Populations Population growth Nt + 1 = Nt + B – D + I – E.

Post on 18-Jan-2016

238 views 1 download

Tags:

Transcript of Populations Population growth Nt + 1 = Nt + B – D + I – E.

0

1

2

3

4

5

6

7<

260

270

280

290

300

310

320

330

340

350

360

370

<38

0

Cummulative Score

Fre

qu

en

cy

Populations

Population growth

• Nt + 1 = Nt + B – D + I – E

Population growth

• Nt + 1 = Nt + B – D + I – E

• Nt + 1 = Nt + B – D (assume no I and E)

Time: 0Cells: 1

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Time

# o

f C

ell

s

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Time

# o

f C

ell

s

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Time

# o

f C

ell

s

Time: 0 1Cells: 1 2

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Time

# o

f C

ell

s

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Time

# o

f C

ell

s

Time: 0 1 2Cells: 1 2 4

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Time

# o

f C

ell

s

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Time

# o

f C

ell

s

Time: 0 1 2 3Cells: 1 2 4 8

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Time

# o

f C

ell

s

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Time

# o

f C

ell

s

Time: 0 1 2 3 4Cells: 1 2 4 8 16

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Time

# o

f C

ell

s

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Time

# o

f C

ell

s

Time: 0 1 2 3 4 5Cells: 1 2 4 8 16 32

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Time

# o

f C

ell

s

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Time

# o

f C

ell

s

Time: 0 1 2 3 4 5 6Cells: 1 2 4 8 16 32 64

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Time

# o

f C

ell

s

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Time

# o

f C

ell

s

Time: 0 1 2 3 4 5 6 7Cells: 1 2 4 8 16 32 64 128

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Time

# o

f C

ell

s

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Time

# o

f C

ell

s

Time: 0 1 2 3 4 5 6 7Cells: 1 2 4 8 16 32 64 128

“J” shaped or exponential growth

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Time

# o

f C

ell

s

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Time

# o

f C

ell

s

Exponential growth: # increase by constant factor (R or reproductive rate) each time interval

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Time

# o

f C

ell

s

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Time

# o

f C

ell

s

Nt = N0Rt

R = 2, N0 = 1, t = 5

Nt = 1 * 25 = 32

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Time

# o

f C

ell

s

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Time

# o

f C

ell

s

Nt = N0Rt

R = 2, N0 = 1, t = 5

Nt = 1 * 25 = 32Mathematical model for non-overlapping (discrete) populations

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Time

# o

f C

ell

s

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Time

# o

f C

ell

s

dN/dt = rNr = intrinsic rate of increaser = birth rate (b) – death rate (d)

Mathematical model for overlapping populations

r > 0 population will grow

r = 0 population won’t change

r < 0 population will shrink

dN/dt = rN

Fig. 52.8 The exponential model for population growth

Fig 52.9

Fig 52.20

Fig 52.16

Cod in north Atlantic

Fig. 52.11 The patterns of exponential and logistic population growth

For: r=0.1 K=100

if N = 10 dN/dt = .1 (10) [(100 - 10)/100]= .1 (10) (.9)= .9

if N = 99 dN/dt = .1 (99) [(100 - 99)/100]= .1 (99) (.01)= .099

dN/dt = r N [(K - N)/K]

What do I need to know about these models?

Exponential Logistic

Pattern: J-shaped S-shaped

Equation*: dN/dt = rN dN/dt = rN[(K-N)/K]

Assumptions: -growth rate constant growth rate decreases

with pop size

-unlimited env. carrying capacity

* Know what each term means and how changes in the terms affect the pattern of population growth.

Sometimes population growth is independent of density

Fig 52.18

Larch budmoth

Fig. 52.3

Fig. 52.22

A Life Table

Number Probability of #Offspring bornAge aged x survival to x to females aged x

0 600 1.0 0

1 300 0.5 0

2 240 0.4 2

3 60 0.1 3

4 30 0.05 5

Age group (x)

Nx bx lx

0 600 0 1

1 300 0 .5

2 240 2 .4

3 60 3 .1

4 30 5 .05

lxbx

Σ lxbx = 1.35

0

0

.8

.3

.25

Lifetime offspring per individual female