Patras 9 July 2012 INTEGRATION OF RENEWABLE ENERGY SOURCES IN POWER SYSTEMS Razvan Magureanu...

Post on 04-Jan-2016

215 views 0 download

Tags:

Transcript of Patras 9 July 2012 INTEGRATION OF RENEWABLE ENERGY SOURCES IN POWER SYSTEMS Razvan Magureanu...

Patras9 July 2012

INTEGRATION OF RENEWABLE ENERGY SOURCES IN POWER SYSTEMS

Razvan MagureanuUniversity POLITEHNICA Bucharest

Patras9 July 2012

Fig.1. Zeus in action

Patras9 July 2012

Fig.2. Otto von Guericke producing and transporting static energy Fig.3. The kissing machine

Patras9 July 2012

Fig.4. Equivalent power

Patras9 July 2012

Fig.5. Projected global population (left) and energy demand (right)

Patras9 July 2012

Fig.6. Primary resources

Patras9 July 2012

Fig.7. Centralized and distributed solutions

Patras9 July 2012

Fig. 8 Smart Grid with renewable sources and different types of loads

and storage facilities

AC

AC

2Grid

R

L

Load

1GridUcrainGrid

1 3

A B

C

AZ1

2AZ BZ2

3BZ

CZ31CZ

2

Ph

C3

CompComp

Ph Ph

Comp

C1 C2

kV20

V400

1T 3T

2T

filter

Active

load

bridge

Thyristor

kV20 kV20V400

V400

Asynchronous Connection

Patras9 July 2012

Fig.9. The diode bridge rectification of AC input Fig.10. Measured AC stator voltage (blue) and instantaneous currents (red).

Fig.11. Rectification with booster circuit. Fig.12. AC stator current (red) and fundamental (green). The AC voltage (blue) and DC output voltage (magenta).

Patras9 July 2012

Fig. 13. Typical wind turbine wind speed-power characteristic

Patras9 July 2012

Fig. 14. Double fed induction generator for variable speed applications

Patras9 July 2012

Fig. 15. Solar radiation spectrum

Patras9 July 2012

Fig. 16. Barstow central receiver system – heliostat field Fig. 17. Conversion of thermo energy into electricity

Patras9 July 2012

Fig 18. Current-voltage characteristic of a typical silicon PV cell

Patras9 July 2012

Fig 15. Connection of a photovoltaic panel to the grid

Patras9 July 2012

Fig .19.

Patras9 July 2012

Fig. 20.

Patras9 July 2012

Fig. 21.

Patras9 July 2012

Patras9 July 2012

Patras9 July 2012

Patras9 July 2012

Power Quality in AC Grids

Razvan MagureanuUniversity POLITEHNICA Bucharest

Patras9 July 2012

Fig. 1 Simplified low voltage power circuit model with a linear and a nonlinear load

Patras9 July 2012

0.36 0.365 0.37 0.375 0.38 0.385 0.39 0.395 0.4-20

-15

-10

-5

0

5

10

15

20

Time (s)

No

nlin

ea

r Lo

ad

Cu

rren

ts (

A)

ianibnicn

a)

0.36 0.365 0.37 0.375 0.38 0.385 0.39 0.395 0.4-4

-3

-2

-1

0

1

2

3

4

Time (s)

Lin

ea

r Lo

ad C

urr

ents

(A

)

ialiblicl

b)

Fig. 2 Current waveforms: a) for the nonlinear load; b) for

the linear load; c) for the mains

0.36 0.365 0.37 0.375 0.38 0.385 0.39 0.395 0.4-20

-15

-10

-5

0

5

10

15

20

Time (s)

Cur

ren

ts F

rom

Th

e M

ain

s (A

)

iamibmicm

c)

Patras9 July 2012

Fig. 3 Voltage waveforms: a) the mains; b) DPLL output

0.36 0.365 0.37 0.375 0.38 0.385 0.39 0.395 0.4

-300

-200

-100

0

100

200

300

Time (s)

Pha

se V

olta

ges

(V)

va

vb

vc

a) 0.36 0.365 0.37 0.375 0.38 0.385 0.39 0.395 0.4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

Sin

us; C

osin

us

v(1)

v(1)

b)

Patras9 July 2012

0.36 0.365 0.37 0.375 0.38 0.385 0.39 0.395 0.4-10

-5

0

5

10

15

20

Time (s)

No

nlin

ea

r L

oad

Cu

rren

ts In

dq

Fra

me

(A)

ind

Ind

inq

Ind

a) 0.36 0.365 0.37 0.375 0.38 0.385 0.39 0.395 0.4-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Time (s)

Lin

ea

r Lo

ad

Cu

rren

ts In

dq

Fra

me

(A)

ild

Ild

ilq

Ilq

b)

Fig. 4 The dq synchronous frame instantaneous and average value currents: a) for the nonlinear load; b) for the linear load

0.36 0.365 0.37 0.375 0.38 0.385 0.39 0.395 0.4-10

0

10

i ahn (

A)

0.36 0.365 0.37 0.375 0.38 0.385 0.39 0.395 0.4-1

0

1

i ahl (

A)

0.36 0.365 0.37 0.375 0.38 0.385 0.39 0.395 0.4-10

0

10

i ahm

(A

)

0.36 0.365 0.37 0.375 0.38 0.385 0.39 0.395 0.4-100

0

100

Time (s)

v ah (

V)

a)

b)

c)

d)

Fig. 5 Harmonic waveforms for the “a” phase: a) the current for the nonlinear load;

b) the current for the linear load; c) the current for the mains; d) the voltage for the

mains

Patras9 July 2012

Fig. 6 The instantaneous and average value active power

0.36 0.365 0.37 0.375 0.38 0.385 0.39 0.395 0.4-500

-400

-300

-200

-100

0

100

200

300

Time (s)

Har

mon

ic A

ctiv

e P

ower

of t

he N

onlin

ear L

oad

(W)

Pnh

pnh

a) 0.36 0.365 0.37 0.375 0.38 0.385 0.39 0.395 0.40

5

10

15

20

25

30

35

40

45

50

Time (s)

Har

mon

ic A

ctiv

e P

ower

of t

he L

inea

r Loa

d (W

)

Plh

plh

b)

Patras9 July 2012

Fig. 7 Diagram of a basic active filter configuration Fig. 8 Per phase results

Patras9 July 2012

Fig. 9 Smart grid example

Patras9 July 2012

Bridge rectifier

Active filter

siFi

DRCi RLi DRLi

1R

C

2R

3RL

Bridge rectifier

DCC

Fig. 10 Compensation at the PCC a) electric connections; b) uncompensated currents; c)

harmonics compensated currents

a)

b) c)

Patras9 July 2012

Fig. 11. The block diagram for active filter control

Patras9 July 2012

Fig.12 The experimental set-up

15..

.30

mH0 ,27 . . .0 ,81 m H

+

3 x 0 ,35m H

K1

K3

K2

15m F

3 x

400V

,50

Hz

m ax 100A

S KM 200 G B 1700

F iltrupas iv

10 ,8kHz

CCT 380.6 /80

1...

7

Patras9 July 2012

Fig. 13 The controlled rectifier as nonlinear load Fig. 14 The inverter component of the active filter

Patras9 July 2012

Fig. 15 Experimental results for power and control parameters