Nucleon strangeness – present and future EFB21, Salamanca 1 M.G.Sapozhnikov Joint Institute for...

Post on 05-Jan-2016

226 views 3 download

Tags:

Transcript of Nucleon strangeness – present and future EFB21, Salamanca 1 M.G.Sapozhnikov Joint Institute for...

Nucleon strangeness – present and future

EFB21, Salamanca1

M.G.Sapozhnikov Joint Institute for Nuclear Research, Dubna

Nucleon strangeness – extrinsic and intrinsic Scalar channel – contribution to the nucleon massMeasurements of Gs

E and GsM

s(x) = s(x) ??New measurements of s(x) (COMPASS)Future experiments – old problems

Strangeness of the nucleon

EFB21, Salamanca2

S.Brodsky:

Extrinsic – connected with gluons – perturbativeq gluons s s gluons

Intrinsic – connected with valence quarks nonperturbative

|N > = |uud> + |uud s s> + …

What interaction connects (ss)- pair and valence quarks?

What are the quantum numbers of the s s – pair?How large is ?

Does it exist?

Strangeness of the nucleon: extrinsic

GRV98No strangeness

at 2 =0.3 GeV2

At large Q2 the QCD evolution creates ss admixture

EFB21, Salamanca3

Intrinsic nucleon strangeness: possible signals

)]()()()([ xsxsxsxsdxs

Large contribution to the nucleon mass <N|ss |N>More s(x), than the extrinsic strangeness

predictss(x) s(x) |N> = |M N>, M , K, …. ; N= , N*, …

s –quark associated with a baryon

s – quark - with a meson

Non-zero polarization of strange sea

s(x) s(x)

EFB21, Salamanca4

Strangeness – scalar channel

<N|ss |N>

EFB21, Salamanca5

Strangeness of the vacuum

EFB21, Salamanca6

The vacuum strange quark condensate is as large as the light quark condensate:

Ioffe B.L., Nucl.Phys. 1981, B188, 317, erratum 1981, B191, 591.

Reinders L.J., Rubinstein H.R., Phys.Lett., 1984, B145, 108.

B and Bs –mesons decay constants (lattice calculations, M.Jamin, Phys.Lett. B538 (2002) 71-76 )

0||0)1.08.0(0||0 qqss

0||0)3.08.0(0||0 uuss

<N|ss |N>

= N - CD - R

N =64 8 MeV, measured in N scattering (KH80)

= 45 MeV - calculated (ChPT, Gasser,Leutwyler)0 = (36 ± 7) MeV (Borasoy, Meissner, from baryon octet

mass splittings)

y= 0.210.20

pdduupM

m

p

||2

ˆ

)(2/1ˆ du mmm

EFB21, Salamanca7

pddppuup

psspy

||||

||2

yy

pssdduupm

11

|2| 0

Strangeness of the nucleon

Old N data: y=0.20.2

“New” N data: y=0.36-0.48

(Meissner U.-G., Smith G., hep-ph/0011277)

EFB21, Salamanca8

pddppuup

psspy

||||

||2

vity

J.Ellis, K.Olive, Ch.Savage Phys.Rev.D 77, 065026(2008) Important for the spin independent part of the elastic cross section of the supersymmetric particles:

Sensitivity of N to N

9 EFB21, Salamanca

Scalar channel <N|ss |N> J.Ellis, K.Olive, Ch.Savage Phys.Rev.D 77, 065026(2008)

“We plead for an experimental campaign to determine better the -π nucleon σ-term.”

“This quantity is not just an object of curiosity for those interested in the structure of the nucleon and non-perturbative strong-interaction effects: it may also be key to understanding new physics beyond the Standard Model.”

EFB21, Salamanca10

Strangeness of the nucleon

Results of recent lattice calculations:

11

pddppuup

psspy

||||

||2

Latticey0.03

H.Ohki et al, hep-lat/0910.3271 Young,Thomas, hep-lat/0911.1757

Is the y large ?

May be not

Experimental situation - unclear

EFB21, Salamanca12

Strangeness – vector channel

EFB21, Salamanca13

How to measure the strange quarks contribution to electromagnetic formfactors?

EFB21, Salamanca14

L (s p) =-1 R (s p) = +1 ALR = (L-R)/ (L+R)How ALR connects with strange quarks?

pepe

Neutral currents

J(NC)= uu + dd +ss + …

uu, dd – we know

cc, bb - omitted

One could calculate the contribution ofss

EFB21, Salamanca15

e-

e-

e-

e-

p p

Z

iR

iR

iR

iL

iL

i

iL ggNCJ )(

D. Armstrong & K.Carter, CERN Courier 45, 8 (2005)

EFB21, Salamanca17

Global fit analysis

J.Liu et al, PRC76 (2007) 025202

GEs = -0.008±0.016

GMs = 0.29±0.21

Impact of the Jlab dataLet us assume that, indeed:

Gs(E) ~ 0

Gs(M) > 0

Non-trivial consequences for ss – quantum numbers, 5q-admixture and s

)]()()()([ xsxsxsxsdxs EFB21, Salamanca18

If µs >0 and large…

EFB21, Salamanca19

C.An, D.Riska, B.Zou, Phys.Rev.C73:035207,2006 From SAMPLE value:GM(s) = 0.37 0.20 0.26 0.07

s in S-state, uuds - in P-state Pss =| Ass |2 = 0.17 – 0.22

Pss ~ 0.19 – from analysis of the OZI violation in annihilation of low energy antiprotons J.Ellis et al, PL B353 (1995) 319

s = - 0.06 … -0.07 s = - 0.09 ± 0.01 ± 0.02 – COMPASS DIS

Recent measurements are not in favor of the s>0 variant

Strange vector form factorsA4 Coll. S.Baunack et al. Phys.Rev.Lett. 102,151803 (2009)GE

s = 0.0500.0380.019 GM

s = -0.0140.0110.011Lattice calculationsR.D.Young, nucl-th/1004.5163GM

s = -0.0460.022

Global data analysisR.D.Young et al. Phys.Rev.Lett. 99,122003(2007)GE

s = 0.0020.018

GMs = -0.010.25

20

Experimental uncertainties are still large

Are s and r2s 0?

It seems so…

EFB21, Salamanca21

s(x) and s(x)

EFB21, Salamanca22

EFB21, Salamanca23

Strangeness – least constrained distribution among the light quarks

Accurate determination of the strange sea is necessary for interpretation of the precise experimental data at LHC.

EFB21, Salamanca24

CTEQ5L

GRV98LO

s(x) from different PDF analysis

Q2 = 4 GeV2

Experimental input for s(x)

EFB21, Salamanca25

NuTeV: 5102 induced and 1458 CCFR : 5030 induced and 1060

D.Mason et al., PRL 99, 192001 (2007)

Determination of s(x) and s(x)

EFB21, Salamanca26

•3 bins in neutrino energy•3 bins in z•5 bins in x

Separate determination of s(x) and s(x)

EFB21, Salamanca27

)]()([ xsxsxdxS

S- =(1.960.460.45)10-3

• Maximum – at x0.05• Large statistical uncertainty• Large systematics

28

Bourrely C.,Soffer J.,Bucella F., PLB 648(2007)39Statistical parton modelModel parameters are from thefit of the CCFR and NuTeV data

S- = - 1.9410-3 s s < 0

Large x effect

EFB21, Salamanca29

F-G Cao, A.Signal, PRD68(2003)074002Meson-baryon model

S- = - 1.9410-3 s < s s + s = +0.01K and K* - included

Large x effect

Perturbatively generated S-

EFB21, Salamanca30

S.Catani et al, PRL93(2004)152003Perturbative evolution in QCD at three loopsInitial condition – S-=0

S- = -510-4

Small x effect

Is s(x) s(x) ?

UNCLEAR

EFB21, Salamanca31

New data on s(x) and s(x)

EFB21, Salamanca32

EFB21, Salamanca33

EFB21, Salamanca34

Inclusive DISEMC (1989)s + s = -0.18 0.05

HERMES (2009)s + s = -0.085 0.008(exp) 0.013(th) 0.009(evol)

COMPASS (2009)s + s = -0.09 0.01(exp) 0.02(syst)

35 EFB21, Salamanca

Nucleon strangeness from DISInclusive DISa3 = u - d = (F+D)(1+2) = 1.2690.003 –

from neutron -decaya8 = u + d -2 s =(3F-D)(1+3)

=0.586±0.031 – from hyperon decays

a0 = u + d + s 0.24 Assuming 2= 3 =0 u 0.81, d -0.46, s -0.12

36 EFB21, Salamanca

)]4(3

1[

12

1)( 08311 aaaxdxg

Flavour separation of the helicity quark distributions

37COMPASS Collaboration, Phys.Lett. B680 (2009) 217.

EFB21, Salamanca

LO helicity quark distributions

EFB21, Salamanca38

SIDIS asymmetries for protonCOMPASS Collaboration, hep-exp/1007.4061.DSSV, Phys.Rev.D80 (2009) 034030

EFB21, Salamanca39

no difference between s and s

EFB21, Salamanca40

• No polarization of the sea quarks in the measured region• Good agreement with DSSV global fit

Is the nucleon strangeness polarized?S<0, but at small x

DSSV fit

41 EFB21, Salamanca

006.0057.0 s

11.0 ss

Are there any signals of intrinsic strangeness?

EFB21, Salamanca42

Nucleon mass, scalar channel – not clearElectromagnetic form factors – nos(x) – s(x) - not clearPolarization of the strange quarks – not clear s = 0, DIS data analysis is not correct – no IS effects at

alls = -0.09, SIDIS data analysis is not correct (LO,

uncertainty in FF)s = -0.09, SIDIS data analysis is correct, polarization is at

small x – polarization is due to gluonsExtrinsic s(x) is too small - needs experimental

confirmation and spin transfer

Future experiments for strangeness

EFB21, Salamanca43

EFB21, Salamanca44

COMPASSMore data on SIDIS FF determination and polarization

MiniBooNE, T2KN elastic scatteringPANDA, PAX at FAIR Strangeness production and spin transfer in

annihilation

production in DIS, quark fragmentation

45

Spin transfer from polarized quark

Quark fragmentation

Spin transfer from polarized muon

spin structure

EFB21, Salamanca

Spin transfer to

EFB21, Salamanca46

(ud)I=0,S=0

S = Ss-quark

u d s

dus

spin structure

EFB21, Salamanca47

SU(6) quark model: s = 1, u = d = 0100% polarization to u or d quarks is no influence on polarization of P() - 0 (for u –quarks dominance)

Burkardt-Jaffe: u = d = -0.23 P() – negative

B.Q.Ma et al.: u = d =s

P() – positive Lattice calculations: u = d ~0, s=0.68 P() ~ 0

Production of and is mainly due to fragmentation of target remnant () and u,d-quarks (,)

Spin transfer to and is mainly due to interaction with strange quark and antiquark

EFB21, Salamanca48

N() N()

E665 750 650

NOMAD 8 087 649

HERMES 26 000 3 100

RHIC 12 000 10 000

COMPASS,03-04 70 000 42 000

EFB21, Salamanca49

COMPASS,Eur.Phys.J. C64 (2009) 171.

Comparison of and : x

DLL() = -0.012 ± 0.047 ± 0.024

DLL() = 0.249 ± 0.056 ± 0.049

EFB21, Salamanca50

DLL() DLL()

The results are averaged over target polarization

Preliminary

COMPASS,Eur.Phys.J. C64 (2009) 171.

Polarization of from quark fragmentation

EFB21, Salamanca51

)()]()()([

)()]()()([2

2

zDxqyDPPxqe

zDxqPxqyDPeP

qTbqq

qTbqq

Spin transfer from polarized muon

Spin transfer from polarized quark

qqq DDD qqq DDD

52

CTEQ5L

GRV98, pure extrinsic

strangeness

DLL(s)=0, BJ model

DLL(s)=0, SU(6) model

Sensitivity to the strange distribution s(x)

Polarization of is the test of nucleon intrinsic strangeness existence

Determination of s in p elastic scattering

MiniBooNEs=0.080.26(hep-exp/

1007.4730)

T2K - ?53

E734, G.T.Garvey et al, PR C48 (1993) 761

s=-0.150.07

EFB21, Salamanca54

J.Ellis, K.Olive, Ch.Savage

At LEAR experiments

Strong violation of the OZI rule was found in

pppp, pp (3S1)pdnDoes it depend on

spinorbital angular

momentummomentum transferisospin?

Spin transfer in p ppol +

PS 185 at LEARPolarized proton

targetDnn – spin transfer

from proton to Knn – spin transfer

from proton to

EFB21, Salamanca56

Conclusions

No clean signatures of the intrinsic strangeness

Experimental information on s(x) – 45 data points

s – does it exist? May be an effect of gluons (axial anomaly)

New dedicated measurements are badly needed

EFB21, Salamanca57

EFB21, Salamanca58

G0 collaboration, PRL 95 (2005)

092001

EFB21, Salamanca59

without contribution

from s quarks,“disfavored with 89%

confidence”

EFB21, Salamanca60

The is in the S-state, Not KΛ like!

B.S.Zou & DOR, PRL 95, 072001 (2005)

D.O.Riska,PANIC05

Probability of uuddss

component

s=-1/3 Pss

in both cases

EFB21, Salamanca61

M.Wakamatsu, PRD67(2003)034005Chiral quark soliton model

Oscillating S- s >> s s < 0

PL: dependence on the target polarization

EFB21, Salamanca62

P= P--P+ =-0.010.04, = 0.010.05,

Determination of the -term

EFB21, Salamanca63

RqqttDF ')(),(2

To measure D +(t,) – isoscalar amplitude of N scattering

To extrapolate it at t=2m2 , =s-u=0 - CD=2

MeVTo extrapolate it at t=0, =0 - R = 15 MeV

N = + CD + R

= 64 ± 8 MeV – measured = 45 MeV - calculated

Nice agreement: 64 ± 8 = 45+2+15=62 MeV

EFB21, Salamanca64

0 = 26…36 MeV

0 = (36 ± 7) MeV (Borasoy, Meissner, from

baryon octet masses)

= 45 MeVy=0.2 ± 0.2

pddppuup

psspy

||||

||2

yy

pssdduupm

11

|2| 0

pssdduupm |2|0

Quantum numbers of ss in nucleon

EFB21, Salamanca65

|p> = |uud> + Ass |uud ss> + ….

P(p) = + , P(|uud ss) = - , if all q in S-state

(-1)L is needed

1) uuds in S-state, s - in P-state 2) s in S-state, uuds - in P-state

typical data ingredients of a global pdf fit

J.Stirling, DIS08 EFB21, Salamanca66

Sensitivity to the strange distribution s(x)

D.Naumov, Trento-08EFB21, Salamanca67

Strong dependence on the fragmentation functions

EFB21, Salamanca68

dzzD

dzzDR

Ku

Kd

UF)(

)(

dzzD

dzzDR

Ku

Ks

SF)(

)(

RUF = 0.13 RSF =6.6 - DSS, Phys.Rev.D75(2007) 114010RUF = 0.35 RSF =3.4 - EMC, Nucl.Phys. B321 (1989) 541

EFB21, Salamanca69

Large uncertainty on the strange quark fragmentation functions