Moving Towards More Energy Efficient Wood Frame Building Enclosures

Post on 02-Jul-2015

250 views 3 download

Transcript of Moving Towards More Energy Efficient Wood Frame Building Enclosures

Implica(ons  of  the  New  NBC  Sec(on  9.36    

Moving  Towards  More  Energy  Efficient  Wood-­‐Frame  Building  Enclosures  

!   Graham  Finch,  MASc,  P.Eng  Principal,  Building  Science  Research  Engineer    RDH  Building  Engineering  Ltd.  Vancouver,  BC    

RCIC  2013  Edmonton  –  April  30,  2013  

Presenta<on  Outline  

!   New  Building  Enclosure  Energy  Efficiency  Requirements  Under  New  2012  NBC  Sec(on  9.36  

!   Highly  Insulated  Wood-­‐frame  Enclosure  Assemblies  

!   Building  Enclosure  Design  Guide  for  Highly-­‐Insulated  Wood-­‐frame  Buildings  

!   New  Sec(on  9.36  -­‐  Whole  Building  Energy  Efficiency  Requirements  for  Part  9  houses  

!   Reference  to  NECB  2011  for  other  buildings  (Part  3)  

!   Building  Enclosure  (Envelope),  HVAC,  Hot-­‐Water  Components  

!   Prescrip(ve,  Trade-­‐off  and  Energy  Modeling  Paths  for  Compliance  

!   Effec(ve  R-­‐values  vs  Nominal  R-­‐values  

New  NBC  Sec<on  9.36  Energy  Efficiency  Requirements    

2010  NBC  Updated  in  December  2012  –  New  Sec8on  9.36.  Energy  Efficiency  

!   Nominal  R-­‐values  =  Rated  R-­‐values  of  insula(on  which  do  not  include  impacts  of  how  they  are  installed    !   For  example  R-­‐20  ba\  insula(on  or  

R-­‐10  foam  insula(on  !   Effec(ve  R-­‐values  or  Real  R-­‐values  =  

Calculated  R-­‐values  of  assemblies/details  which  include  impacts  of  installa(on  and  thermal  bridges  !   For  example  nominal  R-­‐20  ba\s  

within  steel  studs  16”  o.c.  becoming  ~R-­‐9  effec(ve,  or  in  wood  studs  ~R-­‐15  

Nominal  vs  Effec<ve  R-­‐values  

!   Thermal  bridging  occurs  when  a  conduc(ve  material  (e.g.  aluminum,  steel,  concrete,  wood  etc.)  provides  a  path  for  heat  to  flow  around  insula(on  

!   The  bypassing  “bridging”  of  the  less  conduc(ve  material  significantly  reduces  its  effec(veness  as  an  insulator  

!   Examples:  !   Wood  framing  (studs,  plates)  in  insulated  wall  !   Steel  framing  in  insulated  wall  !   Conduc(ve  cladding  a\achments  through  insula(on  

(metal  girts,  clips,  anchors,  screws  etc)  !   Concrete  slab  edge  (balcony,  exposed  slab  edge)  

through  a  wall  !   Window  frames  and  windows  themselves  

Thermal  Bridging  

!   Effec(ve  R-­‐values  account  for  thermal  bridges  and  represent  actual  heat  flow  through  enclosure  assemblies  and  details  !   Heat  flow  finds  the  path  of  least  resistance  !   Dispropor(onate  amount  of  heat  flow  

occurs  through  thermal  bridges  !   Ofen  adding  more/thicker  insula(on  can’t  

help  !   Required  for  almost  all  energy  and  building  

code  calcula(ons    !   Energy  code  compliance  has  historically  

focused  on  assembly  R-­‐values  –  however  more  importance  is  being  placed  on  details  and  interfaces  &  thermal  bridges  

!   Air(ghtness  also  as  important  

Why  Thermal  Bridging  is  Important    

!   Increased  emphasis  on  con(nuous  insula(on,  higher  effec(ve  R-­‐values  

!  Minimum  R-­‐value  Tables  for  Above  &  Below  Grade  Enclosures  (Walls,  Roofs,  Floors)  –  dependent  on  whether  HRV  present  in  house  (minor  tradeoff  allowance)  

!  Maximum  U-­‐value  (minimum  R-­‐value)  &  Minimum  Energy  Ra(ng  (ER)  Tables  for  Windows,  Doors,  Skylights  

!   Prescrip(ve  air(ghtness  requirements  (no  blower  door  yet)  !   HVAC  duct  sealing/insula(on,  minimum  equipment  

efficiency  !   Domes(c  Hot  Water,  minimum  equipment  efficiency  !   Energy  modeling  op(on  &  Trade-­‐off  op(ons  

New  NBC  Sec<on  9.36  Energy  Efficiency  Requirements  

New  NBC/NECB  Climate  Zone  Divisions  

•  >7000 HDD

•  6000 to 6999 HDD

•  5000 to 5999 HDD

•  4000 to 4999 HDD

•  3000 to 3999 HDD

•  < 3000 HDD

Wall,  Roof  &  Window  Requirements  for  Alberta  (NBC  9.36)  

Climate  Zone  

Wall  -­‐  Above  Grade:  Minimum    R-­‐value  (IP)  

Roof  –  Flat/Cathedral:  Minimum  R-­‐value  (IP)  

Roof  –  AXc:  Minimum  R-­‐value  (IP)  

Window:  Max.  U-­‐value  (IP)  /  Min.  ER    

8   21.9   28.5   59.2   0.25  /  29  

7B   21.9   28.5   59.2   0.25  /  29  

7A   17.5   28.5   59.2   0.28  /  25  

6   17.5   26.5   49.2   0.28  /  25  

With

out  a

 HRV

 

Climate  Zone  

Wall  -­‐  Above  Grade:  Minimum    R-­‐value  (IP)  

Roof  –  Flat/Cathedral:  Minimum  R-­‐value  (IP)  

Roof  –  AXc:  Minimum  R-­‐value  (IP)  

Window:  Max.  U-­‐value  (IP)  /  Min.  ER    

8   17.5   28.5   59.2   0.25  /  29  

7B   17.5   28.5   59.2   0.25  /  29  

7A   16.9   28.5   49.2   0.28  /  25  

6   16.9   26.5   49.2   0.28  /  25  

With

 a  HRV

 

Wall,  Roof  &  Windows  (NECB  2011/ASHRAE  90.1-­‐2010)  

Climate  Zone  

Wall  –  Above  Grade:  Minimum    R-­‐value  (IP)  

Roof  –  Flat  or  Sloped:  Minimum  R-­‐value  (IP)  

Window:  Max.  U-­‐value  (IP)    

8   31.0   40.0   0.28  

7B   27.0   35.0   0.39  

7A   27.0   35.0   0.39  

6   23.0   31.0   0.39  

NEC

B  2011  

ASHR

AE  90.1-­‐2010  –  

Reside

n<al  Building   Climate  

Zone  Wall  (Mass,  Wood,  Steel):  Min  R-­‐value  

Roof  (AXc,  Cathedral/Flat):  Min  R-­‐value  

Window  (Alum,  PVC/fiberglass):  Max.  U-­‐value  

8   19.2,  27.8,  27.0   47.6,  20.8   0.45,  0.35  

7B   14.1,  19.6,  23.8   37.0,  20.8   0.45,  0.35  

7A   14.1,  19.6,  23.8   37.0,  20.8   0.45,  0.35  

6   12.5,  19.6,  15.6   37.0,  20.8   0.55,  0.35  

*7A/7B  combined  in  ASHRAE  90.1  

!   Some  guidance    (Table  A-­‐9.36.2.6.(1)A  provided  for  calcula(on  of  effec(ve  R-­‐values  of  some  assemblies  (to  help  transi(on  from  nominal  R-­‐values)  

!   Sufficient  for  most  wood-­‐frame  /ICF  wall  assemblies  

!   No  provisions  for  cladding  a\achment/  thermal  bridging  

Guidance:  Effec<ve  R-­‐values  within  NBC  9.36  

Wall  Assembly  /  Insula<on  Rated  R-­‐value  

Effec<ve  Wall  R-­‐value  **  

Studs  at  16”,  25%  F.F.*  

Studs  at  24”,  22%  F.F.*  

2x4  w/  R-­‐12  baes   10.7   -­‐  

2x4  w/  R-­‐14  baes   11.5   -­‐  

2x6  w/  R-­‐19  baes   15.5   16.1  

2x6  w/  R-­‐22  baes   16.6   17.4  

2x6  w/  2pcf  sprayfoam  (R-­‐5/in,  R-­‐27.5)  

18.3   19.3  

2x6  w/  2pcf  sprayfoam  (R-­‐6/in,  R-­‐33)  

18.6   19.8  

*Studs at 16” o.c.=25% total Framing Factor (F.F.) and Studs at 24” o.c. =22% total framing factor. This includes typical framing arrangements of studs, sill and top plates, window headers, corners, built-up studs etc. ** All values calculated using three-dimensional thermal modeling calibrated to hot-box testing

Typical  Wood-­‐frame  Wall  Assemblies  –  Effec<ve  R-­‐values  

!   Effec(ve  R-­‐value  targets  above    ~R-­‐17  essen(ally  means  that  standard  prac(ce  of  ba\  insula(on  in  2x6  stud  frame  wall  is  inadequate  

!   Shifs  code  minimum  baseline  wall  assembly  to:  !   Insulated/Foam  Sheathing  !   Sprayfoam?  !   Exterior/Split  Rigid  Insula(on  !  Double/Deep  Stud  !   Structurally  Insulated  Panels  (SIPs)    !   Insulated  Concrete  Forms  (ICFs)  

Beyond  2x6  Framed  Walls  

Insula<on  Placement  &  Wall  Design  Considera<ons  

Interior  Insula(on  

Exterior  Insula(on  

Split    Insula(on  

GeXng  to  Higher  R-­‐values  –  Insula<on  Placement  

Baseline    2x6  w/  R-­‐22  ba\s  =  R-­‐16  effec<ve    

Exterior  Insula(on  –  R-­‐20  to  R-­‐40+  effec<ve  •  Constraints:  cladding  a\achment,  wall  thickness  •  Good  for  wood/steel/concrete  

Deep/Double  Stud–  R-­‐20  to  R-­‐40+  effec<ve  •  Constraints  wall  

thickness  •  Good  for  wood,  

wasted  for  steel  

Split  Insula(on–    R-­‐20  to  R-­‐40+  effec<ve  •  Constraints:  cladding  

a\achment  •  Good  for  wood,  palatable  for  

steel  

!   Insula(on  outboard  of  structure  and  control  layers  (air/vapor/water)  !   Thermal  mass  at  interior  where  useful  !   Excellent  performance  in  all  climate  zones  !   Cladding  A\achment  biggest  source  of  thermal  loss/bridging  !   Not  the  panacea,  can  s(ll  mess  it  up  

Exterior  Insulated  Walls  

Steel Stud Concrete Heavy Timber (CLT)

!   Key  Considera(ons:  !   Cladding  A\achment  !  Wall  Thickness    

!   Heat  Control:  Exterior  Insula(on  

!   Air  Control:  Membrane  on  exterior  of  structure  

!   Vapor  Control:  Membrane  on  exterior  of  structure  

!  Water  Control:  Membrane  on  exterior  of  structure  (possibly  surface  of  insula(on)  

Exterior  Insula<on  Assemblies  

!  Many  Possible  Strategies  –  Wide  Range  of  Performance  

Cladding  Aeachment  through  Exterior  Insula<on  

Minimizing  Thermal  Bridging  through  Exterior  Insula<on  

Longer cladding Fasteners directly through rigid insulation (up to 2” for light claddings)

Long screws through vertical strapping and rigid insulation creates truss (8”+) – short cladding fasteners into vertical strapping Rigid shear block type connection

through insulation, cladding to vertical strapping

Key  Considera<ons  -­‐  Split  Insula<on  Assemblies  

!   Key  Considera(ons:  !   Exterior  insula(on  type  !   Cladding  a\achment  !   Sequencing  &  detailing  

!   Heat  Control:  Exterior  and  stud  space  Insula(on  

!   Air  Control:  House-­‐wrap  adhered/sheet/liquid  membrane  on  sheathing,  sealants/tapes  etc.  Ofen  vapor  permeable  

!   Vapor  Control:  Poly  or  VB  paint  at  interior,  plywood/OSB  sheathing    

!  Water  Control:  Rainscreen  cladding*,  WRB  membrane,  surface  of  insula(on  

Split  Insula<on  Assemblies  –  Exterior  Insula<on  Selec<on  

!   Foam  insula(ons  (XPS,  EPS,  Polyiso,  ccSPF)  are  vapor  impermeable  !   Is  the  vapor  barrier  on  the  wrong  side?  !  Does  your  wall  have  two  vapor  barriers?  !  How  much  insula(on  should  be  put  outside    

of  the  sheathing?  –  More  the  be\er,  but  room?  !   Rigid  mineral  or  glass  fiber  insula(on  are    

vapor  permeable  which  can  address    these  concerns    

!   Vapor  permeability  of  WRB  and  air-­‐barrier  also  important  !   Risk  is  dependant  on  interior  condi(ons  (RH)  and  poten(al  for  

air-­‐leakage,  and  on  exterior  condi(ons  (rain/RH)  and  poten(al  for  water  leaks  

!   Double  2x4/2x6  stud,  Single  Deep  2x10,  2x10,  I-­‐Joist  etc…  !   Common  wood-­‐frame  wall  assembly  in  many  passive  houses  !   Lends  itself  well  to  pre-­‐fabricated  wall/roof  assemblies  !   Interior  service  wall  –  greater  control  over  interior  air(ghtness  !   Higher  risk  for  damage  if  sheathing  gets  wet  (rainwater,  air  leakage,  

vapor  diffusion)    

Double/Deep  Stud  Insulated  

Key  Considera<ons  –  Double  Stud/Deep  Stud  

!   Key  Considera(ons:  !   Air-­‐sealing  !   Rainwater  management/detailing  

!   Heat  Control:  Double  stud  cavity  fill  insula(on(s)  

!   Air  Control:  House-­‐wrap/membrane  on  sheathing,  poly,  air(ght  drywall  on  interior,  OSB/plywood  at  interior,  tapes,  sealants,  sprayfoam.  Air(ghtness  on  both  sides  of  cavity  recommended  

!   Vapor  Control:  Poly,  VB  paint  or  OSB/plywood  at  interior  

!  Water  Control:  Rainscreen  cladding*,  WRB  at  house-­‐wrap/membrane,  flashings  etc.  

!   Energy-­‐Efficient  Building  Enclosure  Design  Guide  for  Wood-­‐frame  Mul(-­‐Unit  Residen(al  Buildings  in  Marine  to  Cold  Climates  

!   Builds  off  of  Previous  Building  Enclosure  Design  Guides  &  CMHC  Best  Prac(ce  Guides  

!   Focus  on  durable  and  highly  insulated  wood-­‐frame  assemblies  to  meet  current  and  upcoming  energy  codes  

!   Guidance  for  taller  and  alternate  wood-­‐frame  structures  (ie  post  &  beam,  CLT)  up  to  6  stories  

Building  Enclosure  Design  Guidance  

!   Chapter  1:  Introduc(on  !  Context  

!   Chapter  2:  Building  and  Energy  Codes  across  North  America  !  Canadian  Building  and  Energy  

Code  Summaries  &  R-­‐value  requirements  

!  US  Building  and  Energy  Code  Summaries  &  R-­‐value  requirements  

!  Performance  Ra(ng  Systems  &  Green  Building  Programs  

What  is  in  the  Guide?  

!   Chapter  3:  Moisture,  Air  and  Thermal  Control  !  Building  as  a  System  !  Climate  Zones  !   Interior  Climate,  HVAC  Interac(on  !  Cri(cal  Barriers  !  Control  of  Rainwater  Penetra(on  !  Control  of  Air  Flow  !  Controlling  Condensa(on  !  Construc(on  Moisture  !  Controlling  Heat  Flow  and  Insula(on  !  Whole  Building  Energy  Efficiency  !  Computer  Simula(on  Considera(ons  for  Wood-­‐frame  Enclosures  

What  is  in  the  Guide?  

!   Chapter  4:  Energy  Efficient  Wall  and  Roof  Assemblies  !  Above  Grade  Wall  Assemblies    

•  Split  Insulated,  Double  Stud/Deep  Stud,  Exterior  Insulated  •  Infill  Walls  for  Concrete  Frame  

!  Below  Grade  Wall  Assemblies  •  Interior  and  Exterior  Insulated  

!  Roof  Assemblies  •  Steep  Slope  &  Low  Slope  

!   Chapter  5:  Detailing  !  2D  CAD  (colored)  and  3D  build-­‐sequences  for  various  typical  

enclosure  details  

!   Chapter  6:  Further  Reading  &  References  

What  is  in  the  Guide?  

!   Air  Barrier  Systems  (Fundamentals,  Materials,  Performance,  tes(ng)    !   Sealed  Poly/Sheet  Membranes  !   Air(ght  drywall  ! Sprayfoam  !   Sealed-­‐Sheathing  Approaches  

›  Unsupported  sheet  membranes  ›  Supported  sheet  membranes  with  

ver(cal  strapping  ›  Sandwiched  membranes  behind  

exterior  insula(on  ›  Self-­‐Adhered  and  liquid  applied  

membranes  

Air  Flow  Control  –  Air  Barrier  Strategies  

!   Control  of  Heat  Flow  !  Minimizing  Conduc(ve  

Losses,  Minimizing  Air  Leakage  

!  Placement  of  Insula(on  within  assemblies  

!  Wood  framing  factors  !   Types  of  insula(on,    

R-­‐values  and  typical  uses  !   Thermal  bridging  and  

effec(ve  R-­‐values  

Heat  Flow  Control  &  Insula<on  

!  Material  selec(on  &  guidance  

!   Control  Func(ons  !   Cri(cal  Barriers  !   Effec(ve  R-­‐value  Tables  

Energy  Efficient  Walls  –  Split  Insulated  

Wood  framing    

Nominal  stud-­‐space  insulation  [R-­‐value  (RSI)]    

Exterior  insulation  

None  [R-­‐value  (RSI)]  

R-­‐4    (1  inch)  [R-­‐value  (RSI)]  

R-­‐8    (2  inches)  [R-­‐value  (RSI)]  

R-­‐12    (3  inches)  [R-­‐value  (RSI)]  

R-­‐16    (4  inches)  [R-­‐value  (RSI)]  

R-­‐20    (5  inches)  [R-­‐value  (RSI)]  

R-­‐24    (6  inches)  [R-­‐value  (RSI)]  

2x4   R-­‐12  (2.1)  

10.7    (1.9)  

15.0  (2.6)  

18.8  (3.3)  

22.5  (4.0)  

26.2  (4.6)  

29.7  (5.2)  

33.2  (5.8)  

R-­‐14  (2.5)  

11.5  (2.0)  

15.8  (2.8)  

19.6  (3.4)  

23.2  (4.1)  

27.0  (4.8)  

30.5  (5.4)  

34.0  (6.0)  

2x6   R-­‐19  (3.3)  

15.5  (2.7)  

19.8  (3.5)  

23.7  (4.2)  

27.3  (4.8)  

31.0  (5.5)  

34.5  (6.1)  

38.0  (6.7)  

R-­‐22  (3.9)  

16.6  (2.9)  

21.0  (3.7)  

24.8  (4.4)  

28.5  (5.0)  

32.2  (5.7)  

35.7  (6.3)  

39.2  (6.9)  

 

!  Material  selec(on  &  guidance  

!   Control  Func(ons  !   Cri(cal  Barriers  !   Effec(ve  R-­‐value  Tables  

Energy  Efficient  Walls  –  Double  Stud/Deep  Stud  

Wood  framing      

Nominal  fill  insulation  [R-­‐value/inch  (RSI/cm)]  

Gap  width  between  stud  walls  No  gap  [R-­‐value  (RSI)]  

1-­‐inch    [R-­‐value  (RSI)]  

2-­‐inches    [R-­‐value  (RSI)]  

3-­‐inches    [R-­‐value  (RSI)]  

4-­‐inches    [R-­‐value  (RSI)]  

5-­‐inches    [R-­‐value  (RSI)]  

6-­‐inches  [R-­‐value  (RSI)]  

Double-­‐stud  2x4  

R-­‐3.4/inch  (0.24/cm)  

19.1  (3.4)  

22.9  (4.0)  

26.5  (4.7)  

30.0  (5.3)  

33.4  (5.9)  

36.9  (6.5)  

40.3  (7.1)  

R-­‐4.0/inch  (0.28/cm)  

20.5  (3.6)  

25.1  (4.4)  

29.4  (5.2)  

33.4  (5.9)  

37.4  (6.6)  

41.5  (7.3)  

45.4  (8.0)  

 

Pitched-­‐Roof,  Exterior  Insulated  Assembly  

!  Materials  &  Control  Func(ons  

!   Cri(cal  Barriers  !   Effec(ve  R-­‐values  

Low-­‐Slope  Conven<onal  Roof  Assembly  

!  Materials  &  Control  Func(ons  

!   Cri(cal  Barriers  !   Effec(ve  R-­‐values  

(Accoun(ng  for  tapered  insula(on  packages)  

!   2D  CAD  details  (colored)  provided  for  typical  details  for  each  wall  assembly  type  (split  insulated,  double  stud,  exterior  insulated)  plus  some  for  infill  walls  

!   3D  sequence  details  provided  for  window  interfacing  (split  insulated,  double  stud,  exterior  insulated)  

Detailing  

Detailing  –  Colored  2D  Details  

Detailing  –  Wall  to  Roof  Interfaces  

Detailing  –  2D  Window  Details  

Detailing  –  3D  Window  Installa<on  Sequences  

!   Graham  Finch,  MASc,  P.Eng  gfinch@rdhbe.com  604-­‐873-­‐1181  

!   Building  Enclosure  Design  Guide  Available  from  FP  Innova(ons:  h\p://www.fpinnova(ons.ca/ResearchProgram/AdvancedBuildingSystem/designing-­‐energy-­‐efficient-­‐building-­‐enclosures.pdf    

Discussion