Parallelizing Iterative Computation for Multiprocessor Architectures

Post on 06-Feb-2016

42 views 0 download

Tags:

description

Parallelizing Iterative Computation for Multiprocessor Architectures. Peter Cappello. What is the problem?. Create programs for m ulti- p rocessor u nit ( MPU ) Multicore processors Graphics processing units (GPU). For whom is it a problem? Compiler designer. EASY. Compiler. Application - PowerPoint PPT Presentation

Transcript of Parallelizing Iterative Computation for Multiprocessor Architectures

Parallelizing Iterative Computation for Multiprocessor Architectures

Peter Cappello

2

What is the problem?

Create programs for multi-processor unit (MPU)

– Multicore processors

– Graphics processing units (GPU)

3

For whom is it a problem? Compiler designer

ApplicationProgram Compiler Executable

CPU

EASY

44

For whom is it a problem? Compiler designer

ApplicationProgram Compiler Executable

MPU

HARDER

5

For whom is it a problem? Compiler designer

ApplicationProgram Compiler Executable

MPU

MUCH HARDER

6

For whom is it a problem? Application programmer

ApplicationProgram Compiler Executable

MPU

7

Complex Machine Consequences

• Programmer needs to be highly skilled

• Programming is error-prone

These consequences imply . . .

Increased parallelism increased development cost!

8

Amdahl’s Law

The speedup of a program is bounded by its inherently sequential part.

(http://en.wikipedia.org/wiki/Amdahl's_law)

If– A program needs 20 hours using a CPU– 1 hour cannot be parallelized

Then– Minimum execution time ≥ 1 hour.– Maximum speed up ≤ 20.

9(http://en.wikipedia.org/wiki/Amdahl's_law)

10

Parallelization opportunities

Scalable parallelism resides in 2

sequential program constructs:

• Divide-and-conquer recursion

• Iterative statements (for)

11

2 schools of thought

• Create a general solution

(Address everything somewhat well)

• Create a specific solution

(Address one thing very well)

12

Focus on iterative statements (for)

float[] x = new float[n];

float[] b = new float[n];

float[][] a = new float[n][n];

. . .

for ( int i = 0; i < n; i++ )

{

b[i] = 0;

for ( int j = 0; j < n; j++ )

b[i] += a[i][j]*x[j];

}

13

Matrix-Vector Product

b = Ax, illustrated with a 3X3 matrix, A.

_______________________________

b1 = a11*x1 + a12*x2 + a13*x3

b2 = a21*x1 + a22*x2 + a23*x3

b3 = a31*x1 + a32*x2 + a33*x3

14

a31 a32 a33

a21 a22 a23

a11 a12 a13

x1 x2 x3

x1

x1

x2

x2

x3

x3b1

b2

b3

x1 x2 x3

15

a31 a32 a33

a21 a22 a23

a11 a12 a13

x1 x2 x3

x1

x1

x2

x2

x3

x3

TIME

SPACE

16

a31 a32 a33

a21 a22 a23

a11 a12 a13

x1 x2 x3

x1

x1

x2

x2

x3

x3

SPACE

TIME

17

a31

a32

a33

a21

a22

a23

a11

a12

a13

x1

x2

x3

x1

x1 x

2

x2

x3

x3

SPACE

TIME

18

Matrix Product

C = AB, illustrated with a 2X2 matrices.

c11 = a11*b11 + a12*b21

c12 = a11*b12 + a12*b22

c21 = a21*b11 + a22*b21

c12 = a21*b12 + a22*b22

19

a21 a22

a11 a12

b11

b11 b21

k

row

a21 a22

a11 a12b12

b21

b12

b22

b22

col

20

a11

a21a22

a12

b11

b11 b21

T

S

a21 a22

a11 a12b12

b21

b12

b22

b22

S

21

a21 a22

a11 a12

b11

b11 b21

T

Sa21 a22

a11 a12b12

b21

b12

b22

b22

S

22

Declaring an iterative computation

• Index set

• Data network

• Functions

• Space-time embedding

23

Declaring an Index set

I1: I2:1 ≤ i ≤ j ≤ n 1 ≤ i ≤ n 1 ≤ j ≤ n

i

j

i

j

24

Declaring a Data network

D1:

x: [ -1, 0];

b: [ 0, -1];

a: [ 0, 0];

D2:

x: [ -1, 0];

b: [ -1, -1];

a: [ 0, -1];

x

b

ax

ab

25

I1:

D1:

x: [ -1, 0];

b: [ 0, -1];

a: [ 0, 0];

Declaring an Index set + Data network

i

j

x

b

a

1 ≤ i ≤ j ≤ n

26

Declaring the Functions

R1:float x’ (float x) { return x; }

float b’ (float b, float x, float a)

{ return b + a*x; }

R2:char x’ (char x) { return x; }

boolean b’ (boolean b, char x, char a)

{ return b && a == x; }i

j

27

Declaring a Spacetime embedding

E1:– space = -i + j– time = i + j.

E2:– space1 = i – space2 = j– time = i + j.

time

space

timespace2

space1

28

Declaring an iterative computation Upper triangular matrix-vector product

UTMVP = (I1,D1,F1,E1)

time

space

29

Declaring an iterative computation Full matrix-vector product

UTMVP = (I2,D1,F1,E1)

time

space

30

Declaring an iterative computation Convolution (polynomial product)

UTMVP = (I2,D2,F1,E1)

time

space

31

Declaring an iterative computation String pattern matching

UTMVP = (I2,D2,F2,E1)

time

space

32

Declaring an iterative computation Pipelined String pattern matching

UTMVP = (I2,D2,F2,E2)

timespace2

space1

33

Iterative computation specification

Declarative specification

Is a 4-dimensional design space

(actually 5 dimensional: space embedding is

independent of time embeding)

Facilitates reuse of design components.

34

Starting with an existing language …

• Can infer

– Index set

– Data network

– Functions

• Cannot infer

– Space embedding

– Time embedding

35

Spacetime embedding

• Start with it as a program annotation

• More advanced:

compiler optimized based on program

annotated figure of merit.

36

Work

• Work out details of notation• Implement in Java, C, Matlab, HDL, …• Map virtual processor network to actual processor

network• Map

– Java: map processors to Threads, [links to Channels]– GPU: map processors to GPU processing elements

Challenge: spacetime embedding depends on underlying architecture

37

Work …

• The output of 1 iterative computation is

the input to another.

• Develop a notation for specifying a

composite iterative computation?

38

Thanks for listening!

Questions?