Numerical simulations of two-dimensional neural fields ...plima/ShortCourse/lecture5.pdf · OUTLINE...

Post on 11-Aug-2020

4 views 0 download

Transcript of Numerical simulations of two-dimensional neural fields ...plima/ShortCourse/lecture5.pdf · OUTLINE...

Numerical simulations of two-dimensional neural fieldswith applications to working memory

Pedro M. Lima

CENTRO DE MATEMATICA COMPUTACIONAL E ESTOCASTICAINSTITUTO SUPERIOR TECNICO

UNIVERSIDADE DE LISBOAPORTUGAL

November 6, 2019

Pedro M. Lima ( CENTRO DE MATEMATICA COMPUTACIONAL E ESTOCASTICA INSTITUTO SUPERIOR TECNICO UNIVERSIDADE DE LISBOA PORTUGAL)Numerical simulations of two-dimensional neural fields with applications to working memoryNovember 6, 2019 1 / 1

Joint work with:Wolfram Erlhagen

DEPARTAMENTO DE MATEMATICAUNIVERSIDADE DO MINHOGUIMARAES, PORTUGAL

Pedro M. Lima ( CENTRO DE MATEMATICA COMPUTACIONAL E ESTOCASTICA INSTITUTO SUPERIOR TECNICO UNIVERSIDADE DE LISBOA PORTUGAL)Numerical simulations of two-dimensional neural fields with applications to working memoryNovember 6, 2019 2 / 1

OUTLINE OF THE TALK

1 Introduction2 Mathematical Formulation and NumericalAlgorithms

3 Numerical Examples4 Conclusions and future work

Pedro M. Lima ( CENTRO DE MATEMATICA COMPUTACIONAL E ESTOCASTICA INSTITUTO SUPERIOR TECNICO UNIVERSIDADE DE LISBOA PORTUGAL)Numerical simulations of two-dimensional neural fields with applications to working memoryNovember 6, 2019 3 / 1

INTRODUCTION: DYNAMICAL NEURAL FIELDS

Dynamical Neural Fields (DNF) were introduced in the 1970 as simplifiedmathematical models of pattern formation in neural tissue in which theinteraction of billions of neurons is treated as a continuum.

Advantage of DNF:Explain the existence of self-sustained neuronal activity patterns which arelinked to higher cognitive functions such as decision making,memory,prediction or learning.

Pedro M. Lima ( CENTRO DE MATEMATICA COMPUTACIONAL E ESTOCASTICA INSTITUTO SUPERIOR TECNICO UNIVERSIDADE DE LISBOA PORTUGAL)Numerical simulations of two-dimensional neural fields with applications to working memoryNovember 6, 2019 4 / 1

INTRODUCTION: APPLICATIONS IN ROBOTICSApplications in Robotics:

Neurodynamics approach to cognitive roboticsNavigation in environments cluttered with obstaclesNatural human-robot interactions

Pedro M. Lima ( CENTRO DE MATEMATICA COMPUTACIONAL E ESTOCASTICA INSTITUTO SUPERIOR TECNICO UNIVERSIDADE DE LISBOA PORTUGAL)Numerical simulations of two-dimensional neural fields with applications to working memoryNovember 6, 2019 5 / 1

INTRODUCTION: WORKING MEMORY

Working Memory is the capacity of neurons to transiently hold sensoryinformation to guide forthcoming action.

Persistent neural activity observed in many brain areas is thought torepresent a neural mechanism underlying working memory.DNF models support one or more spatially localized activity patterns -bumps- that are initially triggered by sufficiently strong external stimuliand remain self-sustained after stimulus removal.

Pedro M. Lima ( CENTRO DE MATEMATICA COMPUTACIONAL E ESTOCASTICA INSTITUTO SUPERIOR TECNICO UNIVERSIDADE DE LISBOA PORTUGAL)Numerical simulations of two-dimensional neural fields with applications to working memoryNovember 6, 2019 6 / 1

INTRODUCTION: WORKING MEMORYIn typical 1-D DNF working memory applications, the field dimensioncorresponds to continuous stimulus parameters such as color, direction ortone pitch.So, if for example the neurons in the field encode color, a transient colorinput may switch between a homogeneous resting state and a stable bumpstate representing the memory of the specific color event.

Pedro M. Lima ( CENTRO DE MATEMATICA COMPUTACIONAL E ESTOCASTICA INSTITUTO SUPERIOR TECNICO UNIVERSIDADE DE LISBOA PORTUGAL)Numerical simulations of two-dimensional neural fields with applications to working memoryNovember 6, 2019 7 / 1

2D NEURAL FIELDS

Populations of cortical neurons may encode in their firing patternsimultaneously the nature and the timing (or temporal order) of sequentialstimulus events.The nature of the event (for example, color) is coded in an input with acertain coordinate y , which extends in the x coordinate.

−15−10

−50

510

15

0

5

10

15

20

250

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

yx

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−30−20

−100

1020

30

0

10

20

30

40

500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

yx

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

stimulus of 1 color stimulus of 2 colors

Pedro M. Lima ( CENTRO DE MATEMATICA COMPUTACIONAL E ESTOCASTICA INSTITUTO SUPERIOR TECNICO UNIVERSIDADE DE LISBOA PORTUGAL)Numerical simulations of two-dimensional neural fields with applications to working memoryNovember 6, 2019 8 / 1

TRAVELING WAVEThe second input to the field is a traveling wave in form of a ridge whichextends in y direction and propagates in the direction of x with elapsedtime t since sequence onset at t = 0.

−50

0

50

0

20

40

60

80

1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

yx

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Input function corresponding to a traveling wave, moving in the directionof the x axis

Pedro M. Lima ( CENTRO DE MATEMATICA COMPUTACIONAL E ESTOCASTICA INSTITUTO SUPERIOR TECNICO UNIVERSIDADE DE LISBOA PORTUGAL)Numerical simulations of two-dimensional neural fields with applications to working memoryNovember 6, 2019 9 / 1

GENERATION OF SELF-SUSTAINED ACTIVITY

traveling wave + localized input ⇒ self-sustained bump

−20−15

−10−5

05

1015

20

0

10

20

30

40−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

yx

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

−20−15

−10−5

05

1015

20

0

10

20

30

400

0.1

0.2

0.3

0.4

yx

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

a b

(a) Combination of two inputs (b) Example of a stable bump solutionwhich remains after all the inputs are switched off. The coordinates of thisbump represent the nature and the time of the event.

Pedro M. Lima ( CENTRO DE MATEMATICA COMPUTACIONAL E ESTOCASTICA INSTITUTO SUPERIOR TECNICO UNIVERSIDADE DE LISBOA PORTUGAL)Numerical simulations of two-dimensional neural fields with applications to working memoryNovember 6, 2019 10 / 1

NEURAL FIELD EQUATION

We consider the Neural Field Equation in the form

c ∂∂tV (x , y , t) = I (x , y , t)− V (x , y , t)+∫

Ω W (‖(x , y)− (x ′, y ′)‖2)S(V (x ′, y ′, t))dx ′dy ′,

t ∈ [0,T ], (x , y) ∈ Ω ⊂ IR2,

(1)

where V (x , y , t) - represents the potential at (x , y) and instant t.Ω = [0, 2L]× [−L, L]. The connectivity kernel W is of oscillating type:

W (r) = A exp(−kr) (k sin(a1r) + cos(a1r)) , (2)

The firing rate S is the Heaviside function.:S(V ) = 0, if V < b; S(V ) = 1, if V ≥ b.

Pedro M. Lima ( CENTRO DE MATEMATICA COMPUTACIONAL E ESTOCASTICA INSTITUTO SUPERIOR TECNICO UNIVERSIDADE DE LISBOA PORTUGAL)Numerical simulations of two-dimensional neural fields with applications to working memoryNovember 6, 2019 11 / 1

NUMERICAL ALGORITHM

Time Discretization: second order implicit scheme;

Space Discretization: Gaussian quadratures; 4 points at eachsubinterval.

Improvement of Efficiency: Interpolation at Chebyshev points.

This numerical method has been introduced before ; its stability andconvergence have been proved.

Pedro M. Lima ( CENTRO DE MATEMATICA COMPUTACIONAL E ESTOCASTICA INSTITUTO SUPERIOR TECNICO UNIVERSIDADE DE LISBOA PORTUGAL)Numerical simulations of two-dimensional neural fields with applications to working memoryNovember 6, 2019 12 / 1

NUMERICAL EXAMPLES

Example 1. External input:if t ∈ [0, 1.5], I (t) = travelling wave I0 + localized signal I1 (with onebump);if t > 1.5, I (t) ≡ 0. The domain of discretization is [0, 40]× [−20, 20];

−20−15

−10−5

05

1015

20

0

10

20

30

40−0.02

0

0.02

0.04

0.06

0.08

0.1

yx

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

−20−15

−10−5

05

1015

20

0

10

20

30

40−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

yx

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

a b

a) solution at time t = 0.5 ;b) solution at time t = 2.5.

Pedro M. Lima ( CENTRO DE MATEMATICA COMPUTACIONAL E ESTOCASTICA INSTITUTO SUPERIOR TECNICO UNIVERSIDADE DE LISBOA PORTUGAL)Numerical simulations of two-dimensional neural fields with applications to working memoryNovember 6, 2019 13 / 1

NUMERICAL EXAMPLES

Example 2. External input:if t ∈ [0, 1], I (t) = traveling wave I0 + two colors I1 + I2;if t > 1, I (t) ≡ 0. The domain of discretization is [0, 40]× [−20, 20];

−20 −15 −10 −5 0 5 10 15 20

010

2030

40−0.05

0

0.05

0.1

0.15

yx

0

0.02

0.04

0.06

0.08

0.1

−20−15

−10−5

05

1015

20

0

10

20

30

40−0.1

0

0.1

0.2

0.3

0.4

yx

0

0.05

0.1

0.15

0.2

0.25

0.3

a b

a) solution at time t = 1 ;b) solution at time t = 5.

Pedro M. Lima ( CENTRO DE MATEMATICA COMPUTACIONAL E ESTOCASTICA INSTITUTO SUPERIOR TECNICO UNIVERSIDADE DE LISBOA PORTUGAL)Numerical simulations of two-dimensional neural fields with applications to working memoryNovember 6, 2019 14 / 1

NUMERICAL EXAMPLES

Example 3. External input:if t ∈ [0, 1], I (t) = traveling wave I0 + two colors I1 + I2;if t ∈ [1, 3], I (t) ≡ I0;if t ∈ [3, 4], I (t) = traveling wave I0 + two colors I1 + I2;if t > 4, I (t) ≡ 0.

−20 −15 −10 −5 0 5 10 15 20

010

2030

40−0.05

0

0.05

0.1

0.15

yx

0

0.02

0.04

0.06

0.08

0.1

Solution at time t = 1; here the output field contains only therepresentation of the first series of signals.

Pedro M. Lima ( CENTRO DE MATEMATICA COMPUTACIONAL E ESTOCASTICA INSTITUTO SUPERIOR TECNICO UNIVERSIDADE DE LISBOA PORTUGAL)Numerical simulations of two-dimensional neural fields with applications to working memoryNovember 6, 2019 15 / 1

NUMERICAL EXAMPLES

Example 3 (continued)

−20−15

−10−5

05

1015

20

0

10

20

30

40−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

yx

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−20−15

−10−5

05

1015

20

0

10

20

30

40−0.1

0

0.1

0.2

0.3

0.4

yx

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

a b

a) Surface graphs of the solution at time t = 4; at this moment we cansee also a representation of the second series of signals;b) Surface graphs of the solution at time t = 7; here we can see the stablefour-bump field which remains after all the inputs are switched off.

Pedro M. Lima ( CENTRO DE MATEMATICA COMPUTACIONAL E ESTOCASTICA INSTITUTO SUPERIOR TECNICO UNIVERSIDADE DE LISBOA PORTUGAL)Numerical simulations of two-dimensional neural fields with applications to working memoryNovember 6, 2019 16 / 1

NUMERICAL EXAMPLES

Example 4. External input:if t ∈ [0, 1.5], I (t) = traveling wave I0 + one color I1;if t ∈ [1.5, 3], I (t) ≡ I0;if t ∈ [3, 4.5], I (t) = traveling wave I0 + two colors I1 + I2;if t > 4.5, I (t) ≡ 0.

−20 −15 −10 −5 0 5 10 15 20

010

2030

40−0.05

0

0.05

0.1

0.15

yx

0

0.02

0.04

0.06

0.08

0.1

Solution at time t = 1; here the output field contains only therepresentation of the first signal (one color).

Pedro M. Lima ( CENTRO DE MATEMATICA COMPUTACIONAL E ESTOCASTICA INSTITUTO SUPERIOR TECNICO UNIVERSIDADE DE LISBOA PORTUGAL)Numerical simulations of two-dimensional neural fields with applications to working memoryNovember 6, 2019 17 / 1

NUMERICAL EXAMPLES

Example 4 (continued)

−20 −15 −10 −5 0 5 10 15 20

010

2030

40−0.1

0

0.1

0.2

0.3

0.4

yx

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

−20 −15 −10 −5 0 5 10 15 20

010

2030

40−0.1

0

0.1

0.2

0.3

0.4

yx

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

a b

a) Surface graphs of the solution at time t = 4; at this moment we cansee also a representation of the second series of signals.b) Surface graphs of the solution at time t = 7; here we can see the stablethree-bump field which remains after all the inputs are switched off.

Pedro M. Lima ( CENTRO DE MATEMATICA COMPUTACIONAL E ESTOCASTICA INSTITUTO SUPERIOR TECNICO UNIVERSIDADE DE LISBOA PORTUGAL)Numerical simulations of two-dimensional neural fields with applications to working memoryNovember 6, 2019 18 / 1

CONCLUSIONS AND FUTURE WORK

We have described a two-dimensional neural field model whichexplains how a population of cortical neurons may encode in itsself-sustained firing patternsimultaneously the nature and time ofsequential stimulus events.

The postulated wave mechanism explains how a nervous systemlacking specific sensors for temporal perception may develop neuronsthat respond to specific interval durations.

The numerical results presented support the conjecture that if theexternal input has appropriate intensity and duration, and if theconnection kernel is of the oscillatory type described here, the neuralactivity can generate stable multibump solutions which contain theinformation carried by the external signals.

Pedro M. Lima ( CENTRO DE MATEMATICA COMPUTACIONAL E ESTOCASTICA INSTITUTO SUPERIOR TECNICO UNIVERSIDADE DE LISBOA PORTUGAL)Numerical simulations of two-dimensional neural fields with applications to working memoryNovember 6, 2019 19 / 1

BIBLIOGRAPHY

S.L. Amari, ”Dynamics of pattern formation in lateral-inhibition type neuralfields”, Biol. Cybernet., vol. 27 (2), pp. 77–87, 1977.

E. Bicho and G. Schoener, ”The dynamic approach to autonomous roboticsdemonstrated in a low-level vehicle platform”, Robotics and AutonomousSystems, 21 (1), pp. 23-35, 1997.

P. C. Bressloff, ” Spatiotemporal dynamics of continuum neural fields”,Journal of Physics A: Mathematical and Theoretical, vol. 45(3), pp.033001, 2011.

S. Coombes, P. Graben, R. Potthast, J. Wright, Neural Fields - Theory andApplications, Springer, 2014.

W. Erlhagen et al., ”The distribution of neuronal population activation(DPA) as a tool to study interaction and integration in corticalrepresentations”, Journal of neuroscience methods, vol. 94, vol. 1, pp.53–66, 1999.

W. Erlhagen and E. Bicho, ”The dynamic neural field approach to cognitiverobotics”, Journal of Neural Engineering, vol. 3 (3), pp. R36, 2006.

Pedro M. Lima ( CENTRO DE MATEMATICA COMPUTACIONAL E ESTOCASTICA INSTITUTO SUPERIOR TECNICO UNIVERSIDADE DE LISBOA PORTUGAL)Numerical simulations of two-dimensional neural fields with applications to working memoryNovember 6, 2019 20 / 1

BIBLIOGRAPHY

F. Ferreira, ” Multi-bump solutions in dynamic neural fields: analysis andapplications”, PhD thesis, University of Minho, 2014http://hdl.handle.net/1822/34416.

P. M. Lima and E. Buckwar, ”Numerical solution of the neural field equationin the two-dimensional case”, SIAM J. Sci. Comput., vol. 37, pp. B962–B979, 2015.

Mechant et al., ”Interval tuning in the primate medial premotor cortex as ageneral timing mechanism”, The Journal of Neuroscience, vol. 22, pp.9082–9096, 2013.

Mello et al., ”A scalable population code for time in the striatum”, CurrentBiology, vol. 25, pp.1113–1122, 2015.

G. Schoener, J.P. Spencer et al., Dynamic Thinking a Primer on DynamicField Theory, Oxford University Press, 2016.

H.R. Wilson and J.D. Cowan, ”Excitatory and inhibitory interactions inlocalized populations of model neurons”, Bipophys. J., vol. 12, pp.1-24,1972.

Pedro M. Lima ( CENTRO DE MATEMATICA COMPUTACIONAL E ESTOCASTICA INSTITUTO SUPERIOR TECNICO UNIVERSIDADE DE LISBOA PORTUGAL)Numerical simulations of two-dimensional neural fields with applications to working memoryNovember 6, 2019 21 / 1