PHIL, …)

Accredited High-Voltage Laboratory

Agenda PHIL at KIT – IEH

DUT loop-feedback

Advanced Decentral Grid Control

Goals and general (PHIL) setup

KIT Energy Smart Home Lab

Low voltage grid simulation

First measurements and experiences

PHIL at KIT – IEHSoftware

HYPERSIM R6.0.11.o505

1 core activated

Planned data interfacefor long-term gridsimulations (.csv)

RT-Lab

ScopeView

Hardware

OP5030 Real-Time Simulator

OP5607 I/O Expansion Unit, Virtex 7 FPGA Processor

4-Quadrant-Amplifier Spitzenberger & Spiess3x 10 kVA at 270 Vrms

Current measurement (20 MHz)

PHIL at KIT – IEH Real-Time since April 2016

Research fields

DUT-independent loop-feedback (stability, high resolution)

PHIL limitations and possible achievable loop-times

Real-Time grid simulation for intelligent households

Interaction of inverter active front ends, non-passive loads and PHIL

DUT loop-feedback Objectives

DUT-independent test environment for active and passive electrical equipment (rapid prototyping)

Stable for all test cases without knowledge of DUT

20 kHz resolution (grid control, switching operations, short circuits)

Analysis of different loop-feedback methods

Evaluation via MATLAB/Simulink

Implementation via HYPERSIM

Control-technological studies

DUT loop-feedback Exemplary: Improved Damping Impedance Method, IDIM

Source: „Implementierung und Entwicklung von Rückkopplungsverfahren für Power Hardware-in-the-Loop Systeme“, Pia Brutschin

AC

ZSim

ZHUT

USim

ZabZab

V ZHUTZHUT

UHUT

VZ*

AIHUT

Impedance adjustment

DUT loop-feedback Exemplary: Improved Damping Impedance Method, IDIM

Source: „Implementierung und Entwicklung von Rückkopplungsverfahren für Power Hardware-in-the-Loop Systeme“, Pia Brutschin

DUT loop-feedback Exemplary: Improved Damping Impedance Method, IDIM

Source: „Implementierung und Entwicklung von Rückkopplungsverfahren für Power Hardware-in-the-Loop Systeme“, Pia Brutschin

stable case unstable case

DUT loop-feedback Next: Parallel implementation of methods with adequate decisive criteria

Interface Algorithm Accuracy Stability Implementation Limitations

ITM (voltage source)

∗∗∗∗ ∗∗ ∗Stable for RL loads; 𝑍𝑠𝑖𝑚 < 𝑍DUT

ITM (current source)

∗∗∗∗ ∗∗ ∗Stable for RC loads; 𝑍𝑠𝑖𝑚 > 𝑍𝐷𝑈𝑇

PCD ∗ ∗∗∗∗ ∗∗ Stable; exact for 𝑍𝑎𝑏 ≫ 𝑍𝐷𝑈𝑇; 𝑍𝑎𝑏 ≫ 𝑍𝑠𝑖𝑚

DIM ∗∗∗∗ ∗∗∗ ∗∗ Inexact if 𝑍∗ ≠ 𝑍𝐷𝑈𝑇

TLM ∗∗ ∗∗∗∗ ∗∗∗∗ Adjustion of 𝑍𝑎𝑏 to the system

TFA ∗∗∗∗ ∗ ∗∗∗∗ Algorithm adjustment to DUT needed

Taganrog∗∗ ∗∗∗ ∗∗∗∗

Weighting of parameters as trade-off between stability and accuracy

PHIL loop times

Device Under Test / KIT Energy Smart Home Lab

Simulated lowvoltage grid

I/O controller

𝑖, 𝑣

𝑣

4-Quadrant-Amplifier

Real-TimeSimulation

PHIL system

Total loop-time to achieve: …

PHIL loop times

Device Under Test / KIT Energy Smart Home Lab

Simulated lowvoltage grid

I/O controller

𝑖, 𝑣

𝑣

4-Quadrant-Amplifier

Real-TimeSimulation

𝒕𝑺𝑰𝑴 ≅ 𝟏𝟎 µ𝒔

Total loop-time to achieve:A/D grid calculation D/A

𝟏𝟎 µ𝒔 …

PHIL system

PHIL loop times

Device Under Test / KIT Energy Smart Home Lab

Simulated lowvoltage grid

I/O controller

𝑖, 𝑣

𝑣

4-Quadrant-Amplifier

Real-TimeSimulation

𝒕𝟒𝑸𝑺 ≅ 𝟖 µ𝒔

Total loop-time to achieve:A/D grid calculation D/A Voltage output (4QA)

𝟏𝟎 µ𝒔 𝟖 µ𝒔 …

PHIL system

PHIL loop times

Device Under Test / KIT Energy Smart Home Lab

Simulated lowvoltage grid

I/O controller

𝑖, 𝑣

𝑣

4-Quadrant-Amplifier

Real-TimeSimulation

𝒕𝑴𝑬𝑨𝑺 ≅ 𝟐 µ𝒔

Total loop-time to achieve:A/D grid calculation D/A Voltage output (4QA) Meas

𝟏𝟎 µ𝒔 𝟖 µ𝒔 𝟐 µ𝒔 …

PHIL system

𝟏𝟎 µ𝒔 𝟖 µ𝒔 𝟐 µ𝒔

PHIL loop times

Device Under Test / KIT Energy Smart Home Lab

Simulated lowvoltage grid

I/O controller

𝑖, 𝑣

𝑣

4-Quadrant-Amplifier

Real-TimeSimulation

𝒕𝑻𝑶𝑻 ≅ 𝟐𝟎 µ𝒔

Total loop-time to achieve:A/D grid calculation D/A Voltage output (4QA)

𝟐𝟎 µ𝒔Meas

PHIL system

T = 40 µs

T = 50 µs

t_O t_I t_O t_I t_O t_I t_O t_I t_O t_I t_O t_I t_O t_I t_O t_I t_O t_I

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

t_I t_I t_I t_I t_I t_I t_I t_I t_I

2 2 2 2 2 2 2 2 2

t_O t_O t_O t_O t_O t_O t_O t_O t_O

2 2 2 2 2 2 2 2 2

t_O t_V t_I t_O t_V t_I t_O t_V t_I t_O t_V t_I

2 2 2 2 2 2 2 2 2 2 2 2

t_O t_O t_V t_I t_I t_O t_O t_V t_I t_I t_O

2 2 2 2 2 2 2 2 2 2 2

t_O t_O t_I t_I t_O t_O t_I t_I

2 2 2 2 2 2 2 2N/O

8N/ON/O

t_Calc

10N/O

t_V

t_4QSN/O

8

t_Calc

6…N/O N/O N/O

t_4QS

8

Soft

wa

reH

WLo

op

10 8N/O

t_Calc t_VN/O

6 6

N/O N/O N/O

…t_Calc t_Calc

…8 8 8 8

N/O

…t_4QS t_4QS t_4QS t_4QS

N/O N/O N/O N/O N/O N/O N/O N/O N/O

10

N/O N/O N/O N/O N/O N/O N/O N/O N/O

t_Calc…

10 10 10 10 10 10 10 10

t_Calc t_Calc t_Calc t_Calc t_Calc t_Calc

…6 6 6 6 6 6 6 6 6

10

…t_Calc t_Calc t_Calc t_Calc t_Calc t_Calc t_Calc t_Calc

1 2 3 4 5 6 7 8 9

t_Calc t_Calc

t_Calc

PHIL loop times Theoretically possible temporal resolution

time / µ𝑠

fpga

fpga fpga

fpgaSW SW

SW

Step size: 10 µ𝑠

SW

Reactive power provision and voltage stability

Congestion handling

Spinning reserve and short circuit power

LV grids have to get active

Advanced Decentral Grid Control

Challenges

Increasing energyproduction in LV grids

New prosumers in LV grids

Source: Project „Advanced Decentral Grid Control“

Conception of future energy grids

Coordination of producers, storage & flex. consumers

Provision of ancillary services

Grid development and state estimation

Grid stability in critical situations (traffic light concept)

Proof of concept and system

Baden-Württemberg,

GermanyKIT Laboratory

Energy Smart Home Lab

Field test

Advanced Decentral Grid Control

Key facts

Funding: “Zukunftsfähige Stromnetze” of the BMWi

Project term: July 2015 – June 2018

Our approach: Integration of hard- and software components into one testbed for low voltage systems

Source: Project „Advanced Decentral Grid Control“

Hybrid Energy Storage System

Battery-storage

Super-capacitor

Appliances

Heating, venti-

lation, and air-

conditioning

Artificial Mains Network

Signal Processing

IntelligentBuildings

Artificial Mains Network

Calculation

DistributedGeneration

PV System

PV Simulator

MicroCHP

DGDGDG

ICT

Gri

d

LV

Gri

d

KIT

En

erg

y S

mart

Ho

me L

ab

4-Quadrant-

Amplifier

Hybrid Energy Storage Control

System

Building Energy Management System

External Entities

Advanced Decentral Grid Control

Source: „Establishing a hardware-in-the-loop research environment with a hybrid energystorage system“, 2016 IEEE Innovative Smart Grid Technologies – Asia (ISGT-Asia)

KIT Energy Smart Home Lab

PV inverterSmart Meter

EV charging station

Intelligent appliances

µCHP

PV Simulator4-Quadrant-

Amplifier

Hot water storage with insert heating element

Hybrid electrical energy storage

A/C

Electric Vehicle

Living room

KitchenTechnical

roomBedroom 1

Bedroom 2

Source: KIT Energy Smart Home lab, http://www.aifb.kit.edu/web/Energy_Smart_Home_Lab

KIT Energy Smart Home LabDistributed Generation

PV panels 24x Sovello SV-T-195 4.7 kWp

PV inverter SMA Sunny Tripower STP 10000TL-10 10 kVA, 3-phase

PV simulator ET System LAB/SMS3100 3.0 kWp

CHP SenerTec Dachs G 5.5 standard 5.5 kW electrical , 12.5 kW thermal

Appliances

Home appliances Miele: coffee machine, dishwasher, dryer, hob, oven, washing machine;Liebherr: deep freezer, refrigerator; other: microwave, water kettle, toaster

Heating and Air-conditioning System

Insert heating element Eltra 2NP5635-290 9 kW

Air-conditioning inverter Mitsubishi PUHZ-RP60VHA4 6 kW cooling capacity

Hybrid Electrical Energy Storage System

Battery 12x Hoppecke power.com HC122000 7.920 kWh (three hour discharge)

EDLC 5x SPS MCE0010C0-0090R0TBA 40.32 kWs (per module)

Source: „Establishing a hardware-in-the-loop research environment with a hybrid energy storage system“, 2016 IEEE Innovative Smart Grid Technologies – Asia (ISGT-Asia)

Low voltage grid simulation Real-time simulation of exemplary LV grids

Provision of predefined grid setups Facilitate highly dynamic interactions of Energy Smart Home Lab

(ESHL) and simulated grid

Address voltage quality & frequency issues

Grid overloads / overvoltage / undervoltage

Frequency changes (multiple ESHL instances)

Asymmetrical loads

Mains errors

Low voltage grid simulationWeak grid

Frequency change / asymmetrical loadLine Fault

1-phase / 3phase

VHz V

0

320

-320

320

240

50

First measurements

Grid to 4QA ESHL running on 4QA 4QA to Grid

V_4QA

V_Grid

V_ESHL

I_4QA

Switching operation between stiff and artificial LV grid (ScopeView)

First measurements

Source: „Establishing a hardware-in-the-loop research environment with a hybrid energystorage system“, 2016 IEEE Innovative Smart Grid Technologies – Asia (ISGT-Asia)

3-phase voltages Active & reactive power

Simulating a weak grid with the 4-quadrant-amplifier

THANK YOU

Sebastian Hubschneider, M.Sc.Research Associate

Karlsruhe Institute of TechnologyInstitute of Electric Energy Systems and High-Voltage Technology (IEH)

Phone: +49 721 608-43055Email: sebastian.hubschneider@kit.edu

www.ieh.kit.edu