Multiscale crystal plasticity modeling - MICDE

Post on 20-Apr-2022

11 views 0 download

Transcript of Multiscale crystal plasticity modeling - MICDE

Multiscale crystal plasticity modeling

Dr. Veera Sundararaghavan1

1Department of Aerospace Engineering University of Michigan

   

 Center  for    PRedic.ve  Integrated    Structural  Materials  Science  

Materials modeling

Aerospace composite finite element models

Modeling of carbon fiber degradation

Microstructural fatigue crack growth models

Crystal plasticity

Process modeling using microstructure descriptors

Atomistic modeling of composite matrix material (epoxy)

Multiscale structural simulations laboratory, Prof Veera Sundararaghavan

3  Multiscale Structural Simulations Laboratory May  24,  2017  

Real  Space  DFT  PRISMS-­‐RSDFT  

Fourier  Space  DFT    (e.g.  VASP)  

Atomic  scale    cons.tu.ve  laws  

Sta.s.cal  Mechanics  CASM  

Phase  Diagrams    CASM/CALPHAD  

Disloca.on  Dynamics    LLNL-­‐ParaDIS  

Phase  Field  Crystal  PRISMS-­‐PFC*  

Phase  Field  PRISMS-­‐PF  

Crystal  Plas.city  PRISMS-­‐Plas1city  

Con.nuum  Plas.city  PRISMS-­‐Plas1city  

EXPERIMENTS(nuclea.on    kine.cs,  etc.)    

 

EXPERIMENTS    (slip,    twinning,  crack,  etc.)  

Mechano-­‐Chemistry  PRISMS-­‐MC*  

PRISMS  Center  Integrated  Framework    Enabling  accelerated  predic.ve  materials  science

4  

Center for PRedictive Integrated Structural Materials Science

Crystal  plas.city  finite  element  

Single crystal constitutive model at element level

Equilibrium (and compatibility) across grains are enforced via Finite Element Method (FEM)

EBSD  serial  sec.oning  

CPFE  simula.ons  

5  Multiscale Structural Simulations Laboratory May  24,  2017  

•  Code  highlights:  –  Parallel  3D  crystal  plas.city  models  

implemented  over  Ellip.c  PDE  base  class  –  Support  for  reading  external  microstructures  

post-­‐processing  capabili.es  (pole  figures,  orienta.on  distribu.on  func.ons,  etc)  

–  Demonstrates  parallel  performance  and  scaling  on  large-­‐scale  problems  running  on  hundreds  of  processors.    

–  Training  at  the  PRISMS  Workshop  following  this  conference  

ODF  ε=0   ODF  ε=-­‐0.25  

PRISMS  CPFE  

Pole  Figures  -­‐MTex  Visualiza.on  -­‐  Paraview  

Virtual  Microstructure  -­‐  Neper  

PRISMS  Center:  Mg-­‐RE  alloys  

6  

Goal:  To  model  microstructural  deforma.on  using  CPFE  and  validate  using  grain  level  strain  data  from  SEM-­‐DIC  

Valida.on  experiments:  in-­‐situ  strain  mapping  

7 Center  for    PRedic.ve  Integrated    Structural  Materials  Science  

Quan1ta1ve  local  analysis  of  the  rela1onships  between  microstructure  and  deforma1on/damage    •  Approach:  in-­‐SEM  digital  image  correla1on  (SEM-­‐DIC)  

•  Full-­‐field  maps  of  deforma.on  at  different  length  scales  (see  Fig.)  •  Slip  ac.vity,  twinning,  strain  localiza.on  have  been  quan.ta.vely  resolved  during  

loading    

                     EBSD  orienta.on  data  is  mapped  in  PRISMS-­‐CPFE,  following  which  deforma.on  fields  from  SEM-­‐DIC  and  CPFE  can  be  compared.    

As  received  (80x80  µm)   Peak  aged  (1000x1000  µm)  

8  Multiscale Structural Simulations Laboratory May  24,  2017  

Upcoming  NSF  work:  Modeling  localiza7on  using  peridynamics  Strain  maps  courtesy  of  the  Daly  lab  (Alan  Githens;  co-­‐advised  by  John  Allison  and  Sam  Daly).    

T5  temper-­‐2.91%  Strain    

T5  temper-­‐2.91%  Strain    

L  M  

A  

B  

C  

E  

F  G  

H  

I  

K  

J  D  

L  M  

A  

B  

C  

E  

F  G  

H  

I  

K  

J  D  

9  Multiscale Structural Simulations Laboratory May  24,  2017  

Strain  maps  courtesy  of  the  Daly  lab  (Alan  Githens;  co-­‐advised  by  John  Allison  and  Sam  Daly).    

T5  temper-­‐2.91%  Strain    

T5  temper-­‐2.91%  Strain    

A  

B  C  

A  

B   C  

∑↑▒𝛾↓𝑏𝑎𝑠𝑎𝑙  /∑↑▒𝛾    

10  Multiscale Structural Simulations Laboratory May  24,  2017  

Strain  maps  courtesy  of  the  Daly  lab  (Alan  Githens;  co-­‐advised  by  John  Allison  and  Sam  Daly).    

T5  temper-­‐2.91%  Strain    

T5  temper-­‐  compression  4.2%  Strain    

LIFT-­‐UTRC  project:  Mul.scale  Modeling  of  Al-­‐Li  alloys    

Crystal  plas.city  •  ODF  •  FEM  

Volume  frac.ons  of  crystals  in  orienta.on  space  is  tracked  

Most  efficient  microstructure  representa.on  

Conservation principle

Solve for evolution of the ODF with deformation

Based on the Taylor hypothesis

EVOLUTION EQUATION FOR THE ODF (Eulerian)

Mul.scale  modeling  

Mul.scale  anima.on  

Multiscale Structural Simulations Laboratory

MULTISCALE INVERSE PROBLEMS

Objective: Design the initial preform such that the die cavity is fully filled and the yield strength is uniform over the external surface (shown in Figure below). Material: FCC Cu

Uniform yield strength desired on this surface

Fill cavity

Multi-objective

optimization

•  Increase Volumetric yield

• Decrease property variation

+

Multiscale Structural Simulations Laboratory

MULTI-SCALE DESIGN FOR OPTIMUM STRENGTH: UNOPTIMIZED

70

80

90

100

110

120

130 Large

Underfill

variation in yield strength

Yiel

d st

reng

th (

MPa

)

Multiscale Structural Simulations Laboratory

70

80

90

100

110

120

130 Underfill

Yiel

d st

reng

th (

MPa

)

Optimal yield strength

Optimal fill

MULTI-SCALE DESIGN FOR OPTIMUM STRENGTH: OPTIMIZED