Novel Devices Circuits Computing - UCSBstrukov/ece594BBWinter2013/veiwgraphs/...Winter 2013 Lecture...

Post on 03-Jul-2020

1 views 0 download

Transcript of Novel Devices Circuits Computing - UCSBstrukov/ece594BBWinter2013/veiwgraphs/...Winter 2013 Lecture...

Novel Devices and Circuits for Computing

UCSB 594BBWinter 2013

Lecture 6 :  TCM cell

Class OutlineClass Outline

• TCM = ThermoChemical Memory• TCM = ThermoChemical Memory– General features

RESET F i d SET h i d– RESET, Forming and SET mechanisms and modeling

Bi Pi t• Big Picture 

LargeLarge choice of materials

Typical I‐V and Switching Mechanism Cartoon for TCM DevicesCartoon for TCM Devices

Z O TiO F 2O3 C O C O‐ ZrOx, TiOx, Fe2O3, CoO, CuO, NiO, Al2O3, SiO2(highly resistive virgin film   due to deep traps / neutral p p /defects) 

‐ Works with symmetric   electrodesLinear ON state; high ON/OFF‐ Linear ON state; high ON/OFF

‐ ON state is controlled by current compliance

‐ Current compliance for SET switching  is essential otherwise could lead to permanent breakdown

Filamentary Conduction in l / /Planar Pt/CuO/Pt

‐ SEM image‐ XRAY absorption

‐ PEEM 

XAS shows oxidation states of Cu: 0 in Cu; and +1 in Cu2O in a channel as opposed to  +2 in CuO elsewhere 

Typical Temperature DependenceTypical Temperature Dependence

‐ Metallic ON states‐ Thermally activated OFF and virgin state with 0.1 … 0.3 eV (Schottky and or 

Poole Frenkel)‐ Some samples shows metallicSome samples shows metallic behavior in OFF state when cooled down

Switching Mechanism: Forming and SET

Energy of Formation for Transition Metalfor Transition Metal 

Oxides 

‐ Oxides with lower valance of cations are more stable for increasing T at given PO2more stable for increasing T at given PO2

Switching Mechanism: Forming and SET

‐ Two step process: 

(1) Electrical breakdown(2) Vacancy migration

‐ Some devices shows both unipolarand bipolar behaviour

‐ Neutral vacancies ‐ Charged vacanciesNeutral vacancies Charged vacancies

1D SimulationsSET RESET

(a) Continuous equation for Fick‐Soret(b) Steady heat profile(c) Ad‐hoc metal to insulator condition(c) Ad hoc metal to insulator condition(overlap of Bohr radius ~ good approximation for Magnelli phases) 

Experimental TestExperimental Test

Main observation = change of sweeping rate changes direction of switching

More Accurate Modeling of RESET Transition

More Accurate Modeling of RESET Transition

Scaling and Application ProspectsScaling and Application Prospects

• Heating is EssentialHeating is Essential– Scaling of current

Thermal Crosstalk– Thermal Crosstalk

• Unipolar devices allows for diode integration

Big Picture: Resistive Switching By Main Driving Forces and Types of CellsMain Driving Forces and Types of Cells

Field dominating thermal dominatingField + thermal Concentrationgradient

Vn

-10

-5

0

5

10

Cur

rent

(mA

)

-4

-2

0

2

4

Cur

rent

(mA

)

-4

-2

0

2

4

Cur

rent

(mA

)

x x+a

U A

El h i l t lli ti (ECM) ll

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5Voltage (V)

-1.0 -0.5 0.0 0.5 1.0Voltage (V)

-1.0 -0.5 0.0 0.5 1.0Voltage (V) Field 

gradient

• Elecrochemical metallization (ECM) cells – Oxidation, drift and reduction of electrochemically active 

electrode (such as Ag)• Valence change memories  (VCM) cell

Temperature gradientT

Eaq

– Migration of anions (oxygen ions) leads to change in stochiometry (and hence redox of cations) with changes in resistance

• Thermochemical memory (TCM)  cellTak

B

y ( )– Thermophoresis induced change in stochiometry (valence)

A More Complete Picture: Few Other h dd dMechanisms Added