Numerical Interpolation - Sonora Norte€¦ · Numerical Interpolation •For practical...

Post on 16-May-2020

22 views 0 download

Transcript of Numerical Interpolation - Sonora Norte€¦ · Numerical Interpolation •For practical...

Numerical Interpolation

Content

• Numerical Interpolation• Unique Interpolating Polynomial• Lagrange Interpolating Polynomial (Ordinate Form)• Newton’s Interpolating Polynomials (Difference Form)• Aitken‐Neville Repeated (Iterated) Linear Interpolation

Numerical Interpolation

• The interpolation provides us the means to obtain a simple approximate function that can be easily differentiated, integrated, or evaluated as needed, to obtain information about the original function whose explicit form is unknown.

• The interpolation methods developed in this section use function points  , , to determinate a unique polynomial which satisfies the constraints

,

Numerical Interpolation

• For practical computational methods, this unique interpolating polynomial is usually represented in one of the following forms.

1. Ordinate Form. The Lagrange interpolating polinomial is the best known example of this type.

2. Difference Form. The Newton interpolating polynomial are the simplest of the finite‐difference forms.

3. Iterated Form. The Aitken‐Neville techniques use repeated linear interpolation to compute the value of  , for  in  , , subject to the constraints that  , .

Unique Interpolating Polynomial

• Suppose we are given  data pairs  , , , , … , ,representing  points of the graph of a function  where the explicit form of is not known.

• The  , are assumed to be distinct values of the independent variable .

• We would like to approximate  by some simple function  that can be easily manipulated mathematically, and can be evaluated at any  in an interval  containing  , , … , .

• The value of  is then used to approximate  .• Polynomials are well‐suited for this purpose because they are easily differentiated, integrated and evaluated.

• The constraint would be , 1

Unique Interpolating Polynomial

• A polynomial  that approximates  over an interval  ,and satisfy this constraint (Equation 1) is usually referred to as an interpolating polynomial.

• Assume then that there exist a polynomial of the form⋯ 2

• Equations (1), called the constraint equations, can be written in the expanded form:

Unique Interpolating Polynomial

• These constraints equations, which can also be written in matrix form as:

• Have a unique solution  , , , … , since the determinant of the matrix of coefficient is non‐zero for distinct  . Hence, there exists a unique polynomial of the form (2) satisfying (1).

Lagrange Interpolating Polynomial(Ordinate Form)• Just like the Unique Interpolating Polynomial interpolation, seeks to set 

data pairs  , , , , … , , by a polynomial of the form ⋯ , but this time will be expressed in 

terms of the ordinates  , , … , of the function, so the interpolation polynomial is:

⋯ 3where each  is a polynomial of degree  .

• Then  is also a polynomial of degree not exceeding  since this is a linear combination of  , .

• The polynomials  can be uniquely determined by imposing constraints  of the form

, 4

Lagrange Interpolating Polynomial(Ordinate Form)• Substituting (3) into (4) we obtain the constraints equation in the expanded form:

(5)• Examining the above equations (5), we can see that the values of 

are chosen such that(6)

then the constrains equations (5) are satisfied.

Lagrange Interpolating Polynomial(Ordinate Form)• Since each  , is a polynomial of degree  that has distinct 

, , … , , , … , by equation (4), it can be expressed in the form:(7)

• The constants  can be determined by evaluating  at  . That is,(8)

• Also we see  , from equation (6), it follows then that:

(9)• Substituting equation (9) into (7), we obtain

• For  , , , … , .

Lagrange Interpolating Polynomial(Ordinate Form)• Finally, substituting this equation into equation (3), we obtain

Lagrange Interpolating Polynomial(Ordinate Form)• The above equation is known as Lagrange’s interpolating polynomial.• Using summation notation, we can write Lagrange’s interpolating polynomial in the form

• To simplify the form still further, we define

which, evaluated at  , is

• If we use the above definition, then Lagrange’s interpolating polynomial can be written in the following simplified form:

Lagrange Interpolating Polynomial(Ordinate Form)Example:• Calculate the Lagrange interpolating polynomial for the following set of  , : (0.0, 1.0), (0.33, 1.391), (0.66, 1.935), (1.0, 2.718)

Solution:

Newton’s Interpolating Polynomials(Difference Form)• Newton’s Forward interpolating polynomial is derived by assuming that  can be represented in the form

• The coefficients  , are uniquely determined by the constraints  , .

• Consider the set of values  , , … , of the function , which correspond to the set  of the independent variable  . 

We define the differences of the succeeding function values as

Newton’s Interpolating Polynomials(Difference Form)• These differences ∆ are called first‐order differences of the function 

over the interval  , .• The differences of succeeding first‐order differences are in turn defined as

and are called second‐order differences of  over  , .• In general, higher‐order differences of the function  are defined over the interval  , as

and are called kth order differences of the function  .

Newton’s Interpolating Polynomials(Difference Form)• These finite differences may be tabulated ∆ as follows:

∆ 1 2 ⋯ 1 where!

! 1 !

Newton’s Interpolating Polynomials(Difference Form)• From interpolation polynomial

• replacing the set of data pairs  , ;  , of the function considering  ; ,

,• We obtain

Newton’s Interpolating Polynomials(Difference Form)• Solving for the constants, we have:

Newton’s Interpolating Polynomials(Difference Form)• Then the Newton interpolating polynomial of nth degree

wherethat approximates  in the interval  , .

Newton’s Interpolating Polynomials(Difference Form)• Whereas forward differences were defined by starting at the beginning of a table and going forward, backward differences are defined by starting at the end of the table and going backward. Differences of successive ordinates are defined by the formula:

• And the terms  are called first‐order backward difference of function over the interval  , .

• The differences of successive first‐order backward differences are in turn defined as

• In general, higher‐order backward differences are defined as

Newton’s Interpolating Polynomials(Difference Form)• Those differences can be tabulated as follows:

∆ 1 2 ⋯ 1 where!

! 1 !

Newton’s Interpolating Polynomials(Difference Form)• From interpolation polynomial

• replacing the set of data pairs  , ;  , of the function considering  ; ,

,• We obtain

Aitken‐Neville Repeated(Iterated) Linear Interpolation• Another distinct form of the unique interpolating polynomial of degree  can be generated by repeated (iterated) linear interpolation.

• To do this we first need to derive a linear interpolation formula. Repeated application of this formula will then produce interpolating polynomials of degree 2, 3, ...

• To interpolate linearly between two points  , , , we can write the two‐point formula of the line through these points

Aitken‐Neville Repeated(Iterated) Linear Interpolation• Given an  , we solve for the value of 

• Applying this equation between two points and repeating this process between the resulting points, we obtain an interpolation polynomial of degree  .

• The recursive formula for successive linear interpolation is:

Homework 7 (Individual)Given the following data set, find the value of  when  . , by the following methods (consider 6 digits):a) Unique interpolating polynomialb) Lagrange interpolating polynomialc) Newton method, finite forward differenced) Newton method, finite backward differencee) Aitken‐Neville Method

0.0 1.0000000.1 1.1051710.2 1.2214030.3 1.3498590.4 1.491825

Computer Program 6 (by team)

• Submit a computer program that compute the interpolation of a set of data by the following methods:a) Unique interpolating polynomialb) Lagrange interpolating polynomialc) Newton method, finite forward differenced) Newton method, finite backward differencee) Aitken‐Neville Method

• Hand over:• Computational algorithm (printed)• Source Code (printed and file)• Executable (file)

Numerical Interpolation