Coupled Electromagnetic and Analysis of Ferrite Core ... Analysis of Ferrite Core Electronic Planar...

Post on 06-Mar-2018

246 views 4 download

Transcript of Coupled Electromagnetic and Analysis of Ferrite Core ... Analysis of Ferrite Core Electronic Planar...

© 2011 ANSYS, Inc. September 6, 20111

Coupled Electromagnetic and Thermal Analysis of Ferrite Core Electronic Planar Transformer

Mark ChristiniANSYS, Inc

© 2011 ANSYS, Inc. September 6, 20112

• Introduction

• Maxwell 3D Eddy Current  and Electrostatic  Simulation

• ANSYS Mechanical Thermal Simulation

• 2‐way Thermal Coupling back to Maxwell

• Simplorer System Simulation using Maxwell State Space Dynamic model

• Summary

Outline

© 2011 ANSYS, Inc. September 6, 20113

• Coupled electromagnetic‐thermal analysis of a ferrite core electronic planar transformer

• Magnetic simulation done at fundamental frequency = 100kHz with harmonics up to 5MHz

• All sources of losses considered including: eddy current, skin, and proximity losses in the windings as well as eddy current and hysteresis losses in the ferrite core

• Losses are directly coupled into an ANSYS Mechanical Thermal simulation in order to determine temperature rise using element by element coupling

• Temperatures fed back to Maxwell for material changes

• System simulation done inside of Simplorer using dynamic state space frequency dependent model

Introduction

© 2011 ANSYS, Inc. September 6, 20114

Coupled Electromechanical Design FlowSimplorerSystem Design

PP := 6

ICA:

A

A

A

GAIN

A

A

A

GAIN

A

JPMSYNCIA

IB

IC

Torque JPMSYNCIA

IB

IC

TorqueD2D

Maxwell 2D/3DElectromagnetic Components

PExprtMagnetics

RMxprtMotor Design

Q3DParasitics

ANSYS MechanicalThermal/Stress Model order Reduction

Co-simulation

Field Solution

Model Generation

ANSYS CFD Fluid Flow

© 2011 ANSYS, Inc. September 6, 20115

FEA Adaptive Meshing2D Transformer Model

2D Transformer Mesh

In 2D, finite elements are triangles

3D Transformer Model

3D Transformer Mesh

In 3D, finite elements are tetrahedra

© 2011 ANSYS, Inc. September 6, 20116

• Electric Field effects:– varying dielectric permitivities– varying dimensions and shape– 3D field effects

• Magnetic effects: – nonlinear materials– frequency dependent materials– temp dependent materials– eddy currents– proximity effects– time diffusion of magnetic fields– transient excitations

Transformer Design Challenges

© 2011 ANSYS, Inc. September 6, 20117

Electrical Magnetic Fluid Mechanical Thermal Acoustic

Circuit

System

Component ANSYS Workbench

ANSYSMixed-Signal Multi-Domain

System Simulator

Model Order Reduction &Cosimulation

ANSYS Comprehensive Solution

© 2011 ANSYS, Inc. September 6, 20118

Workbench Coupling Technology

Electromagnetic →      Thermal      →        Stress       →    System

© 2011 ANSYS, Inc. September 6, 20119

• Ferrite PQ Core

• Primary turns = 4

• Secondary turns = 2

• Insulation layers between conductors

• Fundamental Frequency = 100kHz

Electronic Planar Transformer

© 2011 ANSYS, Inc. September 6, 201110

• Load case with Ipri = 50A and Isec = 80A

• Unbalanced A‐turns for core excitation

Maxwell 3D Source Setup

© 2011 ANSYS, Inc. September 6, 201111

Ferrite Core PropertiesFrequency dependent permeability and imaginary permeability

Use Simplorer Sheetscan utility to grab permeability data points 

SheetscanDatasheet

© 2011 ANSYS, Inc. September 6, 201112

Required inputs for Maxwell are real permeability and loss tangent 

Loss tangent based on series equivalent model

Temp = 0° C

Frequency Dependent Core Properties in Maxwell

s

s

s

ss L

R

'

"

frequency perm perm_imag loss tangent100000 1939 6 0.0032200000 1977 13 0.0068300000 2015 22 0.0110400000 2052 35 0.0173500000 2090 51 0.0244600000 2165 79 0.0363700000 2281 119 0.0522800000 2322 174 0.0750900000 2446 264 0.1078

1000000 2533 336 0.13261500000 2581 998 0.38692000000 2029 2101 1.03513000000 828 2178 2.63064000000 227 1626 7.16185000000 97 1093 11.21996000000 61 663 10.83987000000 47 424 8.96448000000 39 327 8.36589000000 34 271 7.9437

10000000 31 228 7.4132

© 2011 ANSYS, Inc. September 6, 201113

Datasets used to define properties vs. frequency:• Relative Permeability = pwl($perm,Freq)• Magnetic Loss tangent = pwl($losstan,Freq)

Relative permitivity = 12

Conductivity = 0.5 (S/m)

Core Material Properties ‐ Inputs

© 2011 ANSYS, Inc. September 6, 201114

Use “named expression” in calculator to verify the real and imaginary permeability 

Use report to plot µ’ and loss tangent vs. frequency

Core Material Properties ‐ Outputs

Real permeability - µ’

Num > Vector > 1,0,0 Material > perm > multiply complex > real > magconstant > mu0 > divide

Loss tangent

δ = µ” / µ’

0.00 1.00 2.00 3.00 4.00 5.00Freq [MHz]

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

mu_

real

_eva

l

0.00

2.00

4.00

6.00

8.00

10.00

12.00

loss

_tan

gent

Maxwell3Ddesign2Permeability and Loss Tangent ANSOFT

Curve Infomu_real_eval

Setup1 : LastAdaptivePhase='0deg'

loss_tangentSetup1 : LastAdaptivePhase='0deg'

Real permeability - µ”

Num > Vector > 1,0,0 Material > perm > multiply complex > imag > magconstant > mu0 > divide

© 2011 ANSYS, Inc. September 6, 201115

Temperature Settings in Maxwell

• Initial temperature = 22 °C

• Core and windings have temp dependent materials

© 2011 ANSYS, Inc. September 6, 201116

Temperature dependent copper conductivity for 2‐way coupling to Maxwell

))22(*0039.01(1

Temp

© 2011 ANSYS, Inc. September 6, 201117

Initial Conductivity at 100kHz, 22 deg C

• Conductivity = 5.8e7 (S/m)

• Conductivity is constant throughout winding

© 2011 ANSYS, Inc. September 6, 201118

Temperature dependent ferrite permeability for 2‐way coupling to Maxwell

© 2011 ANSYS, Inc. September 6, 201119

2‐way coupling for temperature dependent permeability

0

1000

2000

3000

4000

5000

‐50 0 50 100 150 200 250temp (C)

Permeabilitydeg C perm

perm modifier

‐50 1247 0.73‐25 1440 0.850 1700 1.00

25 2031 1.1950 2442 1.4474 2982 1.7589 3252 1.91

100 3368 1.98113 3483 2.05125 3522 2.07137 3560 2.09149 3586 2.11162 3650 2.15175 3753 2.21183 3869 2.28189 3985 2.34191 4113 2.42194 4267 2.51195 4370 2.57197 4524 2.66200 4576 2.69202 4524 2.66204 4422 2.60205 4023 2.37206 2494 1.47209 514 0.30211 180 0.11213 77 0.05216 39 0.02221 13 0.01225 13 0.01

0.00

0.50

1.00

1.50

2.00

2.50

3.00

‐50 0 50 100 150 200 250

Permeability modifier 

© 2011 ANSYS, Inc. September 6, 201120

Initial Permeability at 100kHz, 22 deg C

Imaginary PermeabilityReal Permeability

© 2011 ANSYS, Inc. September 6, 201121

Current Density at 100kHz

• Load case with Ipri = 50A and Isec = 80A

© 2011 ANSYS, Inc. September 6, 201122

Magnetic Flux Density at 100kHz

© 2011 ANSYS, Inc. September 6, 201123

Winding losses considers skin and proximity effects

Winding Eddy Current Loss Density at 100kHz

© 2011 ANSYS, Inc. September 6, 201124

Core Loss Density at 100kHz

Hysteresis LossOhmic Loss

dVHBPvol

hysteresis *Im21 dVJJP

voleddy *Re

21

Freq [kHz]core_hyster_lossSetup1 : LastAdaptivePhase='0deg'

core_eddy_lossSetup1 : LastAdaptivePhase='0deg'

1 10.000000 0.001082 0.0018972 100.000000 1.211527 0.1918753 500.000000 44.428733 5.032800

core hyster eddy losses ANSOFT

© 2011 ANSYS, Inc. September 6, 201125

Simulated Resistance

0.01 0.10 1.00 10.00Freq [MHz]

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

Y1

[ohm

]

Maxwell3Ddesign1Resistance ANSOFT

Curve InfoMatrix1.R(pri_in,pri_in)

Setup1 : LastAdaptiveMatrix1.R(sec_in,sec_in)

Setup1 : LastAdaptive

© 2011 ANSYS, Inc. September 6, 201126

Simulated Inductance

0.01 0.10 1.00 10.00Freq [MHz]

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

Y1 [u

H]

Maxwell3Ddesign1Inductance ANSOFT

Curve InfoMatrix1.L(pri_in,pri_in)

Setup1 : LastAdaptiveMatrix1.L(sec_in,sec_in)

Setup1 : LastAdaptive

© 2011 ANSYS, Inc. September 6, 201127

Simulated Capacitance

Use DC conduction solver to assign +1V and ‐1V to coils and on core

© 2011 ANSYS, Inc. September 6, 201128

Workbench Coupling

• Maxwell 3D Eddy Current calculates losses and couples directly to ANSYS thermal

• Maxwell 3D Electrostatic calculates capacitances between winding and core

• Maxwell 3D Eddy Current calculates R,L vs. frequency and inports directly into Simplorer via the State‐space dynamic link

© 2011 ANSYS, Inc. September 6, 201129

Workbench CouplingEngineering Data allows materials to be chosen including thermal conductivity

© 2011 ANSYS, Inc. September 6, 201130

Workbench Coupling

• Workbench geometry imported directly into Workbench

• Appropriate materials can then be assigned

© 2011 ANSYS, Inc. September 6, 201131

Workbench Coupling

• Workbench mesh is different than Maxwell 3D mesh

• Set maximum element size = 0.5mm

© 2011 ANSYS, Inc. September 6, 201132

Workbench Coupling

• Fixed temperature cold plate assigned to base = 22 °C

• Convection boundaries assigned to outer surfaces of core and coils = 5 W/m2‐°C

© 2011 ANSYS, Inc. September 6, 201133

Workbench Coupling• Imported Loss Density on core and windings at 100kHz 

• Matches Maxwell 3D loss density1

Freq [kHz] 100.000000pri_lossSetup1 : LastAdaptivePhase='0deg'

6.657984

sec_lossSetup1 : LastAdaptivePhase='0deg'

6.712708

core_loss_topSetup1 : LastAdaptivePhase='0deg'

0.701290

core_loss_botSetup1 : LastAdaptivePhase='0deg'

0.702112

total losses ANSOFT

© 2011 ANSYS, Inc. September 6, 201134

Ferrite Core Transformer Temperature at 100kHz

© 2011 ANSYS, Inc. September 6, 201135

Export temperature back to Maxwell

© 2011 ANSYS, Inc. September 6, 201136

Resolve in Maxwell with actual temp

© 2011 ANSYS, Inc. September 6, 201137

Updated Copper Conductivity with 2‐way coupling

Uniform conductivity = 5.8e7 (S/m) at 22°C

Varying conductivity with varying temperature (decreases as temp increases)

© 2011 ANSYS, Inc. September 6, 201138

MatlabSimulink

Simplorer Architecture  

Simulation Data Bus/Simulator Coupling Technology

Co-Simulation

Circuits: States:

Electromagnetic (FEA)

Mechanical(FEA)

Model Extraction: Equivalent Circuit, Dynamic State Space, Impulse Response Extracted LTI, Stiffness Matrix

Fluidic (CFD)

VHDL-AMSIF (domain = quiescent_domain)V0 == init_v;

ELSECurrent == cap*voltage'dot;

END USE;

Matlab

Real TimeWorkshop

C/C++ User Defined

ModelANSYSMBD

ANSYSMaxwell

Blocks:

Thermal (FEA)

© 2011 ANSYS, Inc. September 6, 201139

Simplorer System Simulation

Maxwell 3D Frequency Sweep

© 2011 ANSYS, Inc. September 6, 201140

Simplorer System Simulation

© 2011 ANSYS, Inc. September 6, 201141

Simplorer System Simulation

© 2011 ANSYS, Inc. September 6, 201142

• Maxwell 3D determines loss components (eddy current, hysteresis, proximity, skin) at multiple frequencies as well as R, L and C

• Workbench allows Maxwell losses to be spatially coupled to ANSYS Mechanical for temperature rise calculation

• Resulting temperature rise can be coupled back to Maxwell in order to used to change material properties such as permeability and conductivity

• Maxwell 3D can export a frequency dependent transfer function using Dynamic State Space coupling inside of Simplorer to allow for a complete system simulation

Conclusions