Mixed signal systems and integrated circuits · 2010. 4. 2. · Dynamic Element matching DAC ... K....

Post on 24-Jan-2021

0 views 0 download

Transcript of Mixed signal systems and integrated circuits · 2010. 4. 2. · Dynamic Element matching DAC ... K....

2009/12/18 A. Matsuzawa 1

Mixed signal systems and integrated circuits

Akira Matsuzawa

Tokyo Institute of Technology

2009/12/18 A. Matsuzawa 2

1. Z transform2. Noise shaping3. Sigma-delta modulation4. SNR5. Hider order system6. Multi-stage Sigma-delta modulation7. Recent important developments8. Design example

Over sampling ADC and DAC

Sigma-delta modulation

2009/12/18 A. Matsuzawa 3

Frequency characteristics of DS modulator

103

104

105

106

107

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0SNDR = 99.5dB

SNR = 100.1dB

In-bandOSR=64200kHz

Dyn

amic

Ran

ge (d

B)

Frequecy (Hz)

Thermal noise

5th order, 1bit

100dB/dec

103

104

105

106

107

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0SNDR = 99.5dB

SNR = 100.1dB

In-bandOSR=64200kHz

Dyn

amic

Ran

ge (d

B)

Frequecy (Hz)

Thermal noise

5th order, 1bit

100dB/dec

103

104

105

106

107

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

1st order

20dB/dec

2nd order

40dB/dec

dBFS

Frequency (Hz)

fs=26MHz

103

104

105

106

107

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

1st order

20dB/dec

2nd order

40dB/dec

dBFS

Frequency (Hz)

fs=26MHz

)z(Qz1)z(X)z(YL1

s

22q f12

)f(h

1L22L2

s

f

f s

2

f

f

L2

ez12

qq

OSR1L231

2df

ff2j

f12

z1)f(hN

b

b

b

bfs/f2j

2009/12/18 A. Matsuzawa 4

12

2 121223

LN OSRLSNR

0

20

40

60

80

100

120

140

160

180

200

1 10 100 1000

Dyn

amic

Ran

ge (

dB)

1st

2nd

3rd

4th5th

OSR

n=1bit

SNR vs. OSR

OSR=M

2009/12/18 A. Matsuzawa 5

111

z 111

z 1z...

Quantizer

Q

)z(Ez)z(X)z(Y

QYzz.....Y

zzY

zzX

zY

k

kkk

1

1

1

11

1

1

1

1

1

11111

111

z

3rd-- >10 steps 4 th ---- >30

In OutH

Higher order sigma-delta modulation

Cascade connection of the integrators

The feed back loop becomes unstabledue to large phase delay,When the order is larger than 2.

Increase the resolution of the quantizerfor stabilization

Higher order sigma-delta modulator becomes unstable easily.

2009/12/18 A. Matsuzawa 6

Feed Forward type vs. Feed Back type

+ +

nQ

+1

1

1

zz

1

1

1

zz

1

1

1

zz

1

1

1

zz

X Y

b1 b2 b3 b4

+

1

1

1

zz

XY

nQ

1z

+ 1

1

1

zz

1

1

1

zz a41

1

1

zz

a1 a2 a3

+ +

+

FF

FB

Integrator

Integrator

2009/12/18 A. Matsuzawa 7

Signal swing of integrator in FF type and FB type

time

1

-11

-11

-1

0

0

0

time

5

-55

-55

-5

0

0

0

(a) FF (b) FB

1st Integrator

2nd Integrator

3rd Integrator

FF type can suppress signal swings

2009/12/18 A. Matsuzawa 8

Actual SNR of Sigma delta ADC

M 阪大 谷口教授より

2009/12/18 A. Matsuzawa 9

Pole, zero, and frequency characteristics

Unit circle

Zeros: Z=1Quadrature

Poles

阪大 谷口教授より

2009/12/18 A. Matsuzawa 10

Design for position of zeros

1z

阪大 谷口教授より

Spiting zeros on the unit circle

Deeper blacking for noise in signal-band

2009/12/18 A. Matsuzawa 11

Local resonators

)()(:

zFzHNTF

11

Local resonator can form the zeros

2009/12/18 A. Matsuzawa 12

Effect of zero-spreading

阪大 谷口教授より

2009/12/18 A. Matsuzawa 13

MASH (Multi-stage noise shaping)

111

z+

1z

Q1

+

+

11 z

111

z+

1z

Q2

+

+

11 z

111

z+

1z

Q3

XY

-Q1

-Q2

1st

quantization noise

Y1

Y2

Y3

2nd

quantization noise

3

123

21

12

11

1

11

1

QZQYQZQY

QZXY

3

31

321

21

1

1

11

QZXY

YZYZYY

Realizing the stable 3rd order sigma delta modulation.

Feed forwarded multi-stage noise shaping architecture is free from instability,however requires good matching.

2009/12/18 A. Matsuzawa 14

Signal swing of integrator

Reduce signal swings

2009/12/18 A. Matsuzawa 15

Model for Scaling

f = [MAXmax3 MAXmax4 MAXmax5 MAXmax6 MAXmax7] / Targethalfswinga5 = [ a5(1)/f(1) a5(2)*f(1)/f(2) a5(3)*f(2)/f(3) a5(4)*f(3)/f(4) a5(5)*f(4)/f(5) ]lfb5 = [ lfb5(1)*f(3)/f(1) lfb5(2)*f(5)/f(3) ]w = [ w(1)*f(1) w(2)*f(2) w(3)*f(3) w(4)*f(4) w(5)*f(5) ]

2009/12/18 A. Matsuzawa 16

Signal swing and scaling

a5 = 0.8106 0.3861 0.2236 0.1280 0.0401lfb5 = 0.0177 0.8412w = 1.0 1.0 1.0 1.0 1.0

a5 = 0.2996 0.3219 0.2811 0.2417 0.1565lfb5 = 0.0169 0.1141w = 2.7054 3.2444 2.5804 1.3670 0.3500

Scaling後Scaling前

2009/12/18 A. Matsuzawa 17

1bit

Effect of scaling

Before scaling After scaling

2009/12/18 A. Matsuzawa 18

5bit

Effect of scaling

Before scaling After scaling

2009/12/18 A. Matsuzawa 19

Effect of scaling

Before scaling After scaling

2009/12/18 A. Matsuzawa 20

kT/C Noise vs. Capacitance

1st stage

2nd Stage

3rd stage

4,5 Stage

5order 1bit 3order 3bit

1st Stage

2nd Stage

3rd stage

2009/12/18 A. Matsuzawa 21

General expression of ΣΔ modulator

Input signal

+

nQzFzHX

zFzHzHY

)()()()()(

11

1

Output signalQuantizer

)(zH

)(zF

nQ YX

)()()(zFzH

zH1

)()( zFzH11

STF: Signal Transfer Function

NTF: Noise Transfer Function

2009/12/18 A. Matsuzawa 22

Contribution of noise

Int. 1 Int. 2 Int. 3 Int. 4

DAC

+In入力 Out

Vn1 Vn2 Vn3 Vn4

724

6

4N523

4

3N322

2

2N1Ntot_N MA7P

MA5P

MA3P

M1PP

IntegratoriuntilgainA thi :

-+ + +

Contribution of noise of 1st stage integrator and DAC is very large

2009/12/18 A. Matsuzawa 23

Effect of thermal and 1/f noises

Thermal and 1/f noise of the 1st integrator appear directly.

FrequencyIdeal

Actual

Magnitude (dB)

2009/12/18 A. Matsuzawa 24

IntegratorCf

VinVout

Vref

Csφ1

φ1

φ2

φ2

-+G

Cf

VinVout

-+

φ1 φ1

φ2 φ2Cs

G

-+

φ2 φ2Cs1

Cs2

φ1φ1

φ1

φ2

Vin

Cf

Vref

G Vout

Delayed

Non-Delayed

With subtractor

2009/12/18 A. Matsuzawa 25

Circuit example

・ComparatorComparator

・OPampOPamp・DACDAC

・Local Feedback PathLocal Feedback Path

・SumSum

2009/12/18 A. Matsuzawa 26

Data Weighted Averaging

+VDACー

+VDACー

+VDACー

010、100、011

2009/12/18 A. Matsuzawa 27

Dynamic Element matching DAC

4322571547

DA

C

4322571547

(a) Conventional DAC (b) Dynamic Element matching

2009/12/18 A. Matsuzawa 28

DEM Comparison

Y.Geerts and M. Steyaert, “Guidelines for implementation of CMOS multibitoversampling modulators”, ESPRIT project: SYSCONV Work Package 2,http://www.imse.cnm.es/esd-msd/deliverables.html

2009/12/18 A. Matsuzawa 29

Continuous time ΣΔADC

L. Breems and J.H. Huijsing,”Continuous-time sigma-delta modulation for A/D conversion in radio Receivers”Kluwer

We can make sigma delta ADC with CT filter.

2009/12/18 A. Matsuzawa 30

Effect of clock jitter

DAC Pulse

Ts

T

2281

Tbwit Mf

SNR

lim_

SNR=85dB, M=32, fbw=1.25MHz, 2.8psfbw=12.5MHz, 0.028ps

SNR of CT ΣΔADC is very sensitive to the clock jitter.In contrast, DT type is not so.

2009/12/18 A. Matsuzawa 31

Performance of DS ADC

BW [MHz]

ENO

B

4

6

8

10

12

14

16

18

0.01 0.1 1 10 100 1000

FlashSubrangingpipelinedSARfolding

Sigma-Delta

BW of DS ADC becomes wider to 20MHz

2009/12/18 A. Matsuzawa 32

Understanding of DS ADC

)()(

1)(

)()(1

1)()(1)()(

zQzH

zX

zQzH

zXzHzHzY

n

n

   

LPF+

Quantizationnoise:QN

X Y

-

DAC

XH(z)

Y’

YX

-A

Vn

ΔΣMod

Negative feedback

nn VA

XVA

XAAY 1

11

1

ΔΣMod

Negative feedback )1)(( zH

Loop gain of integrator

sf

jf

jff

ffje

zzH sss

s

ffjs

2211

1

1

111)(

21

High gain for low frequency

2009/12/18 A. Matsuzawa 33

High dynamic range design

P. Balmelli, et al., ISSCC 2004

Sigma delta method with multi-bit quantizer and dynamic element matching technique realized 25MS/s, 80dB ADC.

2009/12/18 A. Matsuzawa 34

Add new functionSigma-delta ADC can change the performance by changing over sampling ratio and filter characteristics. High DR and narrow BW

Low DR and wide BW Compatible:

T. Burger and Q. Huang, ISSCC 2001

2009/12/18 A. Matsuzawa 35

Add new function

K. Philips, ISSCC 2003

Complex band-pass sigma-delta

gm-C filter5th order complex sigma-delta 1b, @64MHz

Delta-sigma ADC can use complex band-pass filter.Analog filter and VGA can be removed from IF stage.

2009/12/18 A. Matsuzawa 36

Design example of ΣΔ型ADC

Signal bandwidth:10MHzDynamic range: >80dB

Matsuzawa Lab. Now designing high speed sigma delta ADC

2009/12/18 A. Matsuzawa 37

Architecture

シミュレーションの概要

1、上図のフィルタの係数を決定する

2、以下の可変パラメータ・ノイズ・非理想性を加えたモデルの作成振幅・周波数等 量子化器積分非直線性誤差オーバーサンプリング率 DAC素子ばらつき量子化分解能 オペアンプノイズジッター オペアンプゲインスルーイング 振幅範囲

サンプリング容量(kT/Cノイズ)

3、各パラメータを変化させてシミュレーションを行いSNRをグラフ化、考察

2009/12/18 A. Matsuzawa 38

Transfer function, pole and zero location for stability

2009/12/18 A. Matsuzawa 39

Simulation model with Simulink

積分器係数0.75 0.40 0.30 0.15 0.15ローカルフィードバック係数0.05 0.25(比較用に 0.0 0.0 も)

信号帯域 10MHzサンプリング周波数 640MHz(オーバーサンプリング率32)量子化器分解能 4bit

2009/12/18 A. Matsuzawa 40

SNR vs. Input signal intensity

2009/12/18 A. Matsuzawa 41

SNR vs. M

2009/12/18 A. Matsuzawa 42

SNR vs. Quantizing level

2009/12/18 A. Matsuzawa 43

SNR vs. Jitter

2009/12/18 A. Matsuzawa 44

SNR vs. Capacitor

2009/12/18 A. Matsuzawa 45

SNR vs. quantizer INL

2009/12/18 A. Matsuzawa 46

SNR vs. DAC nonlinearity

2009/12/18 A. Matsuzawa 47

SNR vs. gain of OP amp

2009/12/18 A. Matsuzawa 48

References

• J.C. Candy and G.C. Tems, “Oversampling Delta-Sigma Converters,” IEEE Press, 1992.

• Rudy van de Plassche, “ CMOS Integrated Analog to Digital and Digital to Analog Converters,” Kluwer.

• F. Medeiro, A. Perez-Verdu and A. Rodriguez-Vazquez, “Top-Down Design of High-Performance Sigma-Delta Modulators,”, Kluwer.

• C. Toumanzou, G. Moschytz, and B. Bilbert, “Trade-offs in Analog Circuit Design,” Kluwer.

• 岩田 「CMOSアナログ回路設計技術」 トリケップス